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Abstract
Chagas disease caused by Trypanosoma cruzi remains an important neglected tropical disease and
a cause of significant morbidity and mortality. No longer confined to endemic areas of Latin
America, it is now found in non-endemic areas due to immigration. The parasite may persist in
any tissue, but in recent years there has been increased recognition of adipose tissue both as an
early target of infection and a reservoir of chronic infection. The major complications of this
disease are cardiomyopathy and megasyndromes involving the gastrointestinal tract. The
pathogenesis of Chagas disease is complex and multifactorial involving many interactive
pathways. The significance of innate immunity, including the contributions of cytokines,
chemokines, reactive oxygen species, and oxidative stress, has been emphasized. The role of the
components of the eicosanoid pathway such as thromboxane A2 and the lipoxins has been
demonstrated to have profound effects as both pro-and anti-inflammatory factors. Additionally, we
discuss the vasoconstrictive actions of thromboxane A2 and endothelin-1n Chagas disease. Human
immunity to T. cruzi infection and its role in pathogen control and disease progression have not
been fully investigated. However, recently, it was demonstrated that a reduction in the anti-
inflammatory cytokine IL-10 was associated with clinically significant chronic chagasic
cardiomyopathy.
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Introduction
The genus Trypanosoma encompasses important diseases of humankind. Thus,
Trypanosoma brucei gambiense and T.b. rhodesiense cause human African trypanosomiasis
(sleeping sickness), and Trypanosoma cruzi is the cause of American trypanosomiasis, also
known as Chagas disease. The outcome of Chagas disease in humans is related both to the
virulence of the parasite strain as well as the host response to infection. Interestingly, paleo-
parasitological studies demonstrating the presence of T. cruzi in tissues of 9,000-year-old
mummies from coastal northern regions of Chile have pointed to the possibility that human
Chagas disease was present in South America before its “discovery” in 1909 [1,2]. The year
2009 marked the centennial of the discovery of Chagas disease, and, in recognition of this
event, many journals published reviews on various aspects of this disease. Our intent here is
not to write an exhaustive review of Chagas disease, but rather to focus on individual topics
which we believe are of importance in understanding the pathogenesis of this important, but
yet neglected, tropical disease.

Life Cycle and Epidemiology of T. cruzi Infection
Epidemiology

Chagas disease has been regarded as an exotic and rare “Latin American” disease. It is
endemic in Mexico, Central, and South America, where vector-borne transmission of T.
cruzi usually occurs in individuals in rural areas. The insect vectors (triatomines) invade the
primitive houses that are common in rural areas, and feed on people often as they sleep;
hence the term “assassin bug.” Both domestic and wild mammals can be infected and serve
as reservoirs for the parasite. In endemic areas, vector-borne disease has also been observed
on the outskirts of large metropolitan areas. Until recently, there were only a handful of
indigenous cases in the United States, but recently, 16 cases of autochthonous T. cruzi
infection were reported [3], and these were most likely acquired from vectors within the
country.

Patterns of emigration from Chagas-endemic areas to other areas of the world have now
altered our understanding of the epidemiology of this disease in the United States and other
non-endemic areas such as Canada, Europe, Australia and Japan. In a landmark article
published in 2009, Bern and Montgomery estimated that 300,000 persons living in the
United States were chronically infected with T. cruzi [4]. In addition, there are Latin
American immigrants living in Spain, France and Portugal, as well as Brazilian immigrants
of Japanese origin in Japan. The vast majority of serologically positive individuals in these
non-endemic areas usually have the indeterminate form of cardiac disease. Although these
individuals are not aware of their chronic infection, they remain potential sources of
transmission via blood transfusion, organ transplantation and mother-to-child vertical
transmission (congenital transmission). In fact, congenital Chagas disease in children of
mothers who have emigrated from endemic areas has been reported in Europe [5]. Thus,
Chagas disease has indeed gone global [6].

Life cycle and infection
T. cruzi has a complex life cycle consisting of four life stages. First, blood from
trypomastigotes circulating in the blood of an infected mammalian host is ingested by the
feeding vector. The trypomastigotes then transform first into epimastigotes that divide by
binary fission and then into non-dividing, infectious metacyclic trypomastigotes in the
hindgut of the vector; they are next deposited with the vector feces during subsequent blood
meals. Natural transmission to a new mammalian host occurs when the parasite-laden feces
contaminate oral or nasal mucous membranes, the conjunctivae, or wounds in the skin,
including vector bites. Once in the mammalian host, the trypomastigotes enter host cells and
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transform into the multiplying intracellular forms or amastigotes, which then transform into
blood form trypomastigotes. These forms are released into the bloodstream as the host cell
ruptures and are then ready to invade healthy cells.

The molecular mechanism(s) of invasion by this parasite and the associated regulatory
pathways have been the subject of intense investigation for many years. T. cruzi interacts
with several mammalian host cell receptors, such as toll-like receptors (TLRs), kinins (B1/
B2 sub types), receptor tyrosine kinases, TGF- and EGF-receptors, and the activity of these
receptors is required for optimal parasite binding and/or invasion (reviewed in [7]). More
recently, it was shown that T. cruzi also exploits host cell LDL receptor (LDLr) for their
internalization and subsequent fusion of the parasitophorous vacuole with the host cell
lysosomal compartment [8]. Parasites directly bind to LDLr, and inhibition or disruption of
LDLr resulted in a reduced rate of invasion. Importantly, acutely infected mice displayed a
significant decrease in plasma LDL levels and LDL was increased at areas where parasites
were present in the heart, which may mean there was an infection-induced increase in
phospholipids, triglycerides, and fatty acids that could contribute to the pathogenesis of
Chagas disease.

Blood-form trypomastigotes infect adjacent uninfected cells or disseminate via the
lymphatics and bloodstream to infect cells at distant sites. Although any nucleated
mammalian cell can be parasitized, those commonly infected include cardiac myocytes,
peripheral skeletal and smooth muscle cells, endothelial cells, and cells of the nervous and
reticulo-endothelial systems and adipose tissue. Besides vectorial transmission, transmission
of T. cruzi by transfusion of blood or transplantation of organs from infected donors,
congenital transmission, and acquisition of the infection via the oral route have been
reported [9].

Clinical Chagas Disease and Pathology
Cardiac involvement

Vector-borne acute Chagas disease is usually mild. After an incubation period of 1 to 3-
weeks, a newly infected individual may develop fever, chills, nausea, vomiting, diarrhea,
rash, and meningeal irritation. A raised inflammatory lesion at the site of parasite entry (a
chagoma), unilateral periorbital edema (Romaña’s sign), conjunctivitis, lymphadenopathy
and hepatosplenomegaly are observed in acute infection. Trypomastigotes are observed in
wet preparations of blood and cerebrospinal fluid during acute infection [10]. Intracellular
amastigotes are also found in the liver Kupffer cells rather than in the hepatocytes. In most
patients, an immune response develops, and acute parasitemia and associated symptoms
usually resolve within 2 to 4 months. The mortality rate of acutely, naturally infected
patients, often children, is less than 2%, and the common mode of death is usually acute
myocarditis and/or meningoencephalitis. The presence of arrhythmias is usually considered
a poor prognostic finding, and parasite pseudocysts are readily found in cardiac biopsies of
such patients, indicating a high level of infection.

