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Abstract
The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data
presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules.
The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are
commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation
of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and
therefore does not accurately reflect the signal in the particle density itself. Here we show that the
SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume
occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle
Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is
known. Moreover, we show how to approximate this filter even when the volume of the particle is
not known, by optimizing the signal within a representative interior region of the particle. We
show that the new filter improves on previously proposed error-reduction schemes, including the
conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship
between all of these methods by theoretical analysis as well as numeric evaluation of both
simulated and experimentally collected data. The single-particle Wiener filter is applicable across
a broad range of existing 3D reconstruction techniques, but is particularly well suited to the
Fourier inversion method, leading to an efficient and accurate implementation.
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INTRODUCTION
In electron cryo-microscopy (cryo-EM), as in X-ray crystallography, an important goal of
the data processing is to minimize the effects of noise in a density map. In recent years,
cryo-EM has matured into a tool capable of providing near-atomic-resolution
reconstructions of non-crystalline (single particle) biomolecules (Grigorieff and Harrison,
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2011), thus bypassing certain limitations of X-ray crystallography (for example, the
requirement that the target molecule be grown into a crystal) and NMR spectroscopy (which
is limited to highly-concentrated, relatively low-molecular mass samples). Key advances
that led to this breakthrough include the development of better electron optical systems, as
well as improvements in image processing methodology for three-dimensional (3D)
reconstructions of the resulting electron micrographs.

In a high-resolution cryo-EM experiment there will typically be ~104 - 106 images of the
target molecule, each of which suffers from high noise levels, and is corrupted by a contrast
transfer function (CTF) of the microscope. After determining the orientations and positions
of each molecule in the images, a reconstruction algorithm merges the images into a 3D
density representing the molecule. A large body of literature exists on various aspects of the
reconstruction step (Penczek, 2010), but due to its importance it remains the subject of
ongoing investigation.

In this work we address the reconstruction step; specifically, we seek a method to estimate a
so-called ‘optimal’ map, where the mean-squared error compared to the ideal, unknown
noise-free reference volume is minimized. Several studies have addressed this problem
using different formalisms. At least two studies have reported implementations of the
Wiener filter applied to the problem of 3D reconstruction of single-particle cryo-EM data
(Zhang et al., 2008a; Scheres, 2012). The underlying assumption (either implicit or explicit)
in these studies was that this filter should minimize the mean-squared error in the resulting
3D map, with respect to the signal present in the image data. Similarly, a so-called ‘figure-
of-merit’ (FOM) filtering scheme was proposed as a post-processing step intended to
generate a ‘best map’ (i.e., lowest mean-squared error) given the data (Rosenthal and
Henderson, 2003). The error remaining in a map when subjected to such filter schemes has
not been carefully scrutinized in these reports, thus leaving the essential premise of the
filters (error reduction) untested. Moreover, we have recently demonstrated that, in order to
minimize error in averages of aligned two-dimensional (2D) images, the bulk solvent
surrounding the particle must be adequately accounted for through the addition of a scale
factor. This resulted in a modification to the Wiener filter which we called the ‘single-
particle Wiener filter’ (SPW filter).

Here we extend our previous results with the SPW filter to the more involved problem of 3D
reconstruction. We test the various assumptions of our theory by applying the resulting SPW
filter to synthetic and experimentally acquired test data sets. We find that the resulting
algorithm is generally applicable to reconstruction problems with single particles, and
quantitatively minimizes the error within the particle density map in cases where neither the
conventional Wiener filter nor the FOM filter is as effective. Our algorithm is the first
adaptation of the Wiener filter to specifically address problems caused by the presence of
bulk solvent surrounding the particle. We demonstrate that this approach leads to better real-
space and Fourier space fidelity for reconstructed maps using a highly efficient Fourier
inversion framework. The SPW filter described here has been implemented in the single
particle software FREALIGN (Grigorieff, 2007) starting with version 8.10.

THEORY
The Wiener filter (Wiener, 1949) has been applied to both 2D and 3D cryo-EM image
processing problems, with the goal of optimally combining noisy images into a “best”
representation of the noise-free object being imaged (Saxton, 1978; Ludtke et al., 2001;
Zhang et al., 2008a; Scheres, 2012). If one can obtain an estimate of the signal-to-noise ratio
(SNR) of the Fourier-space representation of the data, the Wiener filter will suppress the
noise in poorly measured parts of the Fourier space in order to obtain better agreement with
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the noise-free signal. However, the utility of the Wiener filter is compromised in single-
particle imaging applications by an ambiguity in the definition of the SNR: as noted in
Sindelar and Grigorieff (2011), the SNR of a particular imaged particle can be made
arbitrarily low just by increasing the field of view to include more noise in the surrounding
solvent area. Thus, the behavior of the Wiener filter depends on the selected image size, for
a given particle, and in general tends to give over-filtered results for images of single
particles (Sindelar and Grigorieff, 2011).

The above deficiency can be linked to the observation that the Wiener filter is only
guaranteed to be optimal for stationary processes, where the expected mean and variance of
the target function does not vary under translation (Van Trees, 2001). In fact, the target
function in the currently considered case, a 3D density map of a single particle, is highly
non-stationary: the mean and variance of the density inside a particle will always be
substantially different than the mean and variance in the solvent region. We therefore seek a
modified filter that better captures the properties of single particles.

Deriving a 3D “single-particle” Wiener filter
To a first approximation, a large number of randomly oriented images will contribute a

variable number of Fourier space measurements  (i=1, 2, ... nhkl) to each discrete point
shkl in the 3D discrete Fourier transform, or DFT, of the particle map ρ(r) (see Appendix A).
Here, shkl represents a discrete grid point in the 3D DFT having integer indices hkl, nhkl is
the number of measurements for shkl contributing to this grid point. Here and in the
following, bold symbols are vectors and italicized non-bold symbols refer to the length of
the corresponding vectors. In particular, shkl will be the radial spatial frequency

corresponding to grid point shkl. If the SNR of the measurements  is available as a
function of shkl, then the Wiener filter supplies a set of linear coefficients that minimize the
average error in the resulting DFT. By Parseval's theorem, the error is also minimized in the
corresponding real-space 3D map ρW(r) obtained by Fourier inversion. The Wiener
expression (Saxton, 1978) generalized for 3D is (see Appendix A):

(1)

where CTFi,hkl are the previously estimated CTF values of the microscope for the given
Fourier space measurement, accounting for the image defocus level, astigmatism, etc.

