
Ghrelin signaling in the ventral hippocampus stimulates learned
and motivational aspects of feeding via PI3K-Akt signaling

Scott E. Kanoski, Samantha M. Fortin, Katie M. Ricks, and Harvey J. Grill
Department of Psychology, University of Pennsylvania.

Abstract
Background—The stomach-derived hormone ghrelin drives higher-order feeding processes
related to food reward and food seeking via CNS signaling at its receptor (GHSR1A). The specific
nuclei mediating these effects are only partially understood. Here, we use a rat model to examine
whether ghrelin signaling in the ventral subregion of the hippocampus (VHPC), a brain substrate
of recent interest in energy balance control, affects learned and motivational aspects of feeding
behavior.

Methods—The effects of VHPC ghrelin administration were examined on feeding-relevant
behavioral paradigms, including meal pattern analysis, operant lever pressing for sucrose, and
conditioned stimulus-induced feeding. The intracellular signaling and downstream neuronal
pathways stimulated by VHPC GHSR1A activation were assessed using immunoblot analysis and
behavioral pharmacology.

Results—Ghrelin delivery to the VHPC, but not the dorsal hippocampus, increased food intake
primarily by increasing meal frequency. Intra-VHPC ghrelin delivery also increased willingness to
work for sucrose and increased spontaneous meal initiation in nondeprived rats following the
presentation of a conditioned stimulus that previously signaled meal access when the rats were
food restricted. The food intake enhancing effects of VHPC ghrelin were blocked by co-
administration of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002). Immunoblot analyses
provided complementary support for ghrelin activated PI3K-Akt signaling in the VHPC and
revealed that this activation is blunted with high fat diet consumption. Other immunoblot results
show that VHPC GHSR1A signaling activates downstream dopaminergic activity in the nucleus
accumbens.

Conclusions—These findings illuminate novel neuronal and behavioral mechanisms mediating
ghrelin's modulation of cognitive aspects of feeding control.
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Introduction
Ghrelin is synthesized by gastric endocrine cells and is the only known circulating hormone
that increases feeding (1). CNS ghrelin signaling stimulates food intake by augmenting
appetitive (e.g., food seeking) (2) and rewarding aspects of feeding (3), yet the neurons and
the neural pathways mediating these effects are incompletely understood. Investigation of
the specific nuclei mediating ghrelin's food intake regulatory effects has largely focused on
hypothalamic [arcuate nucleus (ARC), paraventricular nucleus (PVH)] (4-7), caudal
brainstem (nucleus tractus solitarius) (8, 9), and midbrain [ventral tegmental area (VTA)]
(10-13) nuclei. The ghrelin receptor (GHSR1A) is also expressed in other brain regions,
including the hippocampal formation (dentate gyrus and CA1/CA3 regions of the
hippocampus) (14, 15). Circulating ghrelin reaches the hippocampus where it binds to
neurons and promotes dendritic spine synapse formation and long-term potentiation (16).
GHSR1A signaling in the hippocampus is functionally relevant to learning and memory
function as genetic deletion of ghrelin (16) or its receptor (2) impairs hippocampal-
dependent spatial memory paradigms, whereas direct administration of ghrelin to the
hippocampus improves memory consolidation for the location of aversive reinforcement
(17).

It is unknown whether ghrelin signaling in the hippocampus contributes to food intake and
learned appetitive behaviors. The hippocampus is traditionally associated with visuospatial
and declarative memory processes (18); however, several recent findings from humans and
animal models also highlight this brain region in the control of food intake regulation [see
(19-22) for reviews]. Anorectic control of feeding by the ventral subregion of the
hippocampus (VHPC) (anterior hippocampus in primates), which monosynaptically projects
to hypothalamic “feeding centers” (23), is directly supported by two recent reports: 1)
neurotoxic VHPC lesions increase food intake and body weight in rats (24), and 2) VHPC
delivery of the adipose tissue-derived hormone leptin suppresses food intake and learned
behaviors related to food procurement (25). Here, we examine the hypothesis that the VHPC
also contributes to the mediation of orexigenic (food intake stimulatory) aspects of feeding
via ghrelin signaling. Results showed that VHPC GHSR1A stimulation potently increases
feeding. The “higher-order” mechanisms (e.g., learned and motivational aspects of feeding)
mediating these effects were assessed using various behavioral paradigms, including meal
pattern analysis, willingness to work for palatable food [progressive ratio (PR) operant
responding], and the initiation of meals induced by conditioned cues previously associated
with food reward.

