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Abstract
Cerebral perfusion X-ray computed tomography (PCT) imaging, which detects and characterizes
the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic
cerebrovascular diseases, has been developed extensively over the past decades. However, due to
its sequential scan protocol, the associated radiation dose has raised significant concerns to
patients. Therefore, in this study we developed an iterative image reconstruction algorithm based
on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image
with lower milliampere seconds (mAs). To preserve the edges of the reconstructed image, an
edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For
simplicity, the present algorithm was termed as “MAP-ndiNLM”. Evaluations with the digital
phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the
MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber
algorithms with better image noise reduction, low-contrast object detection and resolution
preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic
enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method.

1. Introduction
Cerebral perfusion X-ray computed tomography (PCT) imaging has been advocated to
detect and characterize the ischemic penumbra, and assess blood-brain barrier permeability
with acute stroke or chronic cerebrovascular diseases (Koenig et al 1998, Klotz et al 1999,
Hopyan et al 2010). In cerebral studies, perfusion hemodynamic parameters can be
calculated from the time sequence of enhanced CT images to provide important guidance to
clinicians (Hoeffner et al 2004, Wintermark et al 2009). Currently, the standard scan
protocol for PCT examination is performed as follows: First, pre-contrast unenhanced CT
scan of the whole brain is performed. Then, after approximately several seconds following
an intravenous injection of iodinated contrast agent, continuous enhanced scan of the
selected CT slices of concern in a cine mode is performed for about 1 min. The PCT scan
protocol shows that the associated excessive radiation exposure is more serious than that in
the routine CT scan as reported in the literatures (Hirata et al 2005, Mnyusiwalla et al 2009)
with a mean effective dose of 4.9±0.0 mSv and a mean dose length product (DLP) of
2663.6±5.0 mGy.cm. Therefore, a great concern has been raised pointing that repeated scans
during PCT examination delivers the excessive radiation to patients (Frush et al 2003,
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Imanishi et al 2005, Wintermark and Lev 2010). Minimizing the radiation dose in PCT is an
interesting topic of ongoing research activities.

Up to now, many considerable efforts to reduce the radiation dose in PCT have been
performed and several related techniques have been developed (Fleischmann et al 2000,
Wintermark et al 2000, Wiesmann et al 2008, Yu et al 2009, Badea et al 2011, Jia et al
2010). Among these approaches, optimizing PCT scan protocol may be a basic and
important strategy. For example, the tube voltage is usually set at 120 kVp during the pre-
contrast unenhanced scan, and is changed to 80 kVp during the dynamic enhanced scan.
Related approaches can significantly reduce the radiation dose without compromising
quality. Another radiation dose reduction strategy is to decrease the image acquisition
frequency in the enhanced scans. Meanwhile, related studies demonstrate significantly
different conclusions (Wintermark et al 2004, Kamena et al 2007, Wiesmann et al 2008).
The feasibility of reducing radiation dose by decreasing the image acquisition frequency still
needs further investigation. Lower milliampere-seconds (mAs) in data acquisition may be a
simple and cost-effective approach for performing low-dose PCT scan. Unfortunately, the
associated data noise will unavoidably increase which usually leads to reduced image
quality.