At the conclusion of the acute phase, the majority of infected persons enter the indeterminate
clinical form of infection, characterized by a positive serology and absence of clinical
manifestations. This phase may last months to an entire lifetime; many chronically infected
people never develop clinical manifestations. Approximately 30–40% of infected
individuals eventually develop symptomatic Chagas disease. Imaging of the heart employing
echocardiography, cardiac magnetic resonance imaging and microPET is extremely useful in
the evaluation of disease severity. Dilated congestive cardiomyopathy is an important
manifestation of chronic Chagas disease and may present insidiously as heart failure or more
abruptly with arrhythmia and/or a stroke [11]. Liver pathology may reflect right-sided heart
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failure. Apical aneurysm of the left ventricle is one of the hallmarks of chronic chagasic
cardiomyopathy, observed by cardiac imaging and at autopsy (Fig. 1A). Generally, the
therapy of chagasic patients with chronic heart disease is similar to that of other patients
with congestive heart failure (CHF). Some patients also exhibit destruction of conduction
tissue, most commonly right bundle branch block, that results in atrio-ventricular and intra-
ventricular conduction abnormalities, and patients may require pacemaker placement.
Patients with end-stage CHF may benefit from heart transplantation [12]. Gastrointestinal
(GI) manifestations, such as the mega-syndromes, involving tubular structures of the GI
tract are not as common, but may be more frequent in certain geographic areas. In addition,
patients may exhibit both cardiac and gastrointestinal manifestations.

There are three layers of cardiac myocytes in the heart that are obliquely oriented to each
other and then meet at the apex of the heart. Typically, trypomastigotes must pass through
the basal laminae and extracellular matrix (ECM) layers of the myocardium and the
interstitial matrix layer between the basal laminae layers to reach cardiac myocytes. Studies
both in experimental models and chagasic patients demonstrate that myocardial damage
results from infection and multiple insults, including ischemia, inflammation, oxidative
stress, and necrosis, which contribute to ECM degradation. Indeed, cardiac
metalloproteinases are up regulated in the setting of infection, and their inhibition
ameliorates myocardial inflammation [13]. ECM degradation gradually results in slippage of
the ventricular layers, believed to be the primary event for the formation of the apical
aneurysm, which has become the Sine qua non of chronic Chagas heart disease (Fig. 1A).
Thus, the remodeling of the heart in chronic Chagas heart disease is a result of
reorganization in the heart wall resulting from tissue damage from ischemia, necrosis,
inflammation and chronic increase in intra-cavitary pressure associated with hypertrophy
and dilation of the ventricles. Histological examination of the heart reveals myocytolysis,
myonecrosis and contraction band necrosis resulting from hypoperfusion, followed by
periods of reperfusion which may be the result of vasospasm of the branches of the coronary
circulation. Eventually bands of fibrous tissue and extracellular collagen replace and engulf
hypertrophied cardiac myocytes (Fig. 1C&D).

The virtual absence of parasites in the heart of chronically infected individuals has
engendered a discussion in the literature regarding the etiology of chronic chagasic heart
disease. It has been accepted that interaction between the parasite and its host, well-adapted
for more than 9,000 years, results in a balance that favors chronic disease in the great
majority of cases. Different strains of the parasite have been associated with distinct clinical
outcomes of infection in experimental models [14,15] and human disease [16]. Host factors
such as genetic background of the host, mitochondrial dysfunction, oxidative stress and
pathological immunity, have also been associated with distinct clinical outcomes of Chagas
disease and are briefly discussed in this review.

Vascular compromise in Chagas disease
The vasculature comprises approximately one-third of the myocardium. Yet, T. cruzi-
induced vasculitis, though described in the early years following the recognition of Chagas
disease, was not appreciated until the 1980s. In those years, microvascular compromise was
demonstrated as an important factor in the pathogenesis of cardiomyopathies of various
etiologies [17], and treatment with the calcium-channel blocker (verapamil) was found to
improve the coronary blood flow and outcome and to reduce inflammation and fibrosis in
the heart [18,19]. Subsequently, alterations in the sub-endocardial microvasculature,
aneurysm formation and vasospasm were observed in an experimental model of T. cruzi
infection [20], and verapamil was shown to ameliorate reduced blood flow [21] and
cardiovascular remodeling [22,23] in infected mice.
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In recent studies, Tanowitz and colleagues examined the role of TXA2 (a bioactive lipid
eicosanoid) and the 21-amino acid peptide endothelin-1 (ET-1) in Chagas disease. Both of
these agents are known to be pro-inflammatory and cause platelet aggregation and vascular
spasm. The synthesis of ET-1 is mediated by endothelin-converting enzyme, which converts
precursor ET-1 (31 amino acids) to ET-1, noted in endothelial cells. The biological
properties of ET-1 are mediated by the G-protein-coupled endothelin receptors, ETA and
ETB. It is now appreciated that multiple cell types, such as cardiac myocytes, fibroblasts,
astrocytes, and macrophages, can synthesize ET-1. Moreover, T. cruzi infection of cultured
endothelial cells resulted in an increase in biologically active ET-1 in studies with T. cruzi-
infected mice in which there was an increased expression of ET-1 protein and mRNA in the
myocardium and an increase in plasma ET-1 levels [24]. Treatment of infected mice with
phosphoramidon, an inhibitor of endothelin converting enzyme, reduced T. cruzi infection-
induced right ventricular enlargement [25]. Importantly, mice deficient in ET-1 in either
cardiac myocytes or endothelial cells exhibited amelioration in cardiac remodeling that is
associated with T. cruzi infection [26]. Hassan et al [27] found increased expression of ET-1
in the carotid arteries of T. cruzi-infected mice, and indicated the importance of ET-1 in the
vasculature changes during infection. Elevated plasma levels of ET-1 have also been noted
in patients with chronic chagasic cardiomyopathy [28]. However, it is unclear whether this is
a result of CHF in general or chagasic cardiomyopathy in particular.

TXA2 serum levels are increased in T. cruzi-infected mice; the majority being parasite-
derived [29,30,31]. TXA2-regulated vasospasm, thrombosis, vascular permeability, and
endothelial cell dysfunction were observed in acute infection. The TXA2 receptor knockout
mice displayed increased tissue parasitism and myocardial inflammation [30]. It is believed
that TXA2 signaling acts as a potential quorum-sensing mechanism regulating intracellular
amastigote proliferation. This would prevent the overwhelming of the host during acute
infection thus enhancing the transition into a chronic persistent state of infection and
inflammation.

