Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Aug;77(8):4449–4453. doi: 10.1073/pnas.77.8.4449

Photoaffinity label for the beta-adrenergic receptor: synthesis and effects on isoproterenol-stimulated adenylate cyclase.

S M Wrenn Jr, C J Homcy
PMCID: PMC349861  PMID: 6254025

Abstract

An azide derivative of the beta-adrenergic antagonist acebutolol has been synthesized and its effect examined on the isoproterenol-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); EC 4.6.1.1] activity of rat reticulocytes. It behaved as an effective competitive antagonist (Kd = 2 X 10(-7) M) prior to photolysis. However, when the reticulocyte preparation pretreated with acebutolol azide was photolyzed, a noncompetitive inhibition of isoproterenol-stimulated adenylate cyclase was obtained. Photolysis of the azide derivative in buffer alone did not convert it to a product of higher affnity. Labeling of the beta-adrenergic receptor appeared to be irreversible; multiple washings could not reverse the inhibition produced during photolysis with the label whereas washing would completely reverse the antagonism produced by the same concentration of label prior to photolysis. The effect appears to be specific for the beta-adrenergic receptor because the inhibition could be blocked stereoselectively by propranolol and there was no inhibition of fluoride- or GMP-P(NH)P-stimulated adenylate cyclase. furthermore, no effect was observed on the glucagon-mediated stimulation of adenylate cyclase of liver membranes, whereas the catecholamine response in the same membranes was inhibited.

Full text

PDF
4449

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas D., Levitzki A. An irreversible blocker for the beta-adrenergic receptor. Biochem Biophys Res Commun. 1976 Mar 22;69(2):397–403. doi: 10.1016/0006-291x(76)90535-0. [DOI] [PubMed] [Google Scholar]
  2. Atlas D., Steer M. L., Levitzki A. Affinity label for beta-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1921–1925. doi: 10.1073/pnas.73.6.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilezikian J. P., Spiegel A. M., Brown E. M., Aurbach G. D. Identification and persistence of beta adrenergic receptors during maturation of the rat reticulocyte. Mol Pharmacol. 1977 Sep;13(5):775–785. [PubMed] [Google Scholar]
  4. Bockaert J., Hunzicker-Dunn M., Birnbaumer L. Hormone-stimulated desensitization of hormone-dependent adenylyl cyclase. Dual action of luteninizing hormone on pig graafian follicle membranes. J Biol Chem. 1976 May 10;251(9):2653–2663. [PubMed] [Google Scholar]
  5. Caron M. G., Srinivasan Y., Pitha J., Kociolek K., Lefkowitz R. J. Affinity chromatography of the beta-adrenergic receptor. J Biol Chem. 1979 Apr 25;254(8):2923–2927. [PubMed] [Google Scholar]
  6. Darfler F. J., Marinetti G. V. Synthesis of a photoaffinity probe for the beta-adrenergic receptor. Biochem Biophys Res Commun. 1977 Nov 7;79(1):1–7. doi: 10.1016/0006-291x(77)90052-3. [DOI] [PubMed] [Google Scholar]
  7. Erez M., Weinstock M., Cohen S., Shtacher G. Potential probe for isolation of the beta-adrenoceptor, chloropractolol. Nature. 1975 Jun 19;255(5510):635–636. doi: 10.1038/255635a0. [DOI] [PubMed] [Google Scholar]
  8. Galardy R. E., Craig L. C., Jamieson J. D., Printz M. P. Photoaffinity labeling of peptide hormone binding sites. J Biol Chem. 1974 Jun 10;249(11):3510–3518. [PubMed] [Google Scholar]
  9. Kenakin T. P., Black J. W. Can chloropractolol alkylate beta adrenoceptors? Nature. 1977 Jan 27;265(5592):365–366. doi: 10.1038/265365a0. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Ruoho A. E., Kiefer H., Roeder P. E., Singer S. J. The mechanism of photoaffinity labeling. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2567–2571. doi: 10.1073/pnas.70.9.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  13. Schmelck P. H., Geynet P., Le Fur G., Hardy J. C., Uzan A., Hanoune J. FM24: a long lasting blocker of rat liver beta-adrenoreceptors. Biochem Pharmacol. 1979 Jul 1;28(13):2005–2010. doi: 10.1016/0006-2952(79)90216-8. [DOI] [PubMed] [Google Scholar]
  14. Staros J. V., Bayley H., Standring D. N., Knowles J. R. Reduction of aryl azides by thiols: implications for the use of photoaffinity reagents. Biochem Biophys Res Commun. 1978 Feb 14;80(3):568–572. doi: 10.1016/0006-291x(78)91606-6. [DOI] [PubMed] [Google Scholar]
  15. Takayanagi I., Yoshioka M., Takagu K., Tamura Z. Photoaffinity labeling of the beta-adrenergic receptors and receptor reserve for isoprenaline. Eur J Pharmacol. 1976 Jan;35(1):121–125. doi: 10.1016/0014-2999(76)90306-x. [DOI] [PubMed] [Google Scholar]
  16. Vauquelin G., Geynet P., Hanoune J., Strosberg A. D. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3710–3714. doi: 10.1073/pnas.74.9.3710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]
  18. Wrenn S., Haber E. An antibody specific for the propranolol binding site of cardiac muscle. J Biol Chem. 1979 Jul 25;254(14):6577–6582. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES