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Abstract
Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that
sometimes occur as part of a complex disorder characterized by impairments in social interaction,
communication and behavioral domains. It is a highly disabling disorder and there is a need for
treatment targeting the core symptoms. Although autism is accepted as highly heritable, there is no
genetic cure at this time. Autism is shown to be linked to several genes and is a feature of some
complex genetic disorders, including fragile X syndrome (FXS), fragile X premutation
involvement, tuberous sclerosis and Rett syndrome. The term autism spectrum disorders (ASDs)
covers autism, Asperger syndrome and pervasive developmental disorders (PDD-NOS) and the
etiologies are heterogeneous. In recent years, targeted treatments have been developed for several
disorders that have a known specific genetic cause leading to autism. Since there are significant
molecular and neurobiological overlaps among disorders, targeted treatments developed for a
specific disorder may be helpful in ASD of unknown etiology. Examples of this are two drug
classes developed to treat FXS, Arbaclofen, a GABAB agonist, and mGluR5 antagonists, and both
may be helpful in autism without FXS. The mGluR5 antagonists are also likely to have a benefit
in the aging problems of fragile X premutation carriers, the fragile X –associated tremor ataxia
syndrome (FXTAS) and the Parkinsonism that can occur in aging patients with fragile X
syndrome. Targeted treatments in FXS which has a well known genetic etiology may lead to new
targeted treatments in autism.
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1. Introduction
Autism spectrum disorders (ASDs) are common and occur in about 1% of the general
population (Baron-Cohen et al., 2009). Although behavioral interventions at a young age are
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significantly helpful in children with ASD (Dawson et al., 2010), there are no
pharmacological cures for these very impairing conditions that affect social interaction,
communication, and behavioral domains. The etiology of autism is heterogeneous and may
include genetic, environmental, and autoimmune etiologies (Levy, Mandell & Schultz,
2009).

2. Neurobiology of Autism
Autism is a highly genetic disorder and heritability is reported to be moderate to high
(Hallmayer et al., 2011; Ronald & Hoekstra, 2011) and shared environmental factor are also
important (Hallmayer et al., 2011). Research tells us that the genetics of autism is complex
and caused by many different genetic mechanisms (Lo-Castro, Benvenuto, Galasso, Porfirio
& Curatolo, 2010). Some of the linkage and association studies have found candidate genes
that contribute small effects on the autism phenotype (Veenstra-Vanderweele, Christian &
Cook, 2004). However, replication is not consistent across studies. On the other hand, recent
studies suggest that rare genomic variation may explain a significant proportion of the
genetic basis of ASD. One of the largest genome-wide association studies found a variant in
the intergenic region between CDH 9 and CDH 10 (encoding cadherins 9 and 10) associated
with ASDs in families (Wang et al., 2009). The finding of this study is important because its
results implicate alterations in neuronal adhesion molecules in the pathogenesis of ASD,
which could contribute to abnormal neuronal connectivity. Fassio et al. (2011) demonstrated
that a mutation in the gene SYN1 (encoding the synaptic vesicle protein Synapsin 1) which
predisposes to ASD and suggested that disturbances of synaptic homeostasis may underlies
the pathogenesis of ASDs. Other studies have shown that mutations in synaptic proteins
including neuroligins (Glessner et al., 2009; Jamain et al., 2003) and neurexins (Arking et
al., 2008; Kim et al., 2008) are associated with autism. One of the well replicated finding
about neurexins is association of CNTNAP2 (a gene named contactin associated
proteinlike-2 which encodes Caspr2) and autism. This association was documented in
several studies in various populations (Alarcón et al., 2008; Bakkaloglu et al., 2008; Li et al.,
2010]. Copy-number variations (CNVs) are consistently found associated with autism in the
large family studies (Levy, Mandell & Schultz, 2009). Although new strategies to identify
common genetic risk variants are being applied currently, there is no single model that
explains all of the phenotypic variation in cases with autism (Buxbaum, 2009). In fact,
genetic heterogeneity data strongly suggest that there is not any common genetic risk
variant. In a recent study, a large number of investigators presented a new approach called
homozygous haplotype mapping, which aims to detect homozygous segments of identical
haplotype structure that are shared at significantly higher frequency among individuals with
ASD compared to parental controls. Using this strategy authors are able to identify many
new ASD candidate genes and replicate some older ones (Casey et al., 2012), and they
suggested this approach as a promising development to evaluate genome wide association
data.

