Skip to main content
. 2012 Nov 15;3:431. doi: 10.3389/fphys.2012.00431

Figure 6.

Figure 6

Transport mechanism proposed for transbranchial NaCl absorption across the gills of hyperosmoregulators characterized by a low conductance (“tight”) epithelium (after Onken and Riestenpatt, 1998). Active, Cl independent Na+ absorption proceeds via epithelial, amiloride-sensitive Na+ channels (ENAC) in the apical membrane and the Na+/K+-ATPase in the basolateral membrane. Active, Na+ independent Cl absorption proceeds via apical Cl/HCO3 exchangers and basolateral Cl channels. Cytoplasmic carbonic anhydrase (CA) supports both Na+ and Cl transport. Basolateral K+ channels generate a negative electrical potential in the cells. An apical V-type H+-pump increases intracellular HCO3, supporting transapical Cl absorption. Moreover, the electrogenic nature of the H+-pump hyperpolarizes the intracellular negativity, supporting the entry of Na+ ions across the apical membrane and the exit of Cl ions across the basolateral membrane.