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ABSTRACT The asymptotic form of bound-state wave
functions is derived by analytic continuation of asymptotic
scattering-state wave functions. The result is also rigorously
derived by using an approach that is independent of scattering
theory. One aspect of the result is that the N electron wave
function becomes the lowest accessible exact wave function for
the remaining N - 1 electrons when one electron is far away
from all the nuclei. This shows that the recently developed ex-
tended Koopmans' procedures are in principle exact for e first
ionization energy.

The long-range asymptotic behavior of bound-state wave
functions has been the focus of a significant research effort
(1-8). The pioneering discussion of the asymptotic behavior of
Hartree-Fock orbitals by Handy et al. (1) contains several
important ingredients of a more general analysis. The long-
range behavior of natural orbitals was investigated by Morrell
et al. (2) and by Davidson (3). Upper bounds to the long-range
behavior of ground state densities were derived and improved
by several investigators (4). The upper bound derived by
Hoffmann-Ostenhof and Hoffmann-Ostenhof (4) actually has
the same exponential dependence as the exact result derived
here, and they also conjectured, but did not prove, the correct
form of the preexponential factor. More recently, Silverstone
et al. (6, 7) examined the asymptotic behavior of the helium
ground state natural orbitals, obtaining some further analytical
results (6) and essentially confirming them numerically (7).
The detailed asymptotic behavior of scattering states, which

is crucial in the very formulation of the corresponding theory,
is considerably easier to obtain than that for bound states. The
scattering matrix has poles corresponding to the bound-state
eigenvalues, at which the eigenfunctions become bound-state
eigenfunctions. This can be used to extract the asymptotic form
of the bound-state wave functions starting from the scattering
wave functions and evaluating them at the poles of the scat-
tering matrix. This is done below. An independent derivation,
which does not rely on scattering theory results, is presented
following that, and some consequences of the form of the results
are discussed.

Asymptotic form of bound state wave functions
We shall consider a system with N -1 bound electrons and total
nuclear charge Z, which is initially in its ground state with en-
ergy EoN- . An incoming electron with energy h2ko/2m can
be scattered into either the elastic channel or any one of the
inelastic channels, provided that its energy is high enough. The
asymptotic form in a channel involving excitation of the N -
1 electron system to its nth excited state will be, in a.u.,

n- [3no'kin-Sonr-lei(knr+ 770no9r)] t n = 0, 1, [1]
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where

k2/2 + EN- = k2/2 + EoN' _E

iln = Z*lkn, Z* = Z-(N-1),
(in is the incoming wave, Son is the S-matrix element, and t is
the spin and angular function of the scattered electron.
Now, all the elements of the scattering matrix have a pole

when E, the total energy of the system, becomes equal to a
bound-state energy of the N electron system-say, E = EN. At
such an energy we obtain

1n = 2(E~M-En)- iKmn

where Kmn is real and positive.
The long-range behavior is determined by the exponential

depending on Km,,, which corresponds to ionization into the
ground state of the N - 1 electron system, as this is the most
slowly decaying one. Comparison with Eq. 1 suggests that the
asymptotic result is

1N(rl,I, . . .,rfrrl CoXt- (r2. ..., rN) rf earl? [2]

where
a = K.. and # = [Z-(N-1)]/a-1. [3]

For the ground state of theN electron system a = v/E, where
e is the first ionization potential. For an excited state a involves
the ionization energy from this excited state into the ground
state of the N - 1 electron system. Hence, the excited state is
asymptotically more diffuse than the ground state, a result
which is not at all unexpected.
We note in passing that if the ground state of the N - 1

electron system is inaccessible from 41N. say, because their spins
differ by more than 1/2, our discussion has to be modified so
as to consider, in Eq. 1, an initial N - 1 electron system which
is accessible from V N. Only for such an N - 1 electron system
will E = EN correspond to a pole in the S matrix. The expo-
nential coefficient will involve the ionization energy into the
lowest accessible state of theN - 1 electron system, which may
be different for different states of the N electron system. This
point was discussed in detail by Hoffmann-Ostenhof and
Hoffmann-Ostenhof (4) and is more completely treated in the
following section.

A purely bound-state derivation
A derivation of the asymptotic form of bound-state wave
functions which does not depend on the scattering state as-
ymptotic wave functions and on the conjecture concerning the
poles of the analytically continued S matrix, will now be pre-
sented.
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Let itf1 (2 ... N) be an exact eigenfunction of HN-1(2 ...
N). Since the VI-I form a complete set, one can expand an
exact bound-state eigenfunction {N(j ... N) of HN(l ... N)
as

VN = Efi(1)WN '(2. .'. N) [4]
where the summation includes integration over the N - 1
particle continuum. In this expansion the fs are the Fourier
coefficients

[51
of the orthonormal '-1. The f, are nonorthogonal, non-nor-
mal, and generally linearly dependent. The expression ( )N-1
denotes integration over the spin and space coordinates of
electrons 2... N.
Now suppose H is approximated by