Involvement of the central nervous system (CNS)
Soon after the description of T. cruzi, CNS involvement in Chagas disease was described.
Infants born with congenital Chagas disease may display signs, symptoms and pathological
findings of myocarditis and meningoencephalitis [32]. These children may display
pathological findings in the brain similar to those observed in other perinatal infections.
Trypomastigotes may be present in the cerebral spinal fluid (CSF) during acute infection. In
adults, a necrotizing meningoencephalitis is most often observed in the setting of
immunosuppression such as that which accompanies HIV/AIDS [33] or the administration
of immunosuppressive drugs. As discussed above, stroke is a common finding in patients
with chagasic heart disease, especially in those individuals with dilated cardiomyopathy.
Neuro-cognitive abnormalities have been reported in experimental Chagas disease [34].

T. cruzi may invade glial cells including astrocytes and microglial cells, while neurons are
only infrequently infected [35]. The GI tract is also a target of infection which results in
injury to the enteric nervous system. Affected individuals may develop dilation of portions
of the GI tract. Although megacolon and megaesophagus are most common, megastomach,
megaduodenum, megajejunum, megagallbladder, megacholedochus have all been described.
Achalasia, aspiration pneumonia, disturbances of gastric emptying, alterations in intestinal
transit, and motility disorders of the colon and gallbladder have also been reported. Also, in
one study of colon samples from chagasic patients without megacolon, there was an increase
in Foxp3+ T cells compared with those with megacolon. This finding may mean that Foxp3+

T cells reduce inflammatory cells and prevent neuronal destruction [36]. In this regard,
parasite-derived neurotropic factor (PDNF) may promote neuronal cell survival [37,38].
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Others have suggested gene mutations associated with carcinoma are present in patients with
chagasic megaesophagus [39], though further research in this area is needed.

Adipose tissue and the adipocyte: Reservoir tissue for parasite
Until recently, adipose tissue and the adipocyte (fat cell) were underappreciated aspects of
Chagas disease pathology and pathogenesis. T. cruzi was first described as parasitizing
adipose tissue and adipocytes in the 1970s [40,41] and 1990s [42]. Combs et al in 2005 [43]
published the functional consequences of parasitism of adipose tissue and adipocytes in a
mouse model. In the same year, Philipp Scherer and colleagues [44] reported that injection
of LPS into mice that were rendered fatless (by using the regulated fat apoptosis murine
model) did not result in the immediate death of mice as seen in control mice with a normal
component of adipose tissue. This seminal observation set the stage for studies by the
Tanowitz group exploring the significance of adipose tissue during acute infection.
Nagajyothi et al [45] demonstrated that as early as 15 days after infection, when mice
exhibited no detectable blood parasitemia, there was an increase in the number of
macrophages (Fig. 2) and a greater parasite load in brown and white adipose tissue, obtained
from the interscapular and subcutaneous regions, respectively, when compared with those in
other organs such as the spleen and heart. The authors also noted a reduction in lipid
content, adipocyte size, and adipose tissue mass, accompanied by increased expression of
lipolytic enzymes, pro-inflammatory cytokines, chemokines, toll-like receptors and ERK in
adipose tissue obtained from infected mice [45]. By day 30 post infection, the tissue and
serum levels of adiponectin were significantly reduced and inflammatory mediators were up
regulated in the adipose tissue [43]. The reduction in adiponectin expression and local
lipolysis has been linked to up-regulation of inflammatory mediators, insulin resistance [46]
and increase in the influx of macrophages into adipose tissue [47], as was demonstrated in
experimental of Chagas disease. Thus, the authors propose that the persistence of the
parasite and macrophages in adipose tissue, well into the chronic phase of infection, creates
a “low-level” chronic inflammatory state similar to that observed in morbid obesity. The
experimental data as well as recent studies in humans [48] strongly indicate that adipose
tissue is an early target of infection, as well as a reservoir from which infection can
recrudesce during periods of immune-suppression.

Importantly, Nagajyothi et al [49] found that T. cruzi-infected cultured adipocytes displayed
a reduction in levels of adiponectin and PPAR-γ and a concomitant increase in many
inflammatory mediators. These observations may mean that the inflammatory phenotype
observed in adipose tissue obtained from T. cruzi-infected mice can be attributed to
infection of adipocytes per se. Thus, the chronic inflammatory state observed in adipose
tissue may lead to insulin resistance and enhance heart disease in patients with Chagas
disease. This remains an active area of investigation.

Innate Immunity to T. cruzi Infection: Experimental Studies
Control of T. cruzi depends both on innate and acquired immune responses which are
triggered during early infection, critical for host survival, and involve macrophages, natural
killer cells, T and B lymphocytes, and the production of pro-inflammatory Th-1 cytokines
such as IFN-γ, TNF-α, and IL-12. Excellent recent reviews have discussed in detail the B
and T cell immunity to T. cruzi in experimental models (e.g., [50,51,52]). Herein, we focus
on innate immune responses to T. cruzi infection that have primarily been studied by using
experimental models of infection and have provided important information regarding
mechanisms of cell activation and parasite control [53,54].
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Macrophage activation and cytokine/chemokine response
Studies in experimental models have shown that macrophages, dendritic cells and natural
killer cells play an important role in parasite control via elicitation of an intense
inflammatory reaction, accompanied by an up regulation of cytokines and chemokines
[55,56,57]. The interaction of T. cruzi with macrophages and other cell types involved in the
innate immune response are mediated by pathogen recognition receptors such as Toll-like
receptors (TLRs) and a family of type I trans-membrane receptors. Upon recognition of
pathogen-associated molecular patterns (PAMPs), TLRs transmit the signal via cytoplasmic
Toll/IL-1R domains for the recruitment of cytosolic adaptor molecules including myeloid
differentiation primary-response protein 88 (MyD88), and subsequently induce nuclear
factor-κB (NFκB) activation, leading to the production of inflammatory cytokines and
linking the innate to the adaptive immune response [56]. T. cruzi-derived molecules, such as
glycosylphosphatidylinositol (GPIs) and mucins stimulate the synthesis of IL-12 and TNF-α
by macrophages [58,59]. The mucin-linked GPI anchors induced TLR2-dependent leukocyte
recruitment via CCL2 [58,60]. The parasite also expresses cruzipain, a kinin-releasing
cysteine protease, which induces dendritic cell maturation via the activation of bradykinin
(BK) B2 receptors (B2R) [59,61]. TLR2 activation by T. cruzi links early-phase
inflammation to dendritic cell-driven mechanisms that stimulate Th1 responses via the
cruzipain/kinin/B2R pathway [59,62]. Neutrophils expressing TLR2 induce the
extravasation of plasma proteins into interstitial spaces, thus allowing for the cruzipain-
mediated release of the dendritic cells and the stimulatory peptide BK at the downstream
end of the inflammatory process. It has been suggested that T. cruzi evokes interstitial
edema through the sequential activation of TLR2/CXCR2/B2R characterized as an innate
axis pathway fueled by the cooperative effects of exogenous and endogenous danger-type
signals [59]. TLR4 and TLR9 likely recognize parasite-derived GIPLs and DNA,
respectively, and cooperate in the activation of host innate immune response leading to
infection regulation [58,63]. Other TLRs have been suggested to be activated by as yet
unrecognized T. cruzi-derived components [63,64].