We also examine the downstream neuronal pathways and intracellular signaling mechanisms
mediating VHPC ghrelin effects on food intake. VHPC neurons project directly to the
nucleus accumbens (NAcc) of the mesolimbic reward system (MRS) (26, 27). Central (ICV)
administration of ghrelin elevates dopaminergic activity in the NAcc (28). Present
experiments employ protein immunoblot analyses to examine the hypothesis that VHPC
GHSR1A stimulation influences downstream catecholamine signaling in the NAcc. We also
examine the intracellular signaling pathways mediating food intake elevations by VHPC
ghrelin signaling. Recent findings show that ghrelin activates the phosphoinositide 3-kinase
(PI3K)-Akt intracellular signaling in neurons (29, 30). Unknown is whether feeding effects
driven by VHPC GHSR1A stimulation require PI3K-Akt signaling.

Materials and Methods
Animals and Drugs

Adult male Sprague-Dawley rats (Charles River; 300-500g during experimental procedures)
housed individually under a 12h light/dark cycle had ad libitum access to chow (LabDiet;
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5001) and water except where noted. All procedures conformed to and received approval
from The UPenn Animal Care and Use Committee.

Ghrelin (Bachem) was dissolved in artificial cerebrospinal fluid (aCSF); the PI3K inhibitor
LY294002 (EMD Millipore) was dissolved in DMSO. Volumes for injections were 100nl/
hemisphere for parenchymal (via Harvard Apparatus infusion pump) and 1μl for ICV.

Cannula implantation
Under ketamine (90mg/kg), xylazine (2.7mg/kg), and acepromazine (0.64mg/kg) anesthesia
and analgesia (Metacam 2mg/kg), guide cannulae (Plastics One; 26-guage) cemented to the
skull using jewelers screws were implanted at the following coordinates for VHPC
placement: 4.9mm A/P, 4.8mm M/L, 6.1mm D/V; for DHPC placement: 3.5mm A/P,
2.5mm M/L, 2.0mm D/V; for lateral ICV placement: 0.9mm A/P, + 1.6mm, M/L, 2.8mm,
D/V. Injectors for drug administration projected 2mm beyond guide cannula for VHPC and
ICV injections and 1mm for DHPC. Cannula placements for VHCP and DHPC were
assessed postmortem through anatomical verification of the position of 100nl pontamine sky
blue injections in coronal sections. Only animals with ink observed within the targeted
region (VHPC CA regions) were included in data analyses. A representative VHPC injection
site is shown in Figure S1 (see Supplement). The number of animals excluded based on
incorrectly targeted cannula ranged between 0-2 for each experiment. Anatomical positions
of lateral ICV injection sites were evaluated 1wk post-surgery by measurement of the
cytoglucopenia-induced sympatho-adrenal mediated glycemic effect resulting from 210μg
(2μl) of 5-thio-D-glucose (31, 32).

Signaling Analysis
Tissue collection—VHPC (CA regions) and NAcc tissue from ad libitum chow fed rats
was prepared as described (31, 33). Briefly, following pharmacological treatments rats were
sacrificed by decapitation. As previously described (34), brains were rapidly removed and
bilateral tissue punches were taken from the VHPC and NAcc using stainless steel tubing
(inside diameter 2.3mm) from 2mm coronal brain block sections. Tissue was flash frozen in
isopentane and stored at -80°C.

Immunoblotting—Lysates were subjected to SDS-PAGE and transferred to PVDF
membranes for immunoblot analysis as previously described (31, 35). Immunoreactivity was
visualized using enhanced chemiluminescence (BioRad; Chemidoc XRS). Phosphorylated
PI3K p85 (Tyr458) and PI3K p85 antibodies (Cell Signaling) were used to evaluate PI3K
activity normalized to total PI3K. Phosphorylated AKT (Ser471) (Cell Signaling) and Anti-
Akt (Pierce Antibodies) antibodies were used to evaluate Akt activity normalized to total
Akt. Phosphorylated p44/42 MAPK antibody (Thr202/Tyr204) was used to assess MAPK
signaling normalized to total p44/42 MAPK (Cell Signaling). Phosphorylated tyrosine
hydroxylase (pTH) antibodies (Cell Signaling) were used to evaluate TH activity normalized
to total TH. Blots were quantified using densitometry analysis in NIH software (Image J).