We now derive a modification to Eq. (1) that addresses the special properties of single
particles. Following our approach for the case of aligned 2D images (Sindelar and
Grigorieff, 2011), we define a 3D binary enveloping function, env3D(r), outside of which
the target particle density is known to be zero. We then seek the new set of linear

coefficients to the measurements  that yield a real-space map where the error is
specifically minimized inside the envelope. Applying a set of assumptions that are expected
to be reasonable for single-particle cryo-EM data sets (for example, that the data set is
sufficiently large to yield a well-localized particle map), it is straightforward to adapt the
previously presented 2D SPW filter to its 3D analog (Appendix A). After including a
“gridding” formalism to account for the fact that, in the 3D case, most Fourier space
measurements do not fall exactly on the discrete grid points shkl (see Appendix B) we arrive
at the following expressions for the 3D SPW filter:
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(2)

with

(3)

and

(4)

(note that fparticle refers to a fraction of a 3D volume whereas in Sindelar and Grigorieff
(2011) it referred to a fraction of a 2D image). Here and in the following, PSSNR and SSNR
are functions of radial spatial frequency s. They approximate SNR values found at grid
points shkl by averaging over all values in a resolution shell. It is important to note here that
Eqs. (2) - (4), as is the case with the equivalent 2D SPW expressions, can be applied in the
absence of any specific knowledge about the shape of the envelope function. Instead, all that
is required is the mean squared value of the envelope function, fparticle, which is equal to the
fractional volume occupied by the envelope within the boundary of the reconstructed box.
Eqs. (2) - (4) will then minimize the reconstruction error of the particle density inside the
envelope. Below we will describe how to find a “best” value for fparticle that optimizes the
map within the particle itself.

Accurate estimation of the image SSNR by masking
In order to implement Eq. (2) it becomes necessary to obtain an accurate estimate of the
SSNR of the raw data images. The SSNR can be most accurately obtained from a ‘masked’
FSC calculated from two volumes each containing half the data (Harauz and Van Heel,
1986) where solvent noise surrounding the particle is suppressed with a soft-edged mask
function envmask. The term envmask differs from env3D as it usually has a simpler shape such
as a sphere and therefore contains substantially more volume than the actual particle
volume. As shown by Sindelar and Grigorieff (2011), for a set of aligned 2D images,

(5)

where the FRC is the 2D analog of the FSC, formed by comparing two independently
averaged image data sets (Harauz and Van Heel, 1986), S(s) is a resolution shell centered
around radial spatial frequency s, and nS is the number of Fourier space pixels contained
within S.

For a 3D data set, the corresponding result is (see Appendix C):

(6)
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where  is the mean-squared value of the soft-edged mask function
evaluated over the 3D (real-space) reconstruction volume. This expression estimates the
SSNR found in the raw data images, including the noise found in the solvent region, and
thus may be combined with Eq. (3) to obtain the PSSNR (assuming knowledge of fparticle;
see below). Here and in the following we make the assumption that the SSNR does not vary
significantly between images and therefore, an average SSNR for the entire data set can be
assumed. In the Discussion, we will consider the case of variable SSNR in a data set.

Derivation of a related post-processing SPW filter
The PSSNR term in the denominator in Eq. (2) systematically down-weights structure
factors FSPW where the number of measurements is not sufficient to overcome the
measurement noise. FSPW thus represents an optimal estimate of the true structure factors (in
the least squares sense and ignoring gridding-related artifacts), and its calculation requires
incorporation of the SSNR found in the 2D image data during calculation of the final
reconstruction. An alternative scheme has been described that uses a filter based on an FOM
(Rosenthal and Henderson, 2003). Unlike the Wiener filter and its SPW derivative described
above, the FOM filter is not incorporated directly into the 3D reconstruction step, and is
instead applied in a post-processing step after the reconstruction has been calculated. To
compare these filtering methods, we relate FSPW to unfiltered gridded reconstruction using
Eqs. (2) and (A2.6):

(7)

where we have left out the small ε term from Eq. (A2.6), which is expected to have a
negligible effect on this expression. The above expression represents a voxel-by-voxel
correction to the unfiltered reconstruction FLSQ. We now substitute our estimate of the
SSNR as a function of the masked FSC given in Eq. (6):

(8)

The above expression still requires knowledge of the individual CTF terms in the 2D image
data. To further simplify this expression, we now assume that the filter is approximately
constant within a given resolution shell. This requires that the sum of squared CTF values
(this can be considered as the effective number of Fourier-space measurements) is similar
for all structure factors within the resolution shell. This condition will be met when (1) a
sufficiently large number of images have been collected, such that every point in Fourier
space is measured many times by a spread of defocus values, and (2) there are no strongly
preferred orientations in the data set (note that the presence of astigmatism in the images
would not affect our analysis, under the above conditions). The expected value of this filter
is then
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(9)

where the brackets  denote the average value for all possible instances of the noise in
resolution shell S(shkl). The above expression is expected, upon application to a non-filtered
3D reconstruction, to optimally filter the density map to reduce noise.

Eq. (9) describes how to obtain an approximation to the SPW algorithm (Eq. (2)), by
defining a post-processing filter to be applied to the unfiltered reconstruction (FLSQ). This
result may be compared with the FOM filter described by Rosenthal and Henderson (2003),
which is written in our terminology as:

(10)

In contrast, we see that in the limit of fparticle = fmask Eq. (9) reduces to:

(11)

Note that while Rosenthal and Henderson applied masks to their reconstructed volumes
prior to calculating the FSC, they did not explicitly consider the effects of masking in their
expressions for Cref.

De novo estimation of fparticle from FSC half volumes
The above results indicate that successful application of the SPW filter requires an accurate
estimate for fparticle. However, fparticle is defined by the shape of the solvent envelope of the
particle, which is frequently challenging to obtain in experimental applications. Here we
present a strategy for estimating fparticle using only information available from the input
images. We begin with the property that the SPW filter minimizes the expected error within
the particle region, compared with a noise-free reference volume. We further note that the
SPW filter minimizes the reconstruction error everywhere in the particle simultaneously. In
other words, if a chosen value of fparticle minimizes the error in any given region within the
solvent envelope, the error should also be minimized at all other regions within the envelope
as well, assuming equal quality of the map in all regions. Thus, one may restrict the above
error evaluation to a small mask located within a “core” region of the particle, which is
straightforward to establish even when the solvent boundary is indistinct (see below). If the
noise-free reference volume is available, it is therefore possible to estimate fparticle by
systematically varying this quantity during application of the SPW filter. The best estimate
of fparticle will be the value that minimizes the error in the “core” region of the filtered
reconstruction, with respect to the reference volume. In this way, fparticle can be estimated
without knowledge of the precise shape of the particle envelope.