Inserting the expansion of jkN (Eq. 4) gives

(4N-Ir-' Oll~N)E r-L-Ifj,
L j

X (41N'1jILPL(cos0,2)It' ) [18]
By the orthogonality of the t'N-1, the L = 0 term reduces to

T If (1), so

W- - Efj(1) E riL-l
j L>O

X 2A1r2PL(cos0l2)kV '). [19]
Now consider the asymptotic solution to the homogeneous

equation

[h + (N - I)r- + Idlfi = 0 [20]
N

HN= h(i) + E rij'
i=l i<j

[6]

h~)= 2 V2 + Ven(i) [7]

and Ven is the electron-nuclear Coulomb interaction.
Then

HN(1 ... N) = HN-1(2 ... N) + h(l) + E rjj'. [8]
i>1

By definition
HNiN = ENIN [9]

where EN is any one of the exact bound-state eigenvalues.
Then

where r is measured from the center of nuclear charge and r
>> R where R is the maximum distance between nuclei. Then
Ven approaches -Qr-I where Q is the total nuclear charge. The
asymptotic solution to this equation is well known to be

where

ai = VIj and f/i = (Q-N + 1)/ai -1. [22]
l For the coupled Eqs. 15 it is now clear that, except possibly

for i = 1, the coupling term W, may contain terms which die
exponentially only like exp(-air); and hence for large r, W,
may determine the asymptotic form. Suppose the functions f

are partitioned into sets by examining their connectivity graph.
To this end, two indices i and j will be regarded as connected
if

Inserting expression 8 for HN and using the Hermitian property
and eigenvalue property

HoHNN-lN-lgNv

of HN-1 gives

h(1)fj () + (N 1 | E ijlI VN)N-l = -Ids [12]
I>'

where

Ii=EN-1-EN. [13]

For convenience we will assume that the Is are ordered so that
Ii < It+ 1 The Is are the ionization energies from the state EN
of the N electron system into the various states of the ion.

Let us define

Wi = [rj'I (N1Ir 14IN)] [14]

and note that (,N-I IIr-jlk/IN) is the same for all j, so that Eq.
12 can be written as

[h + (N - 1)r-' + Ihjf1 = (N -1)Wj. [15]
From the Laplace expansion for rjJ

r?,1=2 L+ l PL(COS012)- [16]

We get for large rI

12ELAN| 2PL(COS2)| )N-1

[10] Wi = - ,fi(1) Wi1 [24]

has a nonzero Wej. Indices forming part of the same connected
graph will then form a set which can be labeled by I = inflij.
Following the similar arguments of Handy et al. (1) and Sil-
vertone et al. (6), allfj in the same set I will have an exponential
dependence exp(-air) with

a, = min aj.

if
[25]

While these arguments are typical of the derivation of as-
ymptotic forms in mathematical physics, there are some logical
difficulties. Ahlrichs (8) has emphasized the well-known fact
that any function can be expanded in terms of any complete
set of functions, so the leading term in an expansion need not
reflect the limiting form. As discussed below, infinite sum 24
can be viewed as a Laurant series (multiplied by an exponential)
which contains only one term in the highest power of r. Hence,
we will assume that this term governs the asymptotic form.

For example, in the absence of spin-orbit coupling, the state
AN will correspond to some value of S and summation 4 will
include only )V/-' corresponding to S i 1/2. The coupling be-
tween fS+ 1/2 and f-1/2 is zero, however, so the fS-1/2 and
JS+ 1/2 will have different exponential behaviors.

If fs and fj are connected, then there is some smallest value
of L in

wit _ E rl (' 'INr2yPL(cosO,2)'l{-1) [26]L>O2 CS11I

which makes a nonvanishing contribution. Let us denote this
least L by Lit. Then, for any pair of fs in the set I-say, fp and
fq-there will be various paths in the connectivity graph from

where

[21]
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p toq. Alongeachofthesepathsp - a ---b. qonecan

sum the Li. Then let us define

L = nin over all paths connecting p to I {E (Lq + 1)j. [27]
From the equation for f' it is clear that the coupling terms

vanish faster than fl/T2 so that the value of : is determined by
the homogeneous equation and hence is fI. For the other
members fj of the set I the value of f3i is determined by the
coupling terms, so it is the largest of the f3i - Li - 1. Con-
tinuing this argument gives

,Bs=,B,-Lt. [28]
For molecules of no symmetry L' will be 2, but for some of the
fi of some high-symmetry atoms or molecules, L; will be
>2.