Although available data suggest that a large proportion of ASD cannot be explained by
single-gene models, these models represent a means of understanding the underlying
neurobiology of autism (Abrahams & Geschwind, 2008) and they include fragile X
syndrome (FXS) (Hatton et al., 2006), Tuberous Sclerosis (Wiznitzer, 2004), Rett syndrome
(Young et al., 2008) and some other less known chromosomal abnormalities (Lo-Castro,
Benvenuto, Galasso, Porfirio & Curatolo, 2010). Functions of FMR1, MECP2 and some of
the neural adhesion molecules such as neuroligins/neurexins suggest synaptic dysfunction in
autism pathogenesis. Overall, genetic and neurobiological evidence demonstrate that there
are similarities across disorders that are associated with autism including GABA and
glutamate imbalances (Belmonte & Bourgeron, 2006), synaptic maturation and plasticity
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deficits (De Rubeis & Bagni, 2011; Levy, Mandell & Schultz, 2009) and mitochondrial
malfunction (Giulivi et al., 2010).

Neurotransmitters including GABA, glutamate and serotonin are important in functions of
synaptic interactions and in cortical development (Manent & Represa, 2007; Pardo &
Eberhart, 2007). Specific GABA and glutamate receptors have a role in neuronal migration,
inhibition and synaptic plasticity including long term depression (LTD) and long term
potentiation (LTP). Plasma levels of glutamate and glutamine were found to be high in high-
functioning children with autism (Shimmura et al., 2011). The authors suggested that the
plasma levels of glutamate and glutamine could be early markers of glutamatergic
dysfunction leading to an autism pathogenesis. In animal models it was shown that
GABAergic dysfunction in early development lead to excitatory/inhibitory imbalances in
neural circuits and may account for some of the behavioral symptoms of ASDs (Pizzarelli &
Cherubini, 2011).

The role of serotonin in autism is also widely explored and abnormalities documented in
PET/SPECT studies and genetic studies found a relationship with serotonin related genes
(Pardo & Eberhart, 2007). Serotonin levels were found to be low in the frontal region of the
brain in children with autism under age 5 with alpha [11C] methyl-L-tryptophan and PET
scans (Chugani et al., 1999). Although some studies have demonstrated an improvement in
autism features following treatment with an SSRI (DeLong, Ritch & Burch, 2002; Soorya,
Kiarashi & Hollander, 2008), other studies have not including a large multicenter controlled
trial (King et al., 2009). In a recent review, although the data were unsuitable for a meta-
analysis, the authors concluded that there is no evidence of a benefit from SSRI treatment in
children with autism and little evidence of effectiveness in adults with autism (Williams,
Wheeler, Silove & Hazell, 2010). This does not eliminate the possibility that there may be a
critical developmental period during which an SSRI may help with autism symptoms
(Chugani, 2005). Controlled trials are currently taking place with buspirone in young
children 2 to 6 with autism [ClinicalTrials.gov Identifier: NCT00873509] and with sertraline
in young children 2 to 6 years old with FXS [ClinicalTrials.gov Identifier: NCT01474746].