In experimental studies, the noise-free reference volume remains unknown, requiring further
modification to the above strategy. It is straightforward to show, however, that because the
SPW filter minimizes the error with respect to the noise-free reference volume, this filter
also minimizes the error with respect to a noisy reference volume (so long as the added

Sindelar and Grigorieff Page 6

J Struct Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



noise is random, and the reference is otherwise unfiltered). For any given experimental data
set, moreover, a noisy reference volume is readily obtained by gridded Fourier inversion
(Eq. (A2.6)). This observation implies that we may use an experimentally obtained reference
volume in the above estimation procedure for fparticle, rather than using a noise-free
reference, and still obtain the same result.

We thus arrive at the following scheme for estimating fparticle: From one half of the data we
calculate an unfiltered, noisy estimate, FLSQ, of the reconstruction (Eq. (A2.6)). The second
half of the data is used to calculate a filtered estimate, FSPW in which we now allow fparticle
to vary (Eq. (2)). We subsequently perform a series of reconstructions using values of
fparticle that range from 0 to 1, comparing the real-space cross-correlation coefficient (CCC)
between core regions of the filtered half-data density map and the unfiltered, noisier half-
data map. We then choose the value of fparticle that optimizes the core region CCC. This
value of fparticle is thus expected to give a SPW filter whose output minimizes the error in
the particle region. Moreover, this value of fparticle is expected to correspond (at least
approximately) to the fraction of the reconstructed volume that is occupied by particle
density (this property will be tested below). Thus, the procedure just described will yield an
approximation of the SPW filter using only the images and Euler angles that are standard
input in any 3D reconstruction algorithm.

FLOW CHART: Integrated SPW filter
A. Insert projections into Fourier volume via box convolution (equivalent to nearest-

neighbor interpolation if box dimension is 1 × 1 × 1 in voxel units):

• Calculate sum in numerator of Eq. (2), stored on a per-voxel basis.

• Calculate sum in denominator of Eq. (2), also on a per-voxel basis (this
and the preceding step are identical to the previously published
FREALIGN implementation).

• Gather separate numerator, denominator tallies for two half-data-set
reconstructions, for FSC computation.

B. Perform Fourier inversion (Eq. (A2.6)) to obtain both half-data-set reconstructions,
and compute the FSC between the two maps (using a smoothed mask where fmask
is conservatively chosen to significantly exceed the volume of the particle) to
obtain a lower bound on the reconstruction resolution.

C. Estimate the whole-image SSNR from the masked FSC, by Eq. (6).

D. Select a ‘core region’ of the density by low-pass-filtering the reconstruction several
times lower than the resolution lower bound computed in the last step, and defining
the binary envelope to enclose a small fraction (i.e. ~10%) of the filtered
reconstruction density.

E. Perform a series of reconstructions using the second half data set, according to the
formula:

where f, representing the unknown quantity fparticle, is varied between 0 and 1.

Sindelar and Grigorieff Page 7

J Struct Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



F. Estimate fparticle as the value of f that maximizes the real-space CCC between core
regions of the first (unmodified) half-data set reconstruction and the filtered
reconstructions generated in step E.

G. Compute the full-data reconstruction by Eqs. (2) - (4).

FLOW CHART: Post-processing SPW filter
If the SPW filter is implemented with a post-processing filter rather than as an integrated
reconstruction algorithm, any reconstruction algorithm may be used and fewer steps are
necessary:

A. Obtain unfiltered half-data-set reconstructions and compute the masked FSC and
full-data-set reconstructions.

B. Define a ‘core region’ of the density, as described in step D in the integrated SPW
procedure.

C. Apply a series of filters to the second half-data-set reconstruction, using the
following form of the SPW post-processing filter:

where f, representing the unknown quantity fparticle, is varied between 0 and 1. Note
that this post-processing filter has been modified from Eq. (9) in order to take into
account the reduced signal-to-noise ratio found in a reconstruction made with half
the data, compared with a full-data-set reconstruction.

D. Estimate fparticle as the value of f that maximizes the real-space CCC between core
regions of the first half-data set reconstruction and the filtered reconstructions
generated in step C.

E. Apply the post-processing SPW filter (Eq. (9)), using the value for fparticle
estimated in part D, to the unfiltered full-data-set reconstruction step A.

RESULTS
Normalized SSNR estimation via the masked FSC

Eq. (6) predicts that using the FSC to estimate the SSNR for a reconstructed particle map
will yield a result that is inversely proportional to the fraction of solvent that is included in
the FSC comparison. We tested this prediction using a synthetic data set composed of noisy
projection images of a small (~35kD) protein molecule (crystal structure of the kinesin
motor domain, PDB ID 1MKJ), from randomly sampled viewing orientations (Fig. 1A, B).
Special care was taken to avoid interpolation artifacts during the projection process (see
Methods), thus allowing the SSNR characteristic of the projection images to be precisely
established a priori (Fig. 1C). Images were divided into two equal sets and subjected to
gridded Fourier inversion (Eq. (A2.6)) using the exact (known) Euler angles of the
projections in order to compute a pair of 3D reconstructions from each set, and a third
reconstruction for the combined full image set. We then performed FSC comparisons of the
resulting reconstructions, after multiplying the maps with a solvent mask. Three different
mask sizes were used: a tight binary mask (Fig. 2E), generated from the reconstruction itself
by the method of Wang (Wang, 1985) with parameters chosen such that the mask volume
was ~2x the particle volume (see Methods); a looser mask (Fig. 2F), generated from the
former mask by applying a cosine edge smoothing function (mask volume was ~5x the
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particle volume); and a smoothed spherical mask (Fig. 2G) where the radius matched the
maximum linear dimension of the particle map (net mask volume was ~10x the particle
volume).

The results of these FSC calculations (Fig. 3; note that FSC values are scaled into estimates
of Cref using Eq. (9)) illustrate that the application of masking yields substantially different
results, due to the varying amount of solvent noise eliminated by the masking. However, we
can resolve this discrepancy by defining a quantity PSSNRfinal that places the SSNR of the
reconstruction onto an absolute scale, applying the same logic that was used to derive Eq.
(6):

(12)

Following application of Eq. (12), the scaled Cref estimates converge to approximately the
same value throughout most of spatial frequency range (Fig. 3A, B), indicating that Eq. (12)
yields a consistent resolution measure.