T. cruzi-induced up regulation of IL-12 mediates IFN-γ production through activation of
NK cells and the induction of the Th1 cells [63]. IFN-γ activates the macrophage expression
of iNOS and nitric oxide (NO) production [63,65,66]. TNF-α provides a second signal
stimulating NO production and anti-T. cruzi activity in IFN-γ activated macrophages as
well as infected cardiac myocytes [56,66,67,68], and thus mediates the trypanocidal function
via an autocrine pathway.

Others have shown that the immuno-regulatory cytokines IL-10 and TGF-β with a
susceptibility to acute infection [69,70]. By using genetic knockout mice or antibodies for
depletion of specific immune molecules, it was shown that blockage of type 1 cytokines
(IFN-γ, TNF-α) correlates with an increased susceptibility to T. cruzi infection [71,72]
(reviewed in [73]). Neutralization of endogenous IL-10 leads to an increased T. cruzi-
induced IFN-γ production and parasite killing, which may point to IL-10 as a potent
inhibitor of IFN-γ production during infection in mice, and the resistance to infection is a
result of the balance between IFN-γ and IL-10 produced [69]. Indeed, a complete absence of
Th2 or anti-inflammatory cytokines had severe negative effects on the infected host; IL-10-
deficient mice infected with T. cruzi developed a syndrome similar to that of endotoxic
shock due to the enhanced production of TNF-α and IFN-γ [74].

Non-immune cells also respond to T. cruzi infection by cytokine production. For example,
infection of endothelial cells with T. cruzi causes the direct induction of IL-1β and IL-6
[75]. Trans-sialidase, a released surface protein of T. cruzi, induced IL-6 production in
isolated endothelial cells [76]. Our finding of increased TNF-α and IL-1β mRNAs in
infected cardiac myocytes suggested to us that cardiac myocytes also respond to T. cruzi by
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inflammatory cytokine production [77]. Whether the cytokine response by the non-immune
cells is a component of innate immunity or a bystander effect to T. cruzi infection is not
known, and it remains to be investigated in future studies. Collectively, these results
underscore the importance of both inflammatory and anti-inflammatory responses during T.
cruzi infection, and indicate that IL-4 + IL-10/TNF-α + IFN-γ ratio may be an important
determinant of desirable outcome.

The cytokines synthesized during T. cruzi infection (IFN-γ, TNF-α, IL-1α TGF-β and
IL-10) are capable of inducing or regulating the production of chemokines in infected
macrophages and cardiac myocytes [68]. The enhanced expression of CCL3 (MIP-1α),
CXCL10 (IP-10), and CCL5 (RANTES) at both the mRNA and protein levels has been
noted in macrophages and myocardium of T. cruzi-infected experimental models [78,79,80].
Chemokines stimulated the infected macrophages in an autocrine manner, enhancing NO
release and NO-depend killing of the parasites [68]. Chemokines and their receptors also
affect T-cells proliferation, Th1/Th2 differentiation [81] and resistance to infection [68,82].
CCR5 and CXC3 are immunological preferential markers of the Th1 response, and CCR3
and CCR4 are preferentially associated with Th2 response [83,84]. Others have suggested
that chemokines contribute to the pathogenesis of T. cruzi infection due to their effects on
leukocyte migration and activation [82].

Lipid mediators of immune responses
In addition to cytokines and chemokines, eicosanoids, i.e., lipid mediators, also play a role
during T. cruzi infection. The arachidonic acid derivatives, including leukotrienes (LTB4)
and cysteinyl lymphotoxins (LTC4, LTD4 and LTE4) are produced during experimental T.
cruzi infection [85,86,87]. The protein responsible for the synthesis of leukotrienes is the
enzyme 5-lipoxigenase (5-LO), which is primarily expressed in macrophages, granulocytes,
mast cells, and dendritic cells. Resident and recruited leukocytes are capable of synthesizing
LTB4 during infection and activate macrophages to kill intracellular forms of T. cruzi [88].
Deficiency of 5-LO resulted in a dramatic increase in the peak of parasitemia; however, 5-
LO knockout mice were eventually able to control parasites and exhibited increased survival
and reduced cardiac damage and scarce tissue parasitism [89].

5-LO induces Lipoxin (LX) A4 production that triggers the AhR receptor altering the
expression of suppressor of cytokine signaling (SOCS) 2 and serves as an anti-inflammatory
eicosanoid. Esper et al [90] recently demonstrated the role of SOCS2 in an experimental
model of Chagas disease; T. cruzi infection induced SOCS2 expression in the heart and
spleen of mice which was, in part, dependent on the activation of the 5-LO pathway.
Moreover, SOCS2 deficiency resulted in a reduction in peripheral parasitemia, but not in
heart parasitism, and in the down-modulation of pro-inflammatory cytokines, including
TNF-α, IL-12 and IFN-γ, associated with a reduction in myocardial inflammation.
Although IFN-γ was reduced, SOCS2-deficient macrophages were hyper-responsive to this
cytokine and produced increased levels of NO and dealt with infection more efficiently. In
addition, T. cruzi-infected SOCS2 knockout mice displayed an enhanced number of T
regulatory cells and levels of LXA4 associated with decreased inflammatory responses and
reduced production of pro-inflammatory mediators [90]. In the absence of SOCS2, there was
myocardial hypertrophy and cardiac myocyte dysfunction. These results may indicate that
production of a 5-LO-derived molecule, presumably LXA4, contributes to SOCS2
expression during experimental T. cruzi infection. It should be noted that LXA4 may
function in a SOCS2-dependent and independent manner during infection. As the lipid was
enhanced in the absence of SOCS2, it is clear that SOCS2-independent pathways could be
operational in the latter animals to mediate any anti-inflammatory actions of LXA4 during
infection. Interestingly, the phenotype of 5-LO-deficient mice infected with T. cruzi is, in
part, similar to those observed in SOCS2-deficient mice. TXA2, another eicosanoid, has also
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been shown to participate in regulation of intracellular amastigote proliferation, providing
opportunities to survive from infection, but result in transition into a chronic persistent state
of disease (discussed above).