3. Aging with Autism
Although it was reported that general symptomatic improvements occur as individuals with
autism get older, social interaction and communication problems continue into adolescence
and adulthood (Levy & Perry, 2011). There is evidence that adults with ASDs are at high
risk for psychopathology (Hofvander et al., 2009). In a prospective study assessing the
autism symptoms and maladaptive behaviors in adolescents and adults with ASDs, it was
reported that many of the individuals’ symptoms remained stable (Shattuck et al., 2007).
Although overall a greater proportion of the participants’ symptoms decreased, individuals
with intellectual disability (ID) had more autism symptoms and maladaptive behaviors with
age. As the children with autism grow up with their behavior problems, their mothers’
reactions also change. In a seven year follow up study Baker et al. (2011) reported that
mothers’ criticisms continue and tend to increase during transitions. The behavior problems
of the child with autism were positively correlated with the level of criticism they received
from their mothers. Externalizing behavior problems in young children with autism were
reported to be associated with paternal stress (Davis & Carter, 2008). On the other hand,
there is an impact of behavior problems in children with autism on both parent and teacher
stress (Lecavalier, Leone & Wiltz, 2006). In a study, Barker et al. showed that fluctuations
in emotional well-being of the mothers were associated with behavioral problems in children
with autism across a 10-year period (Barker, Hartley, Seltzer, Floyd, Greenberg & Orsmond
2011). It was also shown that, living a child with autism has an impact on emotional well
being of other sibling (Orsmond & Seltzer, 2009).
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With age there are abnormal changes in the brain structure in individuals with autism. In an
MRI study, Wallace et al. (2010) reported an age-diagnosis interaction; individuals with
ASDs had thinner cortex with increasing age compared to normals. The authors suggested a
second period of abnormal cortical development (greater thinning) besides early cortical
overgrowth. In an another MRI study, Raznahan et al. (2010) suggest that cortical
dysmaturation in ASD extends beyond childhood and affects brain regions involved with
social cognition and language. They examined 127 males, aged 10–60 years, (76 with ASDs
and 51 healthy controls) and identified significant age-by-group interactions in both cortical
volume (CV) and cortical thickness (CT) (but not cortical surface area) in the temporal lobes
and within these the fusiform and middle temporal gyri. Vertex based analyses replicated
these findings and identified additional age-by-group interactions for CT within superior
temporal, inferior and medial frontal, and inferior parietal cortices. They detected that CV
and CT were significantly negatively correlated with age in controls but not in ASDs
subjects; and smaller in ASDs than controls in childhood but vice versa in adulthood. They
speculated that these changes may be primarily related to cortical plasticity problems or
exacerbated by the disturbed interactions of individuals with ASD.

Targeted treatments may help to improve autism symptoms and maladaptive behaviors that
are persistent as the individuals get older, possibly slowing down neurobiological changes
through specific molecular mechanisms. Such mechanisms will be discussed further in detail
in the example of FXS.

4. Fragile X Syndrome
FXS is the most common single-gene cause of the autism and approximately 30% have full
autism but when PDD NOS, which occurs in an additional 30%, is also included the total
percentage with an ASD is 60% (Harris et al., 2008). FXS is caused by a full mutation (>200
CGG repeats) in the 5′untranslated region of the fragile X mental retardation 1 gene
(FMR1) which is near the distal arm of the long end of the X chromosome. This mutation
causes hypermethylation at the FMR1 promoter region and transcriptional silencing, which
in turn lead to a deficit of the FMR1 protein (FMRP). The overlap between autism and FXS
relates to the many functions of FMRP that is absent or deficient in FXS. FMRP binds,
stabilizes and transports to the synapse hundreds of mRNAs important for synaptic plasticity
(Bassell & Warren, 2008; De Rubeis & Bagni, 2010). In addition FMRP regulates, typically
through inhibition, the translation of these mRNAs into their respective proteins, such that in
the absence of FMRP there is significant over-expression of, many of these proteins, and
under-expression of others particularly in the hippocampus in FXS (Qin, Kang, Burlin, Jiang
& Smith, 2005). Many of the messages that are regulated by FMRP are associated with
autism including those encoding neuroligins, neurexins, Arc, SAPAP4, SHANK3, PSD95,
CYFIP and others (Darnell et al., 2011). FMRP regulates both basal and activity-dependent
local protein synthesis at the synapse (De Rubeis & Bagni, 2011; Napoli et al., 2008). The
mGluR5 system is up-regulated in the absence of FMRP and so is matrix metalloproteinase
9 (MMP9), whereas the GABA system is down-regulated (D’Hulst et al., 2006).