We cross-validated these estimates by separately computing the Fourier shell correlation
between the noise-free reference volume and a masked full-dataset reconstruction (we refer
to this latter function as Cref, following the convention of Rosenthal and Henderson (2003).
The resulting Cref curve was scaled to form an estimate of PSSNRfinal by combining Eqs.
(6), (9) and (12), and is also shown in Fig. 3A-C. The estimates for PSSNRfinal generated
from this latter approach are in excellent agreement with the FSC-generated estimates. As
with the FSC calculations, the Cref calculations showed smaller fluctuations (indicating
higher fidelity) as tighter masking was applied (results not shown). Thus, while tight
masking is desirable to reduce the random error in the PSSNRfinal estimates, our results
demonstrate that the mask size may be expanded as necessary (for example, to avoid mask-
related artifacts in the FSC computation; see Discussion) without introducing systematic
under-estimation of the reconstruction resolution, so long as the values are adjusted by Eq.
(6).

Using the known SSNR characteristic of the synthetic images, we then derived an upper
bound for the expected value of PSSNRfinal for an idealized Fourier inversion algorithm
(assuming no reconstruction artifacts):

(13)

This limiting function is defined purely by the signal and noise characteristics of the data
images, together with the number of images taken, imaging geometry, CTF conditions, and
microscope parameters; all of these values are precisely known for the synthetic data set
used here. As shown in Fig. 3C, the values for PSSNRideal are in excellent agreement with
the Cref function derived from the conventional Fourier inversion reconstruction. The
estimated SSNR showed higher fluctuations about the known value in the lowest-resolution
shells (corresponding to resolutions lower than 10 Å), due to the combination of poor
statistics (fewer voxels per shell) and small CTF values at these spatial frequencies, leading
to higher noise variance. These errors, however, did not strongly affect the performance of
the SPW filter (see below) because of the high overall SSNR of the final reconstruction at
low resolution. The estimated PSSNR also showed a tendency to under-estimate the known
SSNR values at resolutions higher than 3 Å, likely due to incomplete sampling of Fourier
transform by the data. Again, however, these errors did not significantly affect the
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performance of the SPW filter because these errors occurred at spatial frequencies beyond
the nominal resolution of the reconstruction (Cref < 0.5, Fig. 3C). Thus, the agreement
between these three different SSNR estimation methods (FSC-derived, Cref-derived, and
‘ideal’) indicate that our expressions are self-consistent and quantitative, under the given
(simulated) imaging conditions.

Estimating the SSNR of the data
We estimated the SSNR in our data set by applying Eq. (6), using the soft-edged mask in
Fig. 2F (fmask = 0.101); we then back-calculated an estimate of PSSNR for the original data
images by applying Eq. (3). We note that this back-calculation formula is based on the
assumption of a perfect, artifact-free Fourier inversion algorithm, which our tests indicated
was approximately valid (see above). As shown in Fig. 3D, the resulting estimates for the
image SSNR were in excellent agreement with the known, pre-defined SSNR characteristic
of the synthetic images used in these tests, although minor deviations below the known
value are visible at the highest spatial frequencies.

Evaluation of the conventional Wiener filter in a 3D Fourier inversion reconstruction
algorithm

To test the validity of the Wiener filter when applied within a 3D Fourier inversion scheme,
we performed a series of 3D reconstructions using the synthetic data images from Fig. 1 as
inputs, and employing the known SSNR characteristic of the images for the Wiener filter.
As shown in Fig. 4A-B, applying the Wiener filter within a Fourier inversion scheme filters
away high-resolution noise from the resulting 3D reconstruction, improving the real-space
agreement with the noise-free 3D reference map. To further test the validity of the Wiener
filter within the approximations inherent in our gridded reconstruction algorithm, we
systematically perturbed the SSNR term in the denominator of Eq. (1) above and below its
true value in order to test whether the mean-squared error was properly minimized with
respect to the reference volume. This test is mathematically equivalent to applying Eqs. (2) -
(4) using values of fparticle scaled above and below 1, which is how the results are presented
here (Fig. 5A, inset). These calculations show that, as expected, the error is minimized near
fparticle=1, although the peak is relatively broad. This perturbation experiment thus indicates
that incorporating the Wiener filter into a Fourier inversion reconstruction scheme
approximately minimizes the mean-squared error of the full 3D reconstruction volume with
respect to the filtering parameters.

Fig. 4B also shows that the 3D density map that results from the Wiener filter reconstruction
appears to be strongly over-filtered, especially when compared with the output of the SPW
reconstruction methods (see below). This over-filtering results from the Wiener filter's
sensitivity to the noise in the solvent region, such that the larger the solvent region, the
lower the measured SSNR and hence the greater the over-filtering effect ((Sindelar and
Grigorieff, 2011); see Eq. (3) above).

Single-particle Wiener filter improvement over the conventional Wiener filter
The above drawback in the Wiener filter can be corrected by re-defining the reconstruction
problem to neglect the reconstruction error that occurs within the solvent region, and instead
to minimize the error within the particle envelope only. The resulting SPW filter (Eq. (2)) is
predicted to minimize the mean-squared error within an arbitrarily shaped enveloping
function characterized by a fractional volume fparticle, so long as the envelope fully encloses
the particle. We note that the mask function itself is not a required input to the SPW filter;
instead, fparticle is the only additional input required (with respect to the conventional Wiener
filter).
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To test the performance of the SPW filter within the Fourier inversion scheme, we applied
both the integrated as well as the post-processing SPW filters to our synthetic image data
set. The resulting density maps (Figs. 4C-D) were visibly improved relative to the unfiltered
or Wiener filtered maps. We tested the SPW filtered maps by real-space cross-correlation
comparison with the noise-free reference volume, confining the comparison within either (1)
a relatively tight binary mask (envelope mask in Fig. 2E), generated from a moderately
filtered reconstruction (see Methods); or (2) a large spherical binary mask having a diameter
slightly larger than the longest particle dimension. We then systematically perturbed fparticle
throughout the range from 0 to 3.0 and computed the masked CCC where the comparison
was restricted to the defined envelope region. As predicted (Fig. 5A), the SPW filter reduced
the error within both envelopes, for values of fparticle close to the exactly computed value

 for these envelopes. For the tight mask, fparticle was estimated as 0.06 vs. the known
value of 0.051; for the spherical mask the estimated value was 0.19, compared to the known
value of fparticle = 0.223.

In contrast, the whole-volume CCC for the map produced by the SPW filter was not
minimized as a function of the SSNR function, and indeed was substantially lower than the
whole-volume CCC yielded by the conventional Wiener filter (data not shown). Thus, CCC
comparisons indicate that the SPW filter optimizes the error within the particle envelope, but
that this improvement is accomplished at the expense of increased noise in the solvent
region. The increased noise in the solvent region, however, is readily removed by
multiplying the reconstruction with the binary particle envelope, yielding a highest-quality
map where the error has been completely eliminated from the solvent region and minimized
within the particle envelope.