Procedures
Experiment 1: Food intake following VHPC and DHPC ghrelin—Rats with either
VHPC (n=12) or DHPC (n=12) cannulae were given bilateral injections of 0, 7.5, 75, or
750pmol ghrelin (total doses: 15, 150, 1500pmol) immediately before light onset.
Treatments were separated by 2-3 days following a counterbalanced within-subjects design.
Chow intake was recorded at 1h, 3h, and 5h (spillage accounted for).

Ghrelin dose selection for Experiments 1 and 2 was based on the literature. Previous studies
show that parenchymal ghrelin doses of approximately 300pmol appear to be required for
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intake effects when delivered to various hypothalamic nuclei (lateral hypothalamus, anterior
hypothalamus) (4). Following administration of ghrelin to the NAcc and VTA, 100pmol
(36) and 150pmol (12) appear to be required for increasing intake, respectively. Lower doses
of ghrelin are effective for increasing feeding when delivered to the NTS (8) or the ARC (4)
(10 or 30pmol, respectively).

Experiment 2: VHPC ghrelin effects on meal pattern parameters—VHPC
injections (0, 75 or 150pmol ghrelin) were given to rats (n=13) immediately before light
onset using a within-subjects design. Cumulative intake was measured with an automated
feeding system (DiaLog Instruments). Individually housed rats had access to a food cup on a
load cell circuit that communicated with an interface and computer with customized
software (LabVIEW, National Instruments). The weight of the food cup was measured every
10sec, enabling assessment of meal parameters. Meals were defined as an episode of feeding
in which at least 0.25g was ingested, with meal termination criterion as the beginning of a
pause in ingestion of at least 10min (37). Data were objectively calculated using a custom
Microsoft Excel macro.

Experiment 3: Operant responding (PR schedule) for sucrose following VHPC
ghrelin—Rats (n=6) were given operant lever press training for sucrose reinforcement as
previously described (38). Rats were given daily chow rations to maintain ~85% of an ad
libitum body weight established before training. Training was carried out over six days with
a 1hr session each day in conditioning boxes (Med Associates; MedPC IV software). During
the first 2 days a fixed ratio (FR1) autoshaping procedure was employed (each lever press
earned a 45mg sucrose pellet; a free sucrose pellet dispensed every 600sec that elapsed
without reinforcement). The animals then received 2 days of FR1 schedule with no
autoshaping component and then 2 days of FR3 training. For all procedures the right lever
was the “active” lever; a left “inactive” lever served as a control for nonconditioned
elevations in responding.

The rats were given two tests (within-subjects design, separated by 2 days) using a PR
reinforcement schedule. VHPC injections (vehicle or 150pmol ghrelin) were given 1hr
before each test session. The response requirement of the PR schedule increased
progressively as previously described (38). The breakpoint for each animal was defined as
the final completed requirement that preceded a 20min period without earning a reinforcer.

Experiment 4: Stimulus-induced feeding by VHPC ghrelin—Previous studies show
that discrete stimuli (lights, tones) previously paired with meal access when rats were food
restricted would later stimulate increased eating when the rats were food-sated (39-43). We
hypothesized that VHPC ghrelin signaling would increase this type of “cue-potentiated
feeding”. We developed a paradigm [modified from (44)] in which discrete cues were paired
with meal access in food-deprived rats (Stimulus+); the presentation of another discrete cue
had no consequence (Stimulus-). The paradigm was designed to be below threshold for cue-
potentiated feeding at baseline (i.e., weak effect of cues on feeding in the absence of
pharmacological stimulation).

Rats (n=13) were maintained on a high fat (HF) (60% kcal fat; Research Diets D12492) for
5d before training. All training and testing procedures took place during the dark cycle. 10
training days were given where they received 5 meals (HF diet) distributed across the first
8hr of the dark cycle. The total kcal of the five meals was equal to 70% of an ad libitum
24hr intake established before training for each rat. On half of the training days the rats
received 5 presentations of a 2.5-minute auditory/visual stimulus compound (Stimulus+)
followed immediately by meal access. For the other half, a different auditory/visual stimulus
compound (Stimulus-) was presented 5 times and the 5 meals were delivered at random
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times. The two stimuli were 1) a 2.5-min 1500hz tone combined with a dim light coming
from one side of the room, and 2) a 2.5-min white noise combined with a dim light coming
from the other side of the room. The order of training days and stimulus assignments were
counterbalanced.