Reactive oxygen species
The two major reactive oxygen species (ROS) producers relevant in Chagas disease are
NADPH oxidase (gp91phox), renamed NOX2, and mitochondria (Fig. 3). NOX2 catalyzes
rapid ROS production by the one-electron reduction of O2, referred to as a respiratory burst
that serves as the first line of host defense against microbes. Early studies demonstrated
cytochemical detection of NOX2 at the plasma membrane of peritoneal mouse macrophages
during interaction with T. cruzi [91]. Others have used in vitro assay systems or animal
models and demonstrated that T. cruzi-mediated macrophage activation results in increased
levels of O2

•− formation, likely by NOX-dependent oxidative burst [92,93,94]. We have
extended these observations and shown that splenocytes of infected mice and in vitro
cultured macrophages respond to T. cruzi infection by activation of NOX2 and a substantial
increase in ROS production (Dhiman & Garg, unpublished data). A robust response of
splenocytes of infected mice to T. cruzi antigenic lysate led us to speculate that parasite
factors (and not active invasion) are sufficient to activate NOX and ROS generation. Indeed,
T. cruzi-derived components are recognized by TLRs and NOD-like receptors, implicated in
NOX activation [63]. Yet, further studies are required to identify the T. cruzi-generated
stimuli that activate TLR- and NOD-signaling mechanisms and initiate translocation of
cytosolic components (p47phox, p67phox, and G protein) and NOX assembly during
Chagas disease. In the heart, in response to T. cruzi infection, infiltrating activated
neutrophils and macrophages are a major source of NOX- and myeloperoxidase-dependent
ROS during the acute stage, though mitochondrial release of electrons and superoxide
production in infected cardiac myocytes is also noted [95]. Superoxide and NO promote
peroxynitrite-mediated killing of T. cruzi in macrophages [96,97]. The reactive oxygen
species (ROS) are also important regulators of parasite control, modulating the cytokine
responses and splenic inflammatory cell proliferation during T. cruzi infection, as well as
playing an essential role in the formation of acquired immunity for parasite killing [98],
discussed below.

ROS signaling of cytokine responses
ROS are critical signaling intermediates linking the innate and adaptive immune systems by
triggering the production of proinflammatory cytokines (TNF-α, IL-1β) by macrophages
and dendritic cells (DCs) of the innate immune system. Inhibition studies with cultured and
primary macrophages showed that NOX/ROS was a critical regulator of cytokine production
in response to T. cruzi infection. In vivo studies using splenocytes of T. cruzi-infected mice,
with or without in vitro stimulation with parasite antigens, validated the above observations
and demonstrated that the inhibition of NOX by apocynin or use of ROS scavengers
substantially blocked the activation and proliferation of phagocytes and inflammatory
mediators (IL-1, IL-6, IFN-γ, and TNF-α) [99]. Subsequently, inhibition of NOX/ROS
resulted in an increased susceptibility to T. cruzi, a finding that suggested that redox status
plays an important role in immune activation and control of T. cruzi, also validated by
studies in p47phox−/− mice, in which T. cruzi infection, even at a dose 10-fold lower than
that used for wild-type mice, was lethal (Dhiman & Garg, unpublished data). Further studies
will be required to delineate if NOX/ROS signal the nuclear transport and activation of
transcription factors (e.g., NF-κB and AP-1) and promote cytokine gene expression; or if
NOX/ROS elicit immune cell proliferation and thereby indirectly alter the cytokine profile
in infected mice.
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Others have demonstrated that trypomastigotes (or T. cruzi-derived proteins, e.g. trans-
sialidase) activate NF-κB in a number of cell types, including epithelial cells, endothelial
cells, myocytes, and fibroblasts [100,101,102]. NF-κB activation increased the resistance to
infection in many of these cell types. Except for myocytes, these studies, however, did not
attempt to determine if ROS signaled the NF-κB-dependent cytokine gene expression in
non-phagocytic cells invaded by T. cruzi. Subsequently, the Garg group reported that ROS
of mitochondrial origin elicited cytokine gene expression in cardiac myocytes infected by T.
cruzi via multiple mechanisms. One, mtROS enhanced the nuclear translocation of RelA
(p65), thereby activating NF-κB-dependent gene expression of inflammatory cytokines (e.g.
TNF-α, IFN-γ, IL-1β) [77,103]. Two, ROS caused 8-hydroxyguanine (8-oxoG) lesions and
DNA fragmentation that signaled polyadenosine ribose polymerase 1 (PARP-1) activation,
evidenced by poly-ADP-ribose (PAR) modification of PARP-1 and other proteins in
infected cardiac myocytes. PARP-1 signals DNA repair via PARylation of histones;
however, its hyper-activation may have pathophysiological effects ranging from the catalytic
activation of inflammatory and hypertrophic gene expression, depletion of NAD+ pool, and
cell death [104,105]. Inhibition of PARP-1, by using RNAi or a chemical inhibitor (PJ34),
or by removing ROS with an antioxidant, was beneficial in blocking mtROS formation and
DNA damage [77]. Importantly, we found that PARP-1 inhibition also regulated cytokine
gene expression, albeit via a different mechanism. PARP-1 did not directly interact with
p65, and it did not signal RelA (p65) translocation to nuclei in infected cardiac myocytes.
Instead, PARP-1 contributed to PAR modification of RelA (p65)-interacting nuclear
proteins and assembly of an NF-κB transcription complex. These studies pointed to the
possibility that the ROS-PARP-1-RelA signaling pathway contributes to inflammatory
cytokine production in cardiac myocytes infected by T. cruzi (Fig. 3). It remains to be seen
whether mitochondria serve as an activator of an innate defense response by cardiac
myocytes upon T. cruzi exposure or if these events are bystander effects of T. cruzi infection
of the host cells.

Oxidative stress in Chagas disease
In addition to pro-inflammatory cytokines, pro-oxidants also affect cardiac function in
chagasic conditions. Studies in experimental models and infected humans demonstrate that
an infected host sustains oxidative stress due to T. cruzi-elicited, splenic NOX/ROS and the
enhanced mitochondrial release of ROS in the myocardium [95]. Our studies demonstrate
that the host responds to acute T. cruzi infection by up regulating its glutathione antioxidant
defense constituted by GPx, GSR, and GSH. However, in the chronic phase, the pro-oxidant
milieu of the heart was evidenced by a) increased ROS levels, b) decreased activity of
MnSOD, c) insensitivity of glutathione defense to oxidative stress, and d) increased GSSG,
and lipid (MDA) and protein (carbonyl) oxidation products [106]. A similar pro-oxidant
status in seropositive humans has been reported and demonstrated by a) increased GSSG and
MDA contents; b) decreased MnSOD, GPX activity and GSH contents [107,108]; and c)
inhibition of CIII activity [109]. Moreover, the treatment of T. cruzi-infected animals with
an antioxidant tipped the balance in favor of preserving mitochondrial and cardiac function.
T. cruzi-infected mice and rats, treated with an antioxidant, exhibited a significant decline in
the myocardial accumulation of oxidative adducts concurrent with improved mitochondrial
function as evidenced by increased ATP synthesis and decreased ROS production [110].
Importantly, preventing the oxidative injuries during the chronic stage preserved the cardiac
hemodynamic state that otherwise was compromised in chagasic rats [111]. Others have
shown a decline in oxidative stress in human chagasic patients given Vitamin A [112]. All
of these observations support the idea that antioxidant depletion and inefficient scavenging
of ROS, resulting in sustained oxidative stress, are of pathological importance in human
chagasic cardiomyopathy progression (Fig. 3).
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The re-expression of fetal genes (ANP, BNP, αsk-Actin and β-MHC) is a hallmark of
hypertrophic remodeling, and a considerable body of evidence shows the redox regulation of
various signaling cascades and remodeling responses in cardiac diseases of various
etiologies [113]. Current research findings support the involvement of the following
pathways: (i) ERK-1/2 [114] and the small GTPase Ras [115] in response to α-adrenergic
agonist stimulation and angiotensin II [116]; (ii) MAPKs in pressure-overload hypertrophy
[117]; and (iii) NF-κB and apoptosis-signal-regulated kinase 1 (ASK-1) in response to
angiotensin II infusion [118]. ASK-1 is upstream of p38MAPK and JNK in the MAPK-
signaling cascade, and both of these have been shown to be activated by NOX/ROS [119].
The inhibition or scavenging of free radicals has been shown to modulate ERK signaling
and hypertrophic responses in neonatal and adult cardiac myocytes [120,121].