Our understanding of the many neurobiological consequences of the loss of FMRP has lead
to development of targeted treatments for FXS (Berry-Kravis, Knox & Hervey, 2011; Wang,
Berry-Kravis & Hagerman, 2010). One example is the significant up-regulation of
downstream proteins in the metabotropic glutamate receptor 5 pathways (mGluR5) in the
hippocampus leading to long term depression (LTD) or weakening of synaptic connections
(Huber, Roder & Bear, 2001). This is considered a major cause of the intellectual disability
(ID) in patients with FXS so that mGluR5 antagonists have been studied as targeted
treatments for FXS. In animal models of FXS including the knock out (KO) mouse, mGluR5
antagonists can reverse the dendritic spine abnormalities, audiogenic seizures, accelerated
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body growth, hyperactivity and deficits in prepulse inhibition (de Vrij et al., 2008; Gross,
Berry-Kravis & Bassell, 2012; Levenga, de Vrij, Oostra & Willemsen, 2010). Therefore
phase II clinical trials have taken place and fenobam which has been around for many years
and recently discovered to be an mGluR5 antagonist was tried in a single dose open label
study and found to not have significant side effects and also improve the deficits in prepulse
inhibition in 12 adults with FXS (Berry-Kravis et al., 2009). A controlled trial of AFQ056,
another mGluR5 antagonist, was also carried out in Europe and lead to significant
improvements in behavior in adults with FXS who had a full mutation that was fully
methylated (Jacquemont et al., 2011). This study was conducted on 30 male patients with
FXS and the group as a whole did not show significant improvement on the primary
outcome measure on day 20 of treatment, only those that were fully methylated showed a
significant benefit. Currently there are multiple sites carrying out controlled trials of two
different mGluR5 antagonists, AFQ056 (Novartis, Basel, Switzerland) and RO4917523
(Hoffmann-La Roche, Basel, Switzerland). The trials in FXS of another mGluR5 antagonist,
STX107 (Seaside Therapeutics) have not been initiated in FXS yet, although they are
planned for the future.

A recent report of two mouse models of autism, the fragile X KO mouse model and the
tuberous sclerosis mouse model demonstrated opposite effects to an mGluR5 antagonist.
The tuberous sclerosis mouse had rescue of behavior when an mGluR5 agonist was used and
the KO mouse model of FXS did best with an mGluR5 antagonist (Auerbach, Osterweil &
Bear, 2011). These authors then crossed a fragile X KO mouse with a tuberous sclerosis
mouse and demonstrated rescue of the phenotypes of both behaviorally (Auerbach,
Osterweil & Bear, 2011).

Another dysfunctional neurotransmitter system in FXS is the GABA system and 8 out of 18
known GABA subunits are significantly reduced in the cortex of the KO mice (D’Hulst et
al., 2006). GABA is the major inhibitory neurotransmitter in the brain, and its proper
regulation is essential for learning and memory, mood, and sleep. Dysregulation of
GABAergic circuits can result in seizures, anxiety, depression, insomnia, and cognitive
impairments (Sadock & Sadock, 2008). Neuroanatomical and behavioral phenotypes can be
rescued with the use of GABAergic compounds in the Drosophila model of fragile X
(Chang et al., 2008). GABAergic mechanisms can also down-regulate glutamate release and
modulate mGluR overactivity. A GABAB agonist which is the R-isomer of baclofen,
specifically Arbaclofen, has been studied in children and adults with FXS with good results
in those patients with FXS who have autism or significant social deficits [Poster in 9th

Annual International Meeting for Autism Research, Philadelphia 2010]. Currently controlled
trials of Arbaclofen in FXS are taking place at multiple centers in the US [ClinicalTrials.gov
Identifier: NCT01282268].

Use of a GABAA agonist, ganaxolone, a neurosteroid, has been in clinical trials for infantile
spasms with a good safety record and is now undergoing trials in children with FXS since it
specifically targets the GABAAδ pathway which is particularly low in FXS (D’Hulst et al.,
2009). Further information for this controlled crossover trial for children ages 6 to 17yo can
be found at www.ClinicalTrials.gov [ClinicalTrials.gov Identifier:NCT00441896].

Minocycline, which is FDA-approved as a broad-spectrum antibiotic with good CNS
penetration, is also being tested as a targeted treatment for FXS because it lowers MMP9
levels which are high in FXS. The KO mouse studies have shown that minocycline
treatment for one month after birth normalized the dendritic spine defects and improved
behavior and cognition in these fragile X mice (Bilousova et al., 2009). Subsequently a
survey of patients with FXS who were treated with minocycline clinically demonstrated
improvements in approximately 70% (Utari, Chonchaiya et al., 2010) and an open trial of
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minocycline in adolescents and young adults with FXS demonstrated improvements in
behavior (Paribello et al., 2010). Minocycline also slows down translation so it is thought to
lower other elevated protein levels in addition to MMP9. MMP9 is one of a family of
proteins important for synaptic plasticity. Currently a controlled trial of minocycline in
children and adolescents has preliminary positive results [Leigh et al, SSBP abstract,
Brisbane, 2011] and this trial will be completed in 2012.