After training the rats were returned to ad libitum HF diet feeding. Cue-potentiated feeding
was determined as a meal initiated within 3min of stimulus onset (within 30sec of stimulus
offset). The rats were housed in the automated feeding apparatuses (described above) so that
meal initiation could be determined with temporal specificity in relation to stimuli
presentation. To confirm that this paradigm was subthreshold for cue-potentiated feeding at
baseline, stimulus tests with 5 presentations of each stimulus were conducted on days 5, 6,
and 7 of ad libitum feeding. These tests revealed no difference between the number of meals
that followed Stimulus+ vs. Stimulus– (data not shown). A pharmacological test was then
given on days 9 and 15 of ad libitum feeding where the rats were given VHPC ghrelin
(150pmol) or vehicle injections (order counterbalanced) immediately before dark onset. The
rats were then given 5 presentations of each stimulus across the subsequent 6h.

Experiment 5
Experiment 5a: Ghrelin-induced VHPC PI3K-Akt signaling: Rats (n=26) were
maintained on chow or a “Western diet” (41% kcal from fat; Research Diets D12079B) for
four weeks. The rats from each diet group were subdivided (matched for body weight within
each diet group) to receive lateral ICV ghrelin [3nmol; dose selected to be effective for
robustly increasing intake following ICV delivery (45)] or vehicle injections 60min before
VHPC tissue harvest. Immunoblot analysis (PI3K, Akt and p44/42 MAPK) was carried out
as described above.

Experiment 5b: Requirement of PI3K-Akt signaling for VHPC ghrelin-stimulated
feeding: Using a four-treatment within-subjects design, rats (n=13) received 2 sets of
bilateral VHPC injections on each treatment day (injections ~30min apart; treatments
separated by 2-3 days). The first injection was the PI3K inhibitor LY294002 (0.2nmol) or its
vehicle, whereas the second injection (immediately before light onset) was ghrelin
(150pmol) or its vehicle.

Experiment 6: VHPC ghrelin effects on NAcc catecholamine signaling—Rats
(n=18) were divided into four groups (4-6/group) to receive VHPC vehicle or ghrelin
(150pmol) injections either 120min or 60min before tissue harvest. These time points where
chosen based on previous work demonstrating increased NAcc DA signaling following
ghrelin administered to the VTA (46). NAcc tissue harvest and immunoblot analysis (pTH/
TH) were carried out as described above. Previous research has utilized immunoblot pTH
analysis to assess dopaminergic NAcc signaling (47, 48).

Statistical Analysis
All statistical analyses employed repeated measures analysis of variance (ANOVA), except
for Experiments 5a and 6 (one-way ANOVA). Newman Keuls posthoc tests were used to
compare individual treatments for all experiments that involved more than two treatments.
Alphalevel for significance was 0.05. Statistical analyses were conducted using Statsoft
software (Statistica V10).
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Results
Experiment 1

Ghrelin delivered to the VHPC significantly increased food intake at 3hr and 5hr compared
to vehicle injection for the two higher doses (Figure 1a) (ps vs. vehicle <0.05). DHPC
ghrelin injections had no effect on food intake for all doses examined (Figure 1b).

Experiment 2
VHPC ghrelin injections increased cumulative food intake for both the 75pmol and the
150pmol doses (Figure 2A). This increased feeding appeared to be based on increased meal
frequency for both doses (Figure 2B) (ps<0.05 vs. vehicle), whereas only the 150pmol dose
significantly increased meal size relative to vehicle treatment (Figure 2C).

Experiment 3
As shown in Figure 3, VHPC ghrelin increased breakpoint responding for sucrose during the
PR test relative to vehicle treatment (p<0.05). This effect was based on elevated active lever
pressing, whereas pressing of the inactive lever was not influenced by VHPC ghrelin.

Experiment 4
Consistent with the results of the cue-potentiated feeding tests that were conducted before
the VHPC ghrelin test, there was no baseline (following vehicle administration) cue-
potentiated feeding effect. However, relative to vehicle treatment, VHPC ghrelin (150pmol)
significantly elevated the number of meals that followed presentation of the Stimulus+, but
not following the Stimulus– (p<0.05 for ghrelin Stimulus+ vs. all 3 other treatments).
Analysis of the average size of each stimulus-induced meal revealed no significant
differences with regards to stimulus or drug (data not shown).