Mice and cultured myoblasts infected with T. cruzi display increased expression of ERK and
cyclin D1 [122,123], as well as of ERK activator protein 1 (AP-1) and NFκB, and a reduced
expression of Cav-1 and Cav-3 [124,125]. The protein caveolin (Cav) is a negative regulator
of both ERK and cyclin D1 [126]. Cav-3 is expressed only in cardiac myocytes, while Cav-1
is expressed in cells other than cardiac myocytes. Cav-1 and Cav-3 null mice and Cav-1/
Cav-3 double null mice display a cardiomyopathic phenotype associated with cardiac
myocyte hypertrophy and interstitial fibrosis [127,128,129]. These observations, along with
the knowledge of a decline in the expression of hypertrophic markers and collagen
deposition in response to antioxidant treatment, suggest that ROS signals pathological
hypertrophic remodeling in chagasic myocardium, likely through ERK/AP-1 signaling. The
role of ROS from a mitochondrial, but not inflammatory, origin in signaling hypertrophy in
chagasic hearts was evidenced by the observation that NOX and MPO, the classical
mediators of inflammatory ROS, were equally depressed upon treatment of infected rodents
with an anti-parasite drug (benznidazole) and ROS scavenger (PBN), while a hypertrophic
phenotype was depressed in PBN-treated rodents only [111]. Inflammatory cytokines (e.g.,
TNF-α, IL-1β, and MCP-1) have been shown to also promote myocardial hypertrophy and
contribute to the development and progression of heart failure [130]. Further studies are
required to identify whether inflammatory cytokines, noted to be enhanced in chagasic
experimental animals and human patients (reviewed in [73,131]), synergistically enhance
the ROS-mediated signaling cascades involved in the activation of hypertrophic responses in
chagasic hearts.

Human Immunity To T. cruzi Infection
The contact between T. cruzi and cells from the human host triggers an immune reaction
that leads to the control of parasite levels. Yet, chronic persistence of parasites, albeit at low
levels, and inflammation are hallmarks of Chagas disease in humans. In this section, we
focus on human responses to T. cruzi (Fig. 4) and briefly present studies in experimental
animals.

Two main strategies have been employed to understand the immunological mechanisms
triggered by the infection of human cells with T. cruzi: (1) in vitro studies of infection of
different human cell types with trypomastigote forms of the parasite, and (2) analysis of the
immune response in acutely infected patients. That acute infection is not always clinically
apparent presents a challenge when performing studies during this phase of the disease.
Despite this difficulty, a few studies were recently performed and the findings seem to
indicate that innate immune cells, such as natural killer cells (NK) and macrophages,
mediate the control of parasite replication in the early stages of human infection. In addition
to the role of these cells, antibody production seems to also play an important part in the
early control of parasitemia.
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Humoral responses
Two types of antibodies are produced during infection: diagnostic antibodies, which form
the basis for the serological diagnosis of Chagas disease, and lytic antibodies, which have
been defined as antibodies that mediate lysis of the infective forms of the parasite [132,133].
Regardless of the type of antibody produced, it is clear that T. cruzi triggers a vigorous B
cell response in acutely infected individuals [134]. Lytic antibodies were first identified in
mice and demonstrated to correlate with protection to infection. Later studies showed that
humans with apparent or in-apparent, acute Chagas disease had similar levels of
complement-fixing antibodies [135]. IgM and IgG anti-galactose antibodies against
glycoylated epitopes of parasite surface proteins has been a useful tool to discriminate
between early, indeterminate and late stages of acute infection in humans due to changing
ratios and specificities of the two types as disease progresses [136]. More recently, an
association between the presence of lytic antibodies and a protective response in chronic
patients was described and strongly indicated that patients in the indeterminate phase
displayed higher levels of lytic antibodies compared with those in patients with chagasic
heart disease. These data pointed to a possibly protective role for these antibodies [137].
Lytic antibodies have also been brought to attention as a possible marker of parasitological
cure, since treated patients that displayed negative hemo-cultures for over ten years did not
have circulating lytic antibodies, despite occasionally testing positive by conventional
serology [138]. While lytic antibody production depends on the presence of active infection,
the loss of such markers does not occur immediately after effective treatment. Thus, they
cannot be used as markers for parasitological cure immediately after treatment, but may be
useful years after treatment when clearance of preformed antibodies has been achieved.

In addition to their possible role in parasite control and maintenance of protective responses
in chagasic patients, antibodies may also contribute to the pathologic alterations observed in
this disease. Several studies have shown that individuals within the chronic phase of Chagas
disease produce antibodies capable of recognizing several host proteins, which may lead to
tissue damage. Among these self-reactive antibodies, the anti-beta adrenergic receptor and
the anti-myosin antibodies have been associated with auto-reactive responses [139,140]. The
mechanisms by which such antibodies are produced have not been completely clarified,
though evidence of T. cruzi-derived cross-reactive molecules exists [141]. A recent study
proposed that cardiac antigens exposed to T. cruzi-induced oxidative stress produce neo-
antigens eliciting self-directed antibody response [142]. Others have shown that anti-
epimastigote antibodies purified from the sera of chronically infected patients are capable of
triggering proliferative responses in peripheral blood mononuclear cells from Chagas
patients [143,144,145]. CD5+ (B1) cells, the main cell type that proliferate upon stimulation
with such anti-epimastigote antibodies [146], have been demonstrated to correlate with
pathology development in experimental models of T. cruzi infection [147]. This finding may
mean that anti-parasite antibodies or antibodies against host-derived neo-antigens could
serve as a constant source of stimulation, providing a mechanism that would perpetuate
cellular activation during the chronic phase when parasitemia is particularly low. The
antigens responsible for differential B cell activation, the mechanisms that lead to the
production of lytic versus conventional antibodies, and the role of antibodies in the cross
talk between different cell types are questions that require further investigation.