Lithium is also a targeted treatment in FXS because it can down-regulate mGluR5 signaling
by inhibiting inositol phosphate turnover thereby attenuating phospholipase C activity and
inhibiting glycogen synthase kinase 3β (GSK3β) (Berry-Kravis et al., 2008). An open trial
of lithium was effective for behavioral improvements in FXS but a randomized double blind
controlled trial is needed (Berry-Kravis et al., 2008). Other potential treatments of FXS are
currently undergoing preclinical (animal) studies including PAK inhibitors, GSK3
antagonists and antioxidants and, if promising, approval will be sought for human trials
(Berry-Kravis, Knox, & Hervey, 2011). The summary of targeted treatments in FXS is
shown in Table 1:

Targeted treatments for FXS are likely to also help the aging problems and in a study of 62
patients with FXS over age 40 years (range 40–71yo; mean 49.2) 38.7% had neurological
problems and 20% of those older than age 55 had Parkinson’s disease (PD) (Utari, Adams et
al., 2010). The high rate of PD may be related to the importance of FMRP in the functioning
of the dopamine system (Wang et al., 2008). FMRP is needed for adult neurogenesis (Luo et
al., 2010) so the lack of FMRP and problems with adult neurogenesis may be related to the
occasional patient with FXS seen with cognitive decline in aging (Utari, Adams et al.,
2010). Preliminary studies have shown that one mGluR5 antagonist, AFQ056, is helpful in
the dyskinesias in Parkinson’s disease so it may be helpful for the parkinsonian symptoms
seen in aging in some patients with FXS (Utari, Adams et al., 2010). The most severe
problems with aging are seen in patients with the FMR1 premutation (55 to 200 CGG
repeats) and approximately 40% of males and up to 16.5% of females with the premutation
develop the fragile X-associated tremor ataxia syndrome (FXTAS). This is characterized by
intention tremor, ataxia, cognitive decline, autonomic dysfunction, neuropathy and
psychiatric problems (Hagerman & Hagerman, 2004). The cause of FXTAS is excessive
FMR1 mRNA levels (RNA toxicity) that dysregulate cellular function because of
sequestration of critical proteins (Garcia-Arocena et al., 2010; Sellier et al., 2010).
Inclusions occur in neurons and astrocytes and in the peripheral nervous system and tissues
(Hunsaker et al., 2011). Brain atrophy with significant white matter disease is characteristic
of FXTAS (Adams et al., 2007). In childhood a subgroup of premutation carriers
particularly boys have ADHD and ASD, the latter in 10% or higher if they present as
probands (Farzin et al., 2006). The presence of ASD in carriers is related to RNA toxicity in
addition to mild deficits of FMRP. Recently the affect of a mild deficit of FMRP in carriers
was the most important molecular factor associated with lowered levels of amygdala
activation in adult carriers (Hessl et al., 2011). The presence of seizures in children with the
premutation can exacerbate autism symptoms so seizures should be treated vigorously in
these patients (Chonchaiya et al., 2012). The premutation neurons dies more easily in culture
(Chen et al., 2010) and they appear to be more vulnerable to environmental toxicity (Paul et
al., 2010) so the premutation is a model for the combination of genetic and environmental
factors leading to autism.

5. Targeted Treatment Studies in Autism
Although there are many studies on treating secondary behavioral problems in autism,
treatments targeting the core symptoms of autism are relatively few. In a recent review, Mc
Pheeters et al. (2011) reported that risperidone and aripiprazole are effective in aggressive,
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self injurious, hyperactive and repetitive behavior in children with ASDs, although they
have some adverse effects. Perhaps the most significant side effect is weight gain that can
lead to metabolic problems including type II diabetes (Newcomer, 2005). They concluded
that there is insufficient evidence for benefits of other drugs, including SSRIs and
stimulants. On the other hand, in recent years, there are some preliminary results that
targeted treatments may be beneficial in children with autism. These agents include mGluR5
antagonists, tetrahydrobiopterin, D-cycloserine, arbaclofen and memantine and evidence
related to their use in autism is discussed below.