These results demonstrate that our modified Wiener filter expression specifically tunes the
noise suppression in the particle volume defined by fparticle. It follows that fparticle should be
made as small as possible, while still corresponding to an envelope that fully encloses the
particle, in order to completely minimize the error within the particle region. Below we
evaluate our scheme for empirically determining such a value of fparticle even in the absence
of precise description of the particle shape.

SPW filter yields improved FSC values relative to other reconstruction schemes
To assess the Fourier-space signal of the SPW reconstruction scheme compared with other
reconstruction methods, we computed masked Fourier shell correlation functions comparing
the reconstructions with the noise-free reference map. The resulting Cref curve was increased
across the entire spatial frequency range, relative to the corresponding result for the
equivalent unfiltered reconstruction (Fig. 5B), although the gains were relatively minor. For
comparison, we also evaluated several other published reconstruction schemes with the
identical synthetic data set (Fig. 5C), including back-projection with phase flipping CTF
correction (Frank et al., 1996) and an iterative algebraic method also combined with phase-
flipping (Sorzano et al., 2004). These reconstructions yielded Cref curves similar or lower
than our unfiltered, gridded reconstruction, but falling below the SPW values (Fig. 5C).

Estimating f particle

The basis for our method of estimating fparticle is to find the filter function that maximizes
the agreement in a representative “core” region of two half-data set reconstructions (see
Theory). To generate a “core” mask containing only particle density, we applied a 30 Å low-
pass filter to the initial, unfiltered, gridded reconstruction, then selected a threshold value to
define a mask limited to a subset of the protein interior (Fig. 2H; mask volume was ~20% of
the protein envelope volume). We generated a series of half-data set reconstructions using
our synthetic data set, applying the integrated SPW filter to one half-data set reconstruction
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(Eq. (2)) but scaling the fparticle term systematically from 0 to 1. The second half-data set
reconstruction was generated using the gridded Fourier inversion algorithm without the
SPW filter (Eq. (A2.6)). The SSNR of the data was estimated via. Eq. (6). As shown in Fig.
5D, maximizing the CCC between the “core” density of the two half-data-set maps (defined
by the central ~20% of the kinesin protein envelope, see Methods) led to the assignment of
fparticle = ~0.022. A similar result was seen for the post-processing version of the SPW filter
(Fig. 5D). For comparison, the volume contained by the molecular surface defined by the
atomic model, which captures the solvent envelope of a high-resolution structure (see
Methods), was 0.023. Thus, the simple scheme described here produces an estimate for
fparticle that closely agrees with the “true” value expected from basic principles.

Similarly accurate estimates of fparticle were obtained with both the integrated and the post-
processing forms of the SPW filter, although the CCC values were slightly lower in the case
of the post-processing filter (Fig. 5D). We also experimented with different “core” mask
choices by using the molecular surface itself, or subfragments thereof (Fig. 2A-D), for the
core mask in the fparticle estimation procedure; these latter experiments (Fig. 5D, upper
dashed curves) indicated that the results of the estimation procedure were relatively
insensitive to the choice of core region.

Application to an experimental high-resolution data set
We tested our filter expressions on a set of papillomavirus images that were used to obtain a
near-atomic resolution 3D map (Wolf et al., 2010). We used the FREALIGN software
(Grigorieff, 2007) to duplicate the methods of Wolf et al., generating a full-data-set gridded
(unfiltered) reconstruction (Fig. 6A) and two half-data set reconstructions output by the
program for the purpose of computing the FSC function (icosahedral averaging was
performed, but no other averaging was done). We then applied our estimation scheme for
fparticle, varying fparticle until we observed the maximum real-space correlation (Fig. 6C)
between a non-filtered gridded reconstruction (half-data set #1), and the post-filtered SPW
map (half-data set #2), restricting the comparison to small core regions within the protein
interior (Fig. 6B). For FSC computations, we duplicated the mask parameters of Wolf et al.
resulting in a mask in the form of hollow sphere (fmask ≈ 0.26). This strategy yielded an
estimated value for fparticle of 0.075 (Fig. 6C). To visualize this value of fparticle, we rendered
an isosurface of the low-pass-filtered virus reconstruction, adjusting the threshold until the
enclosed volume was equivalent to fparticle. As can be seen in Fig. 6E and 6F, this isosurface
tightly encloses the volume occupied by the virus capsid proteins, indicating that our
methods find a reasonable approximation to fparticle in this case. We also compared the
actual filter function values of the FOM scheme vs. our SPW post-processing filter (Fig.
6D); remarkably, the filter function originally obtained by Wolf et al. using the FOM
scheme (solid curve) nearly coincides with the post-processing SPW filter function values
(lower dashed curve). Thus, for this particular instance the FOM filter closely matches the
SPW post-processing filter, at least for the chosen masking parameters.

DISCUSSION
We have used a new theoretical framework to derive a least-squares solution to the single-
particle 3D reconstruction problem, specifically accounting for the presence of a noisy
solvent region of uniform density. Key to our analysis was the observation that the SSNR of
an image or volume of a single particle is linearly related to the fractional area/volume
occupied by the particle (Sindelar and Grigorieff, 2011) – a result that enabled us to quantify
the effects of masking on FSC calculations, hence permitting much more accurate SSNR
estimation. We find that the resulting SPW reconstruction algorithm is closely related to the
Wiener filter, from which it was derived. We also find that the SPW method is closely
related to an FOM weighting scheme proposed by Rosenthal and Henderson (2003).
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However, our analysis demonstrates that the SPW method improves on these two earlier
methods. Moreover, our theoretical treatment connects the earlier methods to each other, and
explains why they fail to produce optimal results under certain circumstances.

SPW method is distinct from a Wiener filter
The least-squares method we have implemented here, as embodied by Eq. (2) (and which we
previously described for the treatment of aligned 2D images (Sindelar and Grigorieff,
2011)), differs from the classically defined Wiener filter (Saxton, 1978) in a subtle but
important way. In the SPW method, we have introduced the assumption that the density of
interest occupies only a fraction of the reconstructed map, which is otherwise occupied by a
uniform background value. When this assumption is applied to the problem of 2D or 3D
averaging, an approximate least-squares solution results whose form (Eq. (2)) is nearly
identical to the Wiener filter, but where the SSNR term is scaled by the inverse of the
fractional particle volume, fparticle (Sindelar and Grigorieff, 2011). Given the approximately
linear relationship found between image area/volume and the SSNR (Sindelar and
Grigorieff, 2011), it is tempting to identify the scaled SSNR function, 1/fparticleSSNR(s), as
the signal-to-noise ratio “inside the particle region”. While this identification is appealing
intuitively, it is not strictly correct because the scaled SSNR function contains low-
frequency terms that describe the overall shape of the particle, not only its interior. Thus, the
PSSNR term in the denominator of Eq. (2) does not correspond to the signal-to-noise ratio
of an actual image (or volume), indicating that the SPW filter is distinct from a true Wiener
filter. As we have shown, fparticle tends to diverge quite far from unity in typical single-
particle applications (for example, 0.075 in the papillomavirus data set considered here),
leading to substantially different behavior of the SPW filter compared with the Wiener filter.