Experiment 5
Experiment 5a—Comparison of the chow vehicle-treated group to the Western diet
vehicle-treated group revealed no significant differences for PI3K, Akt, or p44/42 MAPK
activation. Thus, data are expressed as % of the vehicle-treated groups separately for each
diet group to better illustrate ghrelin-induced increased signaling within each diet group.
ICV ghrelin (3nmol) significantly increased VHPC PI3K (Figure 5A) and Akt (Figure 5B)
in chow-fed but not for Western diet-fed rats. p44/42 MAPK signaling in the VHPC was not
elevated by ghrelin (Figure 5C). Chow-fed vehicle- and ghrelin-treated rats used for
immunoblot analysis weighed 498.4 (+/-30.6) and 490.4 (+/-30.0) grams respectively.
Western diet-fed vehicle-treated and ghrelin-treated rats weighed 592.9 (+/-27.1) and 585.9
(+/-8.6) grams respectively.

Experiment 5b—Ghrelin-stimulated food intake at 3hr and 5hr after injections was
blocked with pretreatment of the PI3K inhibitor LY294002 (Figure 5D). At 3hr, DMSO/
ghrelin treatment increased food intake relative to DMSO/aCSF treatment (p<0.05), whereas
LY294002/ghrelin treatment was not significantly different from any other treatment. At
5hr, DMSO/ghrelin treatment produced significantly greater food intake compared to all
other treatments (ps<0.05); a significant drug interaction was also obtained at 5hr (p<0.05).

Experiment 6
pTH levels (relative to total TH) were not significantly different between the two vehicle
groups (60 and 120min); thus, the vehicle groups were combined for subsequent analyses
and for Figure 6. Ghrelin (150pmol) injected in the VHPC significantly increased pTH in the
NAcc at 60min after injections (p<0.05) (Figure 6).
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Discussion
Research examining energy balance control by CNS ghrelin signaling has focused primarily
on brain regions traditionally associated with homeostatic aspects of food intake (e.g.,
hypothalamus, caudal brainstem) and more recently on MRS nuclei such as the VTA (12,
13, 36) and the NAcc (13, 36). Here, we establish the VHPC, a brain region linked with
emotional and motivational memory processes, as a novel site regulating learned and
rewarding orexigenic aspects of feeding by ghrelin signaling. Ghrelin administration to the
VHPC potently stimulated food intake in rats, the latency of which was similar to previous
studies administering ghrelin ICV (49, 50). On the other hand, ghrelin administration to the
DHPC, an area associated with the control of learning/memory function related to
visuospatial processing (51, 52), was without effect on feeding. These findings complement
our previous work showing that food intake and learned aspects of feeding are suppressed
by VHPC leptin signaling (25).

The increased feeding response by VHPC GHSR1A stimulation was largely mediated by
increased meal frequency, whereas higher doses increased both meal frequency and size.
The meal size effect suggests that ghrelin signaling in the VHPC functions, in part, to reduce
the effectiveness of satiation signals that arise during a meal, a notion consistent with recent
data showing that the hippocampus is activated by gastric distention (53) and intragastric
nutrients (54). We hypothesized that the increased meal frequency effect was based on
VHPC ghrelin signaling augmenting spontaneous feeding episodes that arise in response to
the presence of conditioned food-related environmental cues. To examine this possibility,
we developed a “cue potentiated feeding” paradigm in which food-restricted rats were
trained such that a discrete stimulus signaled meal access (Stimulus+) whereas another
stimulus did not (Stimulus-). Other researchers have developed similar paradigms in which
food-related cues stimulate excessive food intake in food-sated rats that would not otherwise
eat (39, 41, 43, 44). Results showed that VHPC ghrelin increased meal initiation that
followed the presentation of the Stimulus+ but not the Stimulus-. These findings provide
novel information about the neuroendocrine systems mediating environmental cue-driven
feeding. The relevance of these findings to human obesity is underscored by a recent report
estimating that a substantial portion of increased per capita caloric intake since the 1970's is
based on increased number of eating occasions (meals, snacks) (55), an effect that is
potentially influenced by the increased pervasiveness of environmental cues associated with
energy dense, rewarding food (56). That GHSR1A activation in the VHPC increased
stimulus-induced meal initiation in ad libitum-fed animals suggests a nonhomeostatic
function (food intake driven by factors other than metabolic need) for this system. Future
work could examine whether this type of cue-driven feeding effect is unique to the VHPC or
also involves GHSR signaling in other brain regions thought to control homeostatic (e.g.,
hypothalamus, brainstem) and nonhomeostatic (VTA) aspects of feeding.