5.1. mGluR 5 Antagonists
Based on the hypothesis that excessive metabotropic glutamatergic signaling in autism may
cause some of the core symptoms, several studies tested mGluR5 antagonists in animal
models of autism. In a recent study, Mehta et al. (2011) reported a reduction in repetitive
behaviors and anxiety-like behaviors in mice with 2-methyl-6-phenyethyl-pyrididine
(MPEP) which is an mGluR5 receptor antagonist. In another study reporting similar results
the authors expressed concern that some measures of sociability may worsen, although they
improve the stereotypies (Burket, Herndon, Winebarger, Jacome, & Deutsch, 2011).
Silverman et al. (2010) also reported a similar result of mGluR5 antagonist on repetitive self
grooming behavior and suggested mGluR5 receptors as specific targets for decreasing
stereotypic behaviors in autism. As previously discussed mGluR5 antagonists are targeted
treatments for FXS and human trials in autism will hopefully be tried in the future.

5.2. Tetrahydrobiopterin
Tetrahydrobiopterin is an essential cofactor of several enzymes that convert aminoacids to
neurotransmitters, for example, tyrosine hydroxylase, the rate-limiting enzyme in synthesis
of dopamine. The pathways of these neurotransmitters are thought to be involved in etiology
of ASDs (Frye, Huffman, & Elliott, 2010). In one study, Fernell et al. (1997) reported
improvement with tetrahydrobiopterin in six autistic children. A double blind placebo
controlled study conducted by Danfors et al. (2005) reported general improvement in autism
symptoms with tetrahydrobiopterin. In that study, daily dose of 3 mg tetrahydrobiopterin per
kilogram were administered for 6 months alternating with placebo. The authors reported
small non-significant changes in the total scores of CARS after the treatment. However, with
a post hoc analysis, a significant improvement was observed in three core symptoms of
autism, social interaction, communication and stereotyped behaviors after 6 months of active
treatment.

5.3. D-cycloserine
D-cycloserine is a partial N-methyl-D-aspartate (NMDA) receptor agonist that enhances the
receptor activation in presence of glutamate (Watson, Bolanowski, Baganoff, Deppeler &
Lanthorn, 1990). It has been focus of interest in recent years as an accelerator of extinction
learning and there is some evidence that it is effective as an adjunctive therapy to cognitive
behavioral therapy for social phobia (Hofmann et al., 2006), acrophobia (Ressler et al.,
2004), obsessive compulsive disorder (Kushner et al., 2007) and post traumatic stress
disorder (Heresco-Levy et al., 2002).

In an animal model of ASD, Modi and Young (2011) suggested that D-cycloserine may
improve social behavior especially when combined with social behavioral therapy. They
alleged that glutamate transmission has a role in the formation of social bonds in animals
and NMDA receptor agonist D-cycloserine accelerates the acquisition of social information.
In a placebo-controlled study of D-cycloserine trial in children with autistic disorder
improvement was reported in certain aspects social impairment (Posey et al., 2004).
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5.4. Arbaclofen
Arbaclofen is a powerful GABAB agonist and the dextro (D) enantiomer of racemic
baclofen as discussed in the FXS section. Arbaclofen is hypothesized to indirectly efficient
on mGluR5 signaling by lowering the glutamate. Then glutamate mediated receptor
activation at the synapse is reduced. One unpublished open label study of Arbaclofen in
children with autism was carried out by Seaside Therapeutics and the results are positive for
both the primary and secondary measures [Berry-Kravis et al., 9th Annual International
Meeting for Autism Research, Philadelphia, 2010]. This has lead to the organization of the
multisite double blind randomized controlled treatment trial for children and young adults
with autism currently in progress in the US (ClinicalTrials.gov Identifier: NCT01288716).