The SSNR estimate includes contributions from image misalignment and other indirect
error sources

Many sources of error can degrade the quality of a 3D reconstruction. Not only does error
arise due to noise in the images themselves, but also due to errors in the orientation and
translation parameters that have been assigned to the images during the course of structure
refinement. Artifacts and errors in the 3D reconstruction algorithm itself will reduce the
quality of the final map.

Importantly, the method we have described for estimating the SSNR of the data images, Eq.
(6), does not distinguish between these various error sources. Because Eq. (6) is a measure
of the consistency between two separate data sets after image processing is completed, this
formula therefore yields a composite description of most or all sources of signal attenuation
and noise. This feature of Eq. (6) is particularly advantageous in the process of single-
particle orientation and translation refinement, because misalignment of images is a major
source of signal attenuation (and hence resolution degradation) during single particle
structure refinement. Eq. (6) will automatically measure a lower SSNR when images are
misaligned. Thus, the SPW filter will behave more aggressively with poorly aligned images,
and will do so in a way to “optimize” whatever signal does emerge after summing the
current image alignment. Our approach, which parallels the Bayesian approach of Scheres
(2012), contrasts with other Wiener filter methods (for example, Ludtke et al. (2001)) where
the SSNR is estimated via separate measurements of the signal strength and noise strength,
derived from the sample itself (Ludtke et al., 2001). This latter approach may lead to
suboptimal behavior of the Wiener filter due to the presence of other, undetected error
sources during refinement/reconstruction. On the other hand, our SSNR estimation
approach, similar to that of Scheres (2012), is expected to filter away noise in the map due to
alignment errors; this could in principle lead to faster and more accurate convergence of
alignment parameters during 3D structure refinement.

Sindelar and Grigorieff Page 13

J Struct Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The optimal SPW filter can be estimated without precise knowledge of the particle volume
Key to the successful application of the SPW reconstruction scheme is knowledge of both
the image SSNR characteristics as well as the fractional particle volume, fparticle. We have
shown how a combination of masking and FSC computation (Eq. (6)) allows the composite
SSNR of the input images to be estimated with high accuracy. Perhaps more surprising was
our finding that fparticle can be estimated via a real-space comparison of two half-data-set
reconstructions (Fig. 5D), essentially in the absence of any knowledge of the particle/solvent
boundary. We note that the accuracy of the estimate for fparticle depends on a number of
factors, including the availability of an accurate estimate of the image SSNR (for example,
by Eq. (6)). Indeed, some underestimation of the ground-truth image SSNR by Eq. (6) is
apparent in Fig. 3D at higher spatial frequencies. A favorable aspect of our estimation
scheme for fparticle, however, is that it inherently seeks the value which best optimizes the
filter performance (as judged by the measured error between FSC half-data-set
reconstructions). Thus, one expects fparticle to be underestimated for the data set in Fig. 3, in
order to compensate for the underestimation of the SSNR. Consistent with this prediction,
our methods report a value for fparticle that falls slightly below the molecular volume of the
particle (Fig. 5D). Thus, within our formalism the fparticle term will function to at least
partially compensate for errors in the determination of the image SSNR (insofar as
correction is possible by a scalar factor), in order to better approximate the ‘perfect’ SPW
filter.

We note that a potential problem occurs when the FSC computation is affected by over-
refinement which can artificially increase the FSC (Stewart and Grigorieff, 2004). The
increased FSC will increase the estimated SSNR (Eq. (6)) while also artificially increasing
the real-space CCC. However, we would argue that once over-refinement has occurred, it is
no longer possible to distinguish ‘real’ signal from artifactual signal due to noise
correlations. The SPW defines ‘signal’ as the information that is consistently present
between two half-data-set reconstructions and optimally represents this information in a
least-squares sense, whether it is ‘real’ or artifact. As such, however, the SPW filter can
itself be used to reduce the possibility of over-refinement, by suppressing noise in maps
produced at intermediate stages during iterative single-particle parameter refinement. A
related approach has recently been explored by Scheres (2012) with promising results (see
below). In addition, the SPW filter can serve as a tool for the user to diagnose the presence
of over-refinement, if the map has reached a resolution where recognizable features such as
secondary structure or chain traces would be evident. If the resolution of the refinement has
reached 8 Å, for example, alpha helices and beta sheets should be evident in the SPW-
filtered map.

Comparison to previous implementations of the Wiener filter for 3D reconstruction
Zhang et al. (Zhang et al., 2008a) incorporated a Wiener filter into their nearest-neighbor
Fourier inversion reconstruction algorithm, thus yielding an algorithm very similar to ours
but lacking the fparticle term. Thus, although Zhang et al. do not give a detailed analysis of
the effects of noise in their reconstruction algorithm, the expectation based on our analysis is
that their implementation would produce strongly over-filtered maps. More recently,
Scheres presented a 3D reconstruction scheme (Scheres, 2012) within a Bayesian formalism,
yielding an algorithm very similar to the filters of Zhang et al. and in the current work. In
Scheres’ method, the term corresponding to SSNR is multiplied by an adjustable coefficient
T, which was arbitrarily set to 4. Thus, T corresponds to 1/fparticle in our formalism, and so
yields a scheme that is expected to yield an approximate least-squares solution for the case
of a particle that occupies ¼ of the reconstruction volume. While Scheres does not supply a
detailed analysis of the reconstruction error as we have done, the multiplication by T would
lead to substantially less over-filtering than the method of Zhang et al., although the implied
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value of 0.25 for fparticle nevertheless seems too high for many (if not most) cryo-EM images
that are analyzed. Importantly, Scheres selected T not on the basis of minimizing the error
found in the reconstructed map, but rather on a more indirect measure – T was selected so as
to minimize the degree of noise bias that occurred during the course of a refinement loop. In
the absence of more sophisticated schemes for minimizing noise bias, over-filtering the
reference volume is expected to reduce noise bias during map refinement (Stewart and
Grigorieff, 2004), so that T = 4 is probably a reasonable choice for this purpose unless the
particle occupies an exceptionally large fraction of the map volume.