GHSR1A signaling modulates rewarding aspects of feeding in paradigms that assess
motivation to obtain palatable food, such as conditioned place preference (3) and PR lever
pressing (36, 57). These motivational/reward augmenting effects likely involve altered
dopaminergic signaling in the MRS structures as previous findings show that intra VTA
ghrelin increases operant responding for sucrose (36) and central or peripheral ghrelin
stimulates VTA/NAcc DA signaling [assessed from electrophysiology (12) and
microdialysis (12, 28)]. Present results expand knowledge of the reward-associated neural
circuitry mediating ghrelin's effects on feeding by showing that, 1) VHPC GHSR1A
signaling elevates willingness to work for sucrose in a PR operant lever pressing paradigm,
and 2) VHPC ghrelin delivery elevates pTH expression in the NAcc 60min after
administration, likely indicating enhanced DA release from local terminals arising from the
VTA. These findings are consistent with previous results showing that the VHPC projects
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directly to the NAcc shell (26, 27), and glutamatergic signaling in the VHPC has an acute
stimulatory effect on NAcc DA release (58). The extent that VHPC ghrelin-mediated effects
on NAcc DA signaling involve monosynaptic vs. polysynaptic communication is unknown.
Further, given that CNS ghrelin signaling modulates the reinforcing properties of other
primary reinforcers [e.g., alcohol (59), cocaine (60)], further work is needed to assess
whether VHPC ghrelin signaling increases motivation for drugs of abuse. Indeed, several
findings link VHPC neuronal activity with behavioral paradigms related to cocaine reward
(61, 62).

Our results show that feeding effects triggered by VHPC GHSR1A signaling involve
intracellular PI3K-Akt signaling, a phenomenon demonstrated by others for hypothalamic
leptin receptor signaling (63, 64). The GHSR1A is a rhodopsin-like G-protein coupled
receptor that triggers intracellular second messengers through the activation of Gq proteins
(65). Previous studies have shown that AMP-activated protein kinase (AMPK) is activated
in the hypothalamus by ghrelin (66, 67). Ghrelin also initiates changes in hypothalamic
mitochondrial respiration through uncoupling protein 2 (UCP2) and AMPK-dependent
mechanisms (68) and elevates cAMP response-element binding protein (CREB) activity
through a protein kinase A (PKA)-dependent mechanism (69). Our focus in the present
report was on PI3K-Akt signaling as a recent report demonstrated that ghrelin activates Akt
in the dorsal dentate gyrus of the hippocampal formation (DDG) and that enhanced water
maze learning by ghrelin was blocked by DDG PI3K inhibition (29). Here, we extend these
findings in several ways. Results show that the PI3K-Akt pathway is activated in the VHPC,
that this activation is required for the food intake enhancing effects of VHPC-directed
ghrelin, and that activation of this pathway is compromised by intake of “Western” diet.
Others have demonstrated a similar type of “CNS ghrelin resistance” at the neuronal level
[reduced activation of hypothalamic NPY neurons in diet-induced obese (DIO) mice (70)]
and at the behavioral level [ghrelin augmented operant PR responding in normal weight but
not DIO mice (71)]. Our findings show that diet-induced CNS ghrelin resistance can also
occur at the intracellular signaling level. Further study is needed to assess whether other
intracellular signaling pathways associated with GHSR1A activity are activated by ghrelin
in the VHPC (e.g., AMPK, PKA-CREB) and whether DIO blunts the feeding effects of
VHPC GHSR1A signaling, a phenomenon demonstrated for leptin signaling in the
hypothalamus (72, 73). Data from Experiment 4 suggest that ghrelin's stimulatory effect on
cue-potentiated feeding is preserved under certain conditions of HF diet maintenance.
However, these rats were maintained on a HF diet for only ~3 weeks (vs. 4 weeks for
Experiment 5a) and were food restricted for 10 of these days. A more systematic evaluation
would be necessary before concluding whether the effects of HF diet intake on GHSR1A
intracellular PI3K-Akt signaling are correlated with VHPC GHSR “resistance” at the
behavioral level.