Natural killer cells
Recent observations point to NK cells as important in the regulation of parasitemia. For
example, Sathler-Avelar et al. analyzed patients classified as being in the early acute, late
acute and early chronic phases of Chagas disease, based upon the expression of anti-gal IgM
and IgG antibodies [148]. These authors reported that patients in the early stages of the acute
disease displayed an expansion of B cells, but no significant changes in the frequency of NK
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cell population. However, during the late acute stage, patients displayed a selective increase
in a distinct lineage of NK cells (CD16+CD56−), as well as a persistent expansion of B cells,
possibly indicative of a relationship between B cell activation and a subset of NK cells.
Recent studies demonstrated that NKT cells provide help for the development and response
of lipid-specific B cells in the mouse [149]. While the response to lipid antigens remains
poorly understood in Chagas disease, the relationship between lipid metabolism and
inflammatory response in T. cruzi infection has been demonstrated, as discussed above, and
is an area that merits greater investigation.

T cell responses
There are few studies characterizing the T cell responses during acute infection in humans
(Fig. 5). Early investigations suggested that T. cruzi infection leads to inhibition of T cell
responses, since acutely infected patients failed to mount a delayed type response to a series
of non-related antigens [135]. The mechanism of this impaired response was later associated
with a low expression of IL-2 receptor, induced by T. cruzi [150]. A study of the T cell
repertoire in acutely infected patients from Bolivia showed a marked decrease in the
frequency of T cells expressing the variable region 5 (Vβ5) of the T cell receptor (TCR)
[151] perhaps indicating that a vigorous T cell response, followed by clonal exhaustion,
could lead to the decrease in the frequency of Vβ5+ T cells. The impaired T cell response
observed in acutely infected patients could reflect a temporarily suppressed or exhausted
response rather than the lack of a response. Interestingly, Vβ5+ TCR-expressing T cells are
highly expanded in chronic chagasic patients, observed in both freshly isolated PBMCs as
well as after in vitro stimulation with parasite antigens [151,152], possibly indicative of the
pathologic significance of vβ5 containing TCR. Finally, the involvement of T cells in the
acute phase may be signaled by the identification of T cells in the inflammatory infiltrate in
the hearts of acutely infected patients. These patients presented with a myocarditis
associated with the presence of CD4+ and CD8+ T cells, as well as parasite antigens [153],
which may indicate the pathologic significance of T cells in acute myocarditis. Results in
studies in the murine model of T. cruzi infection could point to a protective role for CD8+ T
cells in parasite control during acute infection [52,154]. To our knowledge, there is little
evidence to support this finding in human disease.

In patients progressing to the chronic phase, a robust expansion of T cell response to parasite
and host-derived antigens has been clearly demonstrated [146,155,156,157]. A high
frequency of activated T cells was found in peripheral blood of indeterminate and cardiac
patients [157,158] and in inflammatory infiltrate observed in the hearts of cardiac patients
[159]. Detection of high levels of ICAM-1 expression by endothelial cells in the heart [160]
and of the chemokine receptors CCR5 and CCR7 by infiltrating inflammatory cells in the
myocardium [161,162] may mean that these molecules play a role in the mechanisms of T
cell recruitment to the heart of chagasic patients. The CD8+ granzyme+ T cells were the
main cell type found in infiltrating infiltrate in the myocardium. Based upon these
observations, it is currently believed that CD8+ T cells play an important role in tissue
destruction in Chagas disease [163,164]. However, others have suggested that CD8+ T cells
undergo immunological exhaustion in chronic patients and, thus, their lack of activity could
contribute to the establishment of pathology [165]. In summary, it is difficult to define a
single role for CD8+ T cells in human Chagas disease, and the evidence points to the
involvement of these cells in several distinct processes during disease progression including;
a) playing a role in parasite control during acute infection, b) mediating pathology in the
chronic phase, and c) a possible lack of activity aiding in the establishment of pathology.
The body of work already generated concerning CD8+ T cells in human Chagas disease
leads to speculation that distinct populations of CD8+ T cells may co-exist during the course
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of Chagas disease and play different functions. Future studies would be required to test this
hypothesis and further our understanding of the role of T cells in Chagas disease.

CD4+ T cells and monocytes/macrophages act as key orchestrators of the cellular response
during chronic Chagas disease. These cells are capable of producing inflammatory and anti-
inflammatory cytokines after stimulation with parasite-derived antigens or upon in vitro
infection with trypomastigote forms of T. cruzi. Several studies have demonstrated a
correlation between the production of inflammatory cytokines by CD4+ T cells and
monocytes of patients with the cardiac form of the disease, and the production of IL-10 by
the same cells of clinically asymptomatic patients [166,167]. For example, peripheral blood
mononuclear cells from chronic chagasic patients produce more IFN-γ and less IL-10 than
do those from indeterminate patients [167]. Accordingly, chagasic patients exhibit a Th1
type (IFN-γ) cytokine profile with suppression of Th2 type cytokines (IL-4, IL-10), and
elevated plasma levels of TNF-α in the chronic stage [168,169].

Increased myocardial expression of the adhesion molecules MCP-1, IP-10 and MIG, their
receptors CCR2 and CXCR3, and cytokines IFN-γ, TNF-α, IL-15, IL-6 and IL-4 has been
reported in chagasic patients by several researchers [167,170]. High levels of TNF-α have
been associated with worse cardiac function. Gene expression profiling of myocardial tissue
from chagasic experimental animals and human patients showed that 15% of the genes
known to be selectively up regulated are IFN-γ-inducible [171]. These observations point to
the pathologic significance of IFN-γ and TNF-α in chagasic cardiomyopathy. Notably, the
regulatory FoxP3+IL-10+ T cells are predominantly found in indeterminate patients,
providing evidence for the importance of IL-10 producing cells in the regulation of
pathogenic responses in asymptomatic patients [172].

It has been demonstrated that T cells that do not express the co-receptors CD4 and CD8
(referred to as double negative T cells) have emerged as abundant producers of
immunoregulatory cytokines in chagasic patients [173]. The double-negative T cells appear
at a low frequency in the peripheral blood of chagasic patients, but are highly expanded by
exposure to T. cruzi trypomastigotes and express preferentially inflammatory and anti-
inflammatory cytokines in cardiac and indeterminate patients, respectively. This finding
relates to the possible role of lipid antigens in the T. cruzi – host interaction, given that many
double-negative T cell populations are preferentially activated by lipid antigens. Given the
particular characteristics of these cells to mount fast responses and to tolerate chronic
stimulation, it is possible that double-negative T cells also represent a link between innate
and adaptive responses in Chagas disease [174]. Thus, the regulatory networks established
during the chronic phase of Chagas disease are critical for the clinical evolution of patients
into indeterminate or cardiac disease stage. The indeterminate patients are capable of
producing inflammatory and anti-inflammatory cytokines; the balance between these
molecules in chronic phase may ultimately determine disease pathogenesis [163].