Post-processing variant of SPW corrects a previously proposed figure-of-merit scheme
Rosenthal and Henderson (2003) observed that the error in a reconstructed 3D map is
reduced when the structure factors are scaled by the FSC curve (Cref, or ‘figure-of-merit’)
that would correspond to a comparison between the initially reconstructed map and the true
but unknown, noise-free reference volume. In connecting our SPW filter to the weighting
scheme of Rosenthal and Henderson, we identified a potentially significant correction to
their formula. As seen by comparing Eqs. (10) and (11), in the limit of a particle that entirely
fills the reconstruction volume (fparticle=1) our post-processing filter expression converges to
the square of theirs. In non-limiting cases where fparticle < 1, the correction factor we derive
is more complicated, but easily quantified (Fig. 7). Remarkably, we find that the FOM
scheme yields filter values fairly close to our corrected expression when fparticle ≈ 0.33.
While this value of fparticle is unrealistic for typical cryo-EM particles (as noted above),
Rosenthal and Henderson compute the weighting factor using masked FSC calculations,
which implicitly adds a correction factor of 1/fmask to the SSNR estimate for the
reconstruction (see Eq. (6)). Thus, when masked volumes are used to compute the FSC, the
FOM weighting scheme reasonably approximates a least squares solution when the ratio of
the particle volume to the mask volume (fparticle / fmask) is ~0.33. This value is not
unreasonable for typical soft-edged masks used in cryo-EM applications; for example, for
the papillomavirus data set considered here (Wolf et al., 2010) we determined the particle/
mask volume ratio to be ~0.3 (Fig. 6). Accordingly, the density map produced by SPW post-
processing filter for this case was virtually indistinguishable from the FOM weighted map
(results not shown).

Accounting for variability in particle quality and/or noise
One aspect of 3D reconstruction we have not explicitly considered here is the high
variability in image quality that is usually inherent in a cryo-EM data set. Notably, our
expression for estimating the SSNR of the image data (Eq. (6)) yields a single function that
expresses the composite SSNR of the entire data set. In contrast, the experimental
papillomavirus data set analyzed here contains particle images with significant variations in
quality (Wolf et al., 2010). We addressed this variability using the identical methods as Wolf
et al. (2010): within the FREALIGN refinement program, an exponential weighting function
was applied to each particle Fourier transform (Grigorieff, 2007). While heuristic in nature,
the FREALIGN weighting function adopts a similar mathematical form as the individual
noise terms found in Wiener filter implementations where particle-to-particle variations in
SSNR were explicitly accounted for (Ludtke et al., 2001; Scheres, 2012). We therefore
anticipate that the SPW formalism could be expanded to include a formal treatment of
variability in particle SSNR.

CONCLUSIONS
As a variant of the Fourier inversion method, the single-particle reconstruction scheme
presented here is among the most computationally efficient. Furthermore, we have
demonstrated that its accuracy (by FSC or real-space correlation criteria) exceeds that of
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other methods under carefully controlled testing conditions. Moreover, the theoretical
relationships presented here clarify the relationship between particle size and error
minimization, and are sufficiently general to be applied to other forms of image analysis.

METHODS
Generation of 2D Projection Images

A randomized set of viewing orientations was generated by first creating a set of 10000
quasi-uniformly spaced Euler angle triplets using the “VO EA” command from the SPIDER
package (Frank et al., 1996). This set of 10000 Euler angles was then randomly sampled
1000 times to simulate 1000 random orientations of the particles. Projections were then
generated using the resulting set of Euler angles. In order to avoid artifacts and/or signal loss
at high resolutions due to interpolation, the following projection protocol was used. The
atomic coordinates of 1MKJ were rotated in 3D space according to specified Euler angles,
and subsequently used to generate a 3D Coulomb potential map (using CP FROM PDB
from the SPIDER image processing package). We then formed a 2D projection image down
the z-axis of the map coordinate system (using the PJ 3Q command from SPIDER). This
projection protocol entirely avoids interpolation, and is thus predicted to maintain full signal
strength all the way to the Nyquist frequency. This prediction is confirmed by a comparison
of the average signal power in the projected images as a function of resolution (Fig. 1) to the
average structure factors in the reference volume.

Contrast transfer function modulation for synthetic images
To ensure proper treatment of the simulated contrast transfer function (CTF) of the
microscope, images were padded to a final size of 256 × 256 before convolving the noise-
free projection images with the simulated CTF, thus allowing for information delocalization
(Glaeser, 2007) to a distance of ~1 particle diameter = 96 Å from the boundary of the
imaged particle. Each projection image was assigned a random defocus in an approximately
uniform distribution between 0.5μm and 1.5μm. Other parameters for CTF simulation were:
an accelerating voltage of 400kV, a spherical aberration constant of 4.1 (no CTF envelope
function was modeled). Gaussian-distributed white noise images were generated using the
MO function of SPIDER, and the noise images were scaled and added to the CTF-
modulated molecular projections in order to produce a final signal-to-noise ratio (computed
for the image size of 256 × 256) of 0.002.

Mask generation
Envelope mask volumes: For the synthetic data set, the known protein envelope mask
volume was computed as the molecular surface of the 1MKJ coordinate set (Connolly,
1983), using a solvent radius parameter of 1.6. Experimental solvent mask volumes for FSC
calculations were generated from the reconstructed maps similar to the method described in
Grigorieff (2007), by applying a 14 Å low-pass filter to the maps and subsequently defining
a binary envelope by selecting a density threshold such that the envelope contained a
specified volume. The binary envelope was then smoothed by a cosine edge mask (edge
distance was 14 Å).