Let us now consider only the fi that are nonvanishing; that
is, we consider only the A41' for which fi4'l can have a
component of the same symmetry as 41N. Let us assume that
only such ,tN-1 are included in 4 and that I4N-1 denotes the
lowest accessible state of the N - 1 electron system. Then

f1/f,O7IL with L* 2

if i is in set 1 and

ft/f, e-(W-al")t and aj > a,

if i is not in set 1. It follows that

AN _ fl(l) IN-'(2 ... N)
where fl - ri1 e-alrl[ + O(r-1)]. [29]

This result is identical with Eq. 2. An immediate consequence
is that p(r,,r') - f,(I)f'(i') for either rlor ri' large,

and p(rl) - Ifl(1)12[1 + O(r-4)].
For atoms with /N-' having angular momentum Li,

Lj=ILi-LJI if Li Lj |.t2 if Lj=Lj>oJ
States with L, = LU = 0 are unconnected. If fl has Li = 0, then
other Li = 0 states in this set will have L' 2 4 since they can
only connect via a two-step path involving a nonzero inter-
mediate La.

For two electron systems, all of the fj of the same spin are in
the same connected set soaarfl4ever j [30

hil rft-l-le-cr I>1
Relations 30 have been numerically verified by evaluating the
fis using the natural orbital expansion of Davidson (9). Further
analysis in this case shows that the leading correction to fl' is
-[(3 + 1)/(2a)rf-1e-ar. By expressing the natural orbitals in
terms of the fi, it becomes evident that fl' is mixed into all the
s-type natural orbitals, so that they all have the same long-range
behavior.
Discussion of the asymptotic form
One remarkable consequence of the comparison between the
present result and that of Morrell et al. (2) is that theirMmax is
indeed rigorously identical with the exact ionization potential,
which means that the wave function they generated for the N
- 1 electron ground state by anihating orbitals in the ground
state of the N electron system is the exact solution for the
former.

This very surprising and pleasing result does not imply that

the set of N - 1 electron functions, ON-1, complementary to
the natural orbitals, Xi, of the ground state of the N electron
system form a complete set for N - 1 electrons. On the con-
trary, by a dimensionality argument, it is clear that these
functions are incomplete in the N - 1 electron space (10). All
that this result does imply is that the ground state of the N -
1 electron system is contained in the space spanned by those
complementary functions. Moreover, the expansion coeffi-
cients, (,N-'IIkN-1), of the N - 1 electron ground state in
terms of these functions are determined by substituting in Eq.
2 the Carlson-Keller (11) expansion for the N-electron ground
state,

N(I, r2, ..., rN) = E nV12 Xi(rl) cNkI(r2, r3, ..., rN). [31]

Hence, the coefficients are asymptotically proportional to
n1/22Xi. An immediate consequence is that the formalism of ref.
2, and the closely related extension of Koopmans' theorem
suggested by Smith and Day (12), will generate the exact ion-
ization potential, provided that the exact N-electron ground
state wave function is used. This point was very clearly discussed
by Levy and Parr (13) and by Silverstone et al. (6). The latter
authors' results for the asymptotic behavior of the helium
ground state natural orbitals-in particular, the fact that the
I >0 natural orbitals decay more rapidly than the s-type natural
orbitals-show that, as r2 becomes large, 4t(1, 2) considered as
a function of ri becomes an s-type wave function consisting of
a superposition of all the s-type natural orbitals. The coefficients
in this expansion are given, relative to the first one, as

CICI = [n1/nl]1/2 lim [Xi(r)/xo(r)]
r-b OD

[32]
where n1 is the occupation number of the ith natural orbital,
Xi (r).

Silverstone et al. (6) pointed out that the exponential coef-
ficient in their asymptotic expression for the natural orbitals
can only be equal to Vc, where e is the exact ionization po-
tential, if the above expansion is asymptotically equal to the
ground state of He+, e-2r-i.e.,

CjICI = (IsHe+lXi)/(lsHe+lxi). [33]
Our result shows that this is indeed the case. To illustrate this
point we have evaluated CW/C, from both Eq. 32 and Eq. 33,
using Davidson's (9) natural orbitals. From Eq. 33 we obtained,
for i = 2,3,4,5, the ratios 0.178, 0.037, -0.013, and -0.006,
which compare reasonably well with the values obtained using
Eq. 32: 0.179, 0.035, -0.012, and -0.005. We extracted the
latter sequence of numbers by evaluating the natural orbitals
at values of r(-6 a.u.) for which they are already "asymptotic"
but still reliable. They agree with the estimates for these ratios
presented by Carroll et al. (7). As a further examination of the
conclusion that the ground state wave function of helium be-
haves like

i,(1,2) - e 2I [34]
when electron one is far away, where

3=1/vi - 1,
we computed the ratio between the left-hand expression and
the right-hand side expression in Eq. 34, for r2 < rl. This ratio
is fairly close to constant for r, - 5 a.u. and 0< r2 < 1 a.u. (to
about 0.05% for 012 = 7r/2, some angular dependence being
observed for the above r, and r2> 0.5). For i6(1,2) we used
Davidson's (9) improved Kinoshita-type 44-term wave function.
Even this wave function is not very accurate for rI or r2 larger
than about 5 a.u.
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Note Added in Proof. Lassettre (14) gave a less detailed proof of Eq.
2.
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