To our knowledge this is the first report to examine behavioral effects of VHPC GHSR1A
activation; however, other researchers have assessed the effects of DHPC ghrelin delivery
on various behavioral paradigms. DHPC ghrelin signaling has been shown to improve
spatial memory performance in the Morris water maze paradigm (29). Carlini and colleagues
reported that DHPC-directed ghrelin improves memory consolidation for aversive
reinforcement in a step-down inhibitory avoidance paradigm and that this effect is blocked
by co-administration of a serotonin reuptake inhibitor (74-76). These investigators also
demonstrated that 1.5 and 3nmol ghrelin delivered to the DHPC significantly increased food
intake vs. vehicle treatment (77). This contrasts with our results, as DHPC ghrelin delivery
(at doses up to 1.5nmol) had no effect on feeding. The reasons for this discrepancy are not
clear but could potentially be based on differences in rat strain (Sprague-Dawley vs. Wistar)
or injection volume. Our volume per hemisphere (100nl) was 5-fold lower than the volume
these investigators employed. Regardless, our results make a strong case that feeding effects

Kanoski et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by GHSR1A stimulation in the hippocampus are far more potent with VHPC compared to
DHPC delivery.

Overall these findings establish the VHPC as a novel site of importance in the stimulation of
food intake and other appetitive/rewarding behaviors by CNS ghrelin signaling. Taken
together with our previous work (25), present results support the perspective that the VHPC
modulates both anorectic and orexigenic processes related to the higher-order control of
food intake through detection and processing of circulating energy status-relevant
neuroendocrine signals. Results show that VHPC ghrelin signaling stimulates feeding by
increasing the ability of environmental food-related cues to stimulate meal initiation and by
increasing motivation to work for palatable food. Other results inform about the intracellular
signaling and the downstream neuronal pathways mediating these effects. These findings are
relevant to human obesity given the abundance of palatable yet nutritionally deplete foods,
as well as the abundance environmental cues that are associated with these foods in modern
Western cultures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cumulative chow intake following VHPC (Fig. 1A) or DHPC (Fig. 1B) administration of
ghrelin. VHPC, but not DHPC ghrelin delivery stimulated food intake relative to vehicle
treatment. Data are mean ± SEM, * = p < 0.05 vs. vehicle.
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Figure 2.
Cumulative chow intake (Fig. 2A), average meal frequency (Fig. 2B), and average meal size
(Fig. 2C) following VHPC ghrelin delivery. Both 75 and 150pmol ghrelin increased
cumulative food intake and meal frequency; 150pmol ghrelin also increased average 6hr
meal size relative to vehicle treatment. Data are mean ± SEM, * = p < 0.05 vs. vehicle.
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Figure 3.
VHPC ghrelin increased breakpoint operant responding for sucrose in a progressive ratio
reinforcement test. No ghrelin treatment-based differences in lever pressing were observed
for the inactive lever. Data are mean ± SEM, * = p < 0.05 vs. vehicle, Ŧ = p < 0.07 vs.
vehicle.
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Figure 4.
Ghrelin delivered to the VHPC in ad libitum rats increased spontaneous meals initiated by a
discrete cue that was previously associated with meal access when the rats were food
deprived (Stimulus+), whereas this effect was not observed for a cue that was never paired
with meal access (Stimulus-). Data are mean ± SEM, * = p < 0.05 vs. all other treatments.
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Figure 5.
Ghrelin (delivered lateral ICV) activated PI3K (Fig. 5A) and Akt (Fig. 5B) signaling in the
VHPC in chow-fed, but not Western diet-fed rats, whereas p44/42 MAPK signaling was not
elevated by ghrelin (Fig. 5C). The food intake stimulatory effects of VHPC ghrelin were
blunted with co-administration of the PI3K inhibitor LY294002 at 3hr and 6hr after
injections (Fig. 5D). Data are mean ± SEM, * = p < 0.05 vs. vehicle.
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Figure 6.
VHPC ghrelin administration increased phosphorylated TH in the NAcc at 60min after
injections. Data are mean ± SEM, * = p < 0.05 vs. vehicle.
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