Fourier inversion reconstruction algorithm
The FREALIGN software (Grigorieff, 2007) was used for all 3D reconstructions, but was
modified to separately save to disk the accumulated sum of CTF-multiplied image data
(numerator term in Eq. (A2.6)), as well as the accumulated sum of CTF squared terms
(denominator term in Eq. (A2.6)). No parameter refinement was done in FREALIGN; all
input parameters were either set to default values (for the synthetic data set), or taken from
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the published refinement (for the virus data set (Wolf et al., 2010)). The intermediate data
files from FREALIGN were then read into the Octave open-source numerical analysis
package (http://www.gnu.org/software/octave/doc/interpreter/), where subsequent analysis
was completed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Volume-normalized estimation of the SSNR
A. Noise-free, interpolation-free projection of kinesin monomer crystal structure (PDB ID
1MKJ), at 1 Å/pixel in a 96 × 96 pixel image.
B. Noisy, CTF-modulated image derived from (A) with SNR = 0.002. The SNR value is
computed from the entire image. Image size is enlarged to 256 × 256 pixels in order to retain
information delocalized by the CTF.
C. Composite SSNR behavior for 1000 synthetic images generated as in panel B (crosses),
compared to the idealized SSNR computed by dividing the rotationally averaged structure
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factors of the noise-free volume (  by the mean squared amplitude N2 for the white
noise added to the images.
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Figure 2. Masks used for real-space and/or Fourier-space cross-correlation calculations
Representative z slices are shown.
A. Molecular surface mask (fmask = 0.0236).
B-D. Subdivided pieces of the molecular surface mask in A.
E. Binary envelope mask derived from a reconstruction low-pass filtered to 30 Å resolution
(fmask = 0.051).
F. Smoothed mask derived from E by applying a cosine edge filter (fmask = 0.101).
G. Smoothed spherical mask (fmask = 0.223).
H. Core mask (fmask = 0.0059).
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Figure 3. FSC/SSNR analysis of reconstructed volumes
A. Applying a generous mask for FSC calculations underestimates the reconstruction
quality. A spherical mask (Fig. 2G) was applied to half-data set reconstructions (Fourier
inversion, no filter applied) and the FSC was computed, for the synthetic data set described
in Fig. 1. For comparison purposes, FSC values were then transformed to the equivalent Cref
values using Eq. 12 (solid curve). The middle curve (dashed) shows the same FSC values
after being transformed to account for the particle volume via Eq. 13, using 0.023 as the
estimated value for fparticle (see text). The lighter dashed curve indicates the ‘true’ Cref
values obtained by masked comparison between the full-data-set reconstruction and the
noise-free reference.
B. Decreasing the mask size leads to more accurate estimates for Cref . The ‘true’ Cref values
are carried over from panel A. The heavy solid curve shows the estimates for Cref obtained
by performing FSC calculations using the smoothed mask from Fig. 2F; the heavy dashed
curve shows Cref values estimated by FSC using the binary mask from Fig. 2E.
C. Measured SSNR indicates near-optimal reconstruction algorithm. FSCref (identical to
panels A, B) is compared with the “ideal” case where all measurements contribute
“perfectly” to signal recovery (see text). The horizontal line at FSCref = 0.5 indicates the
nominal resolution of the reconstruction as given by Rosenthal and Henderson (2003).
D. Recovering the data SSNR from masked FSC calculations. The composite SSNR of the
raw data images was estimated from masked FSC calculations via Eq. (6), and compared
with the known SSNR characteristic of the synthetic data set (Fig. 1C).
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Figure 4. Performance of various filters, as indicated by features found in a representative
region of the reconstructed maps
Density maps are represented as isosurfaces by UCSF Chimera (Pettersen et al., 2004).
A. Reconstruction of the dataset in panel C generated by the published Fourier inversion
scheme of FREALIGN. Reconstruction is post-filtered by a 3 Å resolution low-pass filter,
corresponding to the nominal resolution as indicated by Fig. 3C.
B. Reconstruction as in panel A, but using a conventional Wiener filter incorporated into the
Fourier inversion scheme. Severe over-filtering is apparent, relative to panel A.
C. Density map generated by the integrated SPW method.
D. Result of applying the post-processing filter (Eq. (10)) to an unfiltered Fourier inversion
reconstruction (Eq. A2.6). To facilitate comparison, the threshhold level in this density map
was chosen such that the isosurface contains the identical volume as the map in panel C.

Sindelar and Grigorieff Page 23

J Struct Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Validating the SPW filter with masked CCC calculations
A. Real-space cross correlation coefficients between reconstructions and the noise-free
reference volume are shown for the case of no masking, as well as a spherical mask (Fig.
2G) and a smoothed molecular envelope mask (Fig. 2F). The vertical dashed lines indicate
the computed values of fmask for each case (1, 0.223, and 0.101, respectively). The inset
shows a rescaled plot of the ‘no mask’ curve.
B. Estimating fparticle by masked correlation comparison of core regions in the reconstructed
maps. The upper curves show the results from comparing full-data-set reconstructions
(integrated SPW method) with the noise-free reference volume. The lower curves show the
results of equivalent masked CCC calculations that compare half-data-set reconstructions.
For the lower curves, results from both integrated and postprocessing forms of the SPW
filter are shown. The vertical dash line indicates our estimate of fmask (0.023, see text).
C. Single-particle Wiener filter improves the resolution of reconstructions, as indicated by
Cref comparisons. The reconstructed volume was multiplied by the mask in Fig. 2F prior to
computing the Cref values. The ‘conventional FREALIGN’ calculations used the Fourier
inversion method (Eq. (A2.6)); for the 2x padded reconstruction, images were padded by
zeros. SPW reconstructions were also computed with 2x padding, applying Eq. (2) either
with estimated SSNR values or the known SSNR values (see Fig. 3C). D. Single-particle
Wiener filter outperforms other reconstruction algorithms. Results of two other algorithms
are shown (see text). Unlike in Fig. 3, the Cref values here and in panel C are not scaled to
account for particle volume.
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Figure 6. Application to an experimental high-resolution data set
A. Cross-section of the unfiltered and unsharpened papillomavirus map, generated by
FREALIGN using the methods described by Wolf et al. (2010).
B. Core mask function for this procedure was defined by first applying a 15 Å low-pass-
filter to the reconstruction in panel A. The core mask was then defined by choosing a binary
cutoff threshold such that 1% of the total reconstruction volume was included (volume
occupied by the virus shell was ~15% of the reconstruction volume).
C. Results of our estimation procedure for fparticle , using the post-processing SPW filter.
D. Comparison of post-processing filter functions. The solid curve depicts the FOM weights
used by Wolf et al. (2010) following the scheme of Rosenthal and Henderson (2003), using
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Eq. (11). The dashed curve depicts the SPW post-processing weights obtained through Eq.
(9).
E. Isosurface of the density map from A, depicting an L1 pentamer on the surface of the
capsid.
F. Isosurface from E, superposed with semitransparent isosurface of the same map (gray),
low-pass-filtered to 15 Å and thresholded such that the volume enclosed by the surface is
equivalent to fparticle = 0.075, the value identified by our estimation procedure in panel C.
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Figure 7. Comparison between ‘Figure-of-Merit’ and SPW post-filtering schemes
The weighting factor is plotted vs. the corresponding value of the masked Cref . The original
FOM scheme of Rosenthal and Henderson (2003) is identical to the masked Cref, resulting in
a straight line. The SPW post-processing filter, given by Eq. (9), varies according to the ratio
of masked fparticle to fmask; examples for four different ratios are plotted.
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