5.5. Memantine
Memantine is a moderate affinity antagonist of the N-methyl-D-aspartic acid (NMDA)
glutamate receptor and can block excessive glutamate effects (Parsons, Danysz & Quack,
1999). Hypothesizing that memantine can potentially modulate learning, and can influence
neuroinflammatory activity including neuroglial activity, in an open-label long-term study,
Chez et al. (2007) showed that memantine helps with language function, social behavior,
and self-stimulatory behaviors in children with autism and PDD-NOS. There are other case
series and case reports showing that memantine may be effective in ASDs. It helps with
social withdrawal and inattention (Erickson et al., 2007), irritability (Niederhofer, 2007),
and disruptive behavior (Erickson & Chambers, 2006). Currently a randomized placebo
controlled trial is taking place at multiple centers in the US [ClinicalTrials.gov Identifier:
NCT01078844].

5.6. Oxytocin
Emerging evidence indicates that the neuropeptide oxytocin may be a treatment option to
improve social functioning in autism. Oxytocin is believed to facilitate human social
interactions such as social learning (Insel & Young, 2001) and social memory (Ferguson,
Young & Insel, 2002). In a double blind placebo controlled study, Hollander et al. (2003)
showed that oxytocin infusion reduced repetitive behaviors in adults with autism and
Asperger Disorder. In another study, Hall et al. (2012) demonstrated that intranasal oxytocin
helps with social anxiety in children with FXS. You can see a summary of possible targeted
treatment and their mechanism of actions in Table 2.

6. Conclusion
There is still continuing need for more effective treatments in autism for both core and
behavioral symptoms. The lack of molecular information for many types of autism has
slowed down the development of targeted treatments for this heterogeneous group of
disorders. FXS has been helpful for leading the way for targeted treatment in autism because
of the molecular similarities between FXS and some types of autism (Wang, Berry-Kravis,
& Hagerman, 2010). As targeted treatments are developed for other known genetic ASDs,
such as Tuberous Sclerosis including mTOR inhibitors (de Vries, 2010), this may guide
further treatments for idiopathic autism. These targeted treatments in other disorders with a
well known genetic etiology, including FXS, may be a good starting point for targeted
treatments in autism. Some may argue that ASDs seen in these genetic disorders may
represent different classes of ASDs; therefore their treatment may be different from
idiopathic autism cases. Nevertheless, whatever the genetic etiology of the autism, the
number of targeted treatment studies in autism warrant further exploration, and they may
lead to identification of new pathways and mechanisms for more of the unknown cases. The
development of specific molecular biomarkers for different pathways may also be helpful
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for designating a specific targeted treatment for many cases. There is much more to be done
to develop effective treatments for all of the cause of ASDs.
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Highlights

1. There is a need for efficient treatments in ASDs which has a heterogeneous
etiology.

2. Autism is caused by single-gene disorders in some cases including Fragile X
Syndrome.

3. Targeted treatments in FXS may be a good starting point for targeted treatments
in ASDs.
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Table 1

Summary of targeted treatments in FXS

Drug Mechanism of action Effect

mGluR5 antagonists
(RO4917523,
AFQ056..)

Reduction of mGluR signaling Reduction of downstream effectors of mGluR5 pathway and
mature dendritic spines

Ganaxolone Stimulation of GABAAδ activity Upregulates GABA activity and perhaps may crosstalk to
glutamate pathways

Arbaclofen GABA B agonist Modulation of mGluR activity, decrease the glutamate level and
reduce the activation of mGluR and mature spines

Minocycline Reduction of excessive activity of proteins
regulated by FMRP (e.g. MMP9)

Maturation of dendritic spines

Lithium Reduction of activity downstream of the
mGluR5 receptor

Reduction of increased intracellular signaling in the absence of
FMRP (inhibits IP3, PLC, ..)
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Table 2

Targeted treatments in autism

Drug Mechanism of action Effect

mGluR5 antagonists Reduction of mGluR signaling Reduction of increased intracellular signaling

D-cyclocerine Partial NMDA agonist Modulation of glutamate effects

Arbaclofen GABA B agonist Modulation of mGluR activity, decrease the glutamate level and reduce the activation
of mGluR

Memantine NMDA antagonist Reduction of excessive glutamate effects

Oxytocin Receptor mediated effects Increasing neuronal proliferation and differentiation, synaptic plasticity
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