A critical question is what drives the anti-inflammatory balance observed in indeterminate
patients towards an inflammatory environment observed in cardiac patients? (Fig. 5). It is
possible that cardiac patients display a genetic predisposition towards the establishment of
inflammatory responses. Supporting this hypothesis are several studies that have shown
polymorphism of genes encoding cytokines, which affect protein expression levels, is
associated with the indeterminate and cardiac forms of the disease [167]. Of note, a
functional polymorphism in the promoter region of IL-10, which leads to the low expression
of this cytokine, is associated with the cardiac form of Chagas disease [175]. Additionally,
the occurrence of a promoter region polymorphism in the TNF-α gene leading to high
expression of this cytokine is associated with worse prognosis and progression to death for
cardiac chagasic patients who undergo a heart transplant [175]. However, it is important to
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consider that, even patients who display genetic susceptibility profiles to develop cardiac
disease still go through the indeterminate form. Thus, it is possible that external factors will
combine with genetic risk factors to trigger the shift in cytokine balance from the controlled,
regulatory profile observed in indeterminate patients to the exacerbated inflammatory profile
observed in cardiac patients. Epigenetic mechanisms and gene regulation studies may help
clarify this question.

Summary and Future Perspectives
The literature strongly suggests that infected host responds to T. cruzi infection by eliciting
inflammatory cytokines (TNF-α, IFN-γ) and ROS production. A sustained ROS generation
of inflammatory and mitochondrial origin, coupled with an inadequate antioxidant response,
results in the inefficient scavenging of ROS in the heart and leads to long-term oxidative
stress. Thus, while ROS are essential for activation of inflammatory responses and pathogen
control at an acute stage, the persistent oxidative stress denies the control of the
inflammatory state. Further, intracellular T. cruzi or Tc-antigens that persist during late or
chronic infection might interact with the immune and non-immune cells in the myocardium
and subsequently activate signaling cascades (e.g NF-κB pathway) that trigger the
production of inflammatory cytokines (TNF-α, IL-1β), ROS induced-DNA damage, and
hypertrophy in cardiac myocytes. Importantly inflammatory cytokines and ROS create a
complex feedback mechanism that can positively sustain stress responses and, thus, play an
important role in cardiac remodeling and the evolution of chronic Chagas disease. We
propose that a substantial effort should be made in delineating the complex
interrelationships between oxidative stress and inflammatory mediators, wherein the
promise of antioxidant and anti-inflammatory therapies in controlling progressive chagasic
cardiomyopathy can be realized.

As noted, there remains a dearth of data on the immune response in human Chagas disease,
and these data are required to understand the pathogenesis of this important disease. In
addition, these data are needed for vaccine development as well as for the development of
new therapeutic agents. The current therapies are prolonged and have unacceptable side-
effects. We do not know after years of efforts whether these agents actually prevent the
evolution to chronic disease in humans.
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Fig. 1. Heart of a patient with chronic chagasic cardiomyopathy
(A) Shown is 4-chamber enlargement of the heart in a chagasic patient. Apical aneurysm is
marked with an arrow (printed with permission from the Armed Forces Institute of
Pathology). (B) H&E-stained myocardium from a patient with chronic chagasic
cardiomyopathy showing fibrosis and chronic inflammation (arrow). (C) Myocardium of the
same patient sample stained with Masson’s trichrome showing significant fibrosis (blue
color, marked by arrow). H&E (D) and Masson’s trichrome (E) staining of the myocardium
of an uninfected healthy donor are shown for comparison. Arrow-heads in all panels mark
the myocardium.
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Fig. 2. Macrophages in adipose tissue
Immunohistochemical analysis using antibody against ionized calcium-binding adaptor
molecule 1 (Iba1) of adipose tissue obtained from mice. (A) Brown adipose tissue (BAT),
obtained from the interscapluar region and white adipose tissue obtained from the
subcutaneous region (WAT). Note the increase in macrophages in the infected adipose
tissue. (B) Macrophage-specific F4/80 messenger RNA (mRNA) demonstrating the increase
in macrophages in both BAT and WAT, as determined by real-time quantitative polymerase
chain reaction. Con=control; Inf=infected (reproduced from Nagajyothi et al. Journal of
Infectious Disease [45] with permission from the Journal and the Oxford University Press).
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Fig. 3. Oxidative stress in Chagas disease
T. cruzi infection elicits generation of superoxide (O2

•−) through activation of NADPH
oxidase in phagocytic cells. T. cruzi invasion of other cells elicits intracellular Ca+2 flux
affecting mitochondrial membrane potential and results in increased leakage of electrons
from the electron transport chain to molecular oxygen and formation of O2

•− and other
reactive oxygen species (ROS). Two pathways of ROS signaling of the NFκB pathway are
envisioned. One, ROS directly promotes phosphorylation and transport of p65 (RelA) and
p50 to nucleus, assembly of transcription complex, and expression of proinflammatory
cytokines (e.g. IL-1β, TNF-α). Two, ROS-mediated oxidation of DNA may signal
activation of poly (ADP-ribose) polymerase (PARP-1). PARP-1 cleaves NAD+ to form
ADP-ribose and polymerizes the latter onto nuclear acceptor proteins (e.g. histones),
transcription factors, and PARP itself, and contributes to DNA repair and genomic stability.
Binding of poly ADP-ribose (PAR) molecules activates NF-κB transcription complex and
inflammatory cytokine gene expression. The feed-back loop of ROS generation and
cytokine gene expression contribute to persistence of inflammatory responses and oxidative
damage, and progressive evolution of cardiomyopathy in Chagas disease.
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Fig. 4. Progression of human Chagas disease
Following infection with T. cruzi the majority of individuals develop parasitemia associated
with a robust cellular and humoral immune response involving cells of the innate and
adaptive immune response. This stage can present with severe clinical features ranging from
high fever to arrhythmia and death. Upon successful control of the initial infection by the
immune response, parasitemia wanes and symptoms subside, as the individual enters the
chronic phase of Chagas disease. Here the majority of individuals enter the indeterminate
(asymptomatic) clinical form, associated with a balanced inflammatory and regulatory
immune response (low inflammatory index). Approximately 30% of the individuals will
progress to the cardiac clinical form of disease associated with a higher inflammatory state.
Cell types referred in the figure: CD4, CD8 and double negative (DN) T cells, macrophages
(MΦ), Natural killer (NK) cells, CD5 (IgM-secreting) B cells. The increased inflammation
refers to data demonstrating an up regulation of the inflammatory response (cytokines,
chemokines).
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