In PCT imaging, similar information among the different PCT time-frames has great
similarities. A previously scanned high-quality diagnostic CT image may be used as a priori
information. For example, Yu et al (2009) proposed a previous scan-regularized
reconstruction strategy (PSRR) wherein the previous scans of the patient were used to
recover the low-dose images with encouraging results. Given that the PSRR needs accurate
image registration and nonlinear filtering techniques, any residual error in the image
registration due to inter-fractional variation in treatment positions and deformation of the
tissues/organs may cause significant error in the reconstructed images. To relieve the
registration requirements, Ma et al (2011a) presented a low-dose CT image filtering method
(named “ndiNLM” method) to utilize the previous normal-dose CT scan of the patient as a
priori information to restore the signal from the current low-dose CT images. The ndiNLM
method does not need accurate image registration and can effectively improve the image
quality of the low-dose CT scan. In this paper, an iterative image reconstruction algorithm
with the maximum a posterior (MAP) principle is developed, by incorporating a pre-contrast
scan induced edge-preserving prior, to yield a clinically acceptable cerebral PCT image with
lower mAs. For simplicity, the present algorithm is termed “MAP-ndiNLM”. The novelty of
the MAP-ndiNLM method is two-fold. First, because the ndiNLM filter utilizes the
redundancy of information in the previous normal-dose scan and further exploits ways to
optimize the nonlocal weights for improving current low-dose image quality, the associative
ndiNLM prior in the MAP-ndiNLM method can explore the extensively similar information
in the pre-contrast normal-dose image by using optimized ndiNLM weights. Second, the
MAP-ndiNLM method can relax the need for accurate registration via its patch-based search
mechanism. Qualitative and quantitative evaluations were carried out on both the digital
phantom and scans of clinical patients in terms of accuracy and resolution properties.

The remaining of the paper is organized as follows. Section 2 describes the CT imaging
model, the present ndiNLM prior and the associated MAP-ndiNLM image reconstruction
algorithm. The experiments setup and evaluation metrics are also presented in this section.
In sections 3, the evaluation results are presented. Finally, the discussion and conclusion are
given in section 4.

Ma et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2012 December 21.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



2. Methods and materials
2.1. CT imaging model

Without loss of generality, under the assumption of mono-energetic beam, the X-ray CT
measurement can be approximately expressed as a discrete linear system:

(1)

where y represents the obtained sinogram data (projections after system calibration and
logarithm transformation), i.e., y = (y1, y2, ⋯ yM)T, μ is the vector of attenuation
coefficients to be estimated, i.e., μ = (μ1, μ2, ⋯ μN)T, where ‘T’ denotes the matrix
transpose. The operator H represents the system or projection matrix with the size of M × N.
The element of Hij denotes the length of intersection of projection ray i with voxel j. In our
implementation, the associated element was pre-calculated by a fast ray-tracing technique
(Han et al 1999) stored as a file. The goal for CT image reconstruction is to estimate the
attenuation coefficients μ from the measurement y according to the measurement model (1).

In solving μ, to invert (1) directly is difficult because the system matrix dimension is huge
in current CT system and degraded seriously for image reconstruction from the measured
noisy sinogram data. To address this problem, several approaches are proposed (Wang et al
2006, Han et al 2011). In this paper, we are using the penalized weighted least-squares
approach based on the MAP estimation criterion (Li et al 2004, Wang et al 2006). The
associated mathematical formula for MAP CT image reconstruction with a priori term R(μ)
can be expressed as follows:

(2)

where Σ is a diagonal matrix with the i th element of  which is the variance of sinogram
data y. β is a hype-parameter to balance the fidelity term (i.e., first term of equation (2)) and

priori term. In the implementation, the variance of  was determined by the following
mean-variance relationship proposed by Ma et al (2012a, 2012b):

(3)

where I0 denotes the incident X-ray intensity, p̄i is the mean of the sinogram data at bin i and

 is the background electronic noise variance.

2.2. ndiNLM prior
The priori term R(μ) in equation (2) plays an important role for successful image
reconstruction. In this paper, according to the previous studies for non-local means
regularization in both image deconvolution (Mignotte 2008) and PET image reconstruction
(Ma et al 2010), we propose a normal-dose scan induced edge-preserving prior (named
“ndiNLM prior”), which is expressed as:

(4)

where the ϕp denotes the potential function, ndiNLM(μ) represents an previous scan induced
nonlocal means filter (Ma et al 2011a), which is defined as follows:
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(5)

where Ni denotes the search-window and μnd(j) denotes the image intensity at the voxel j in
the reference image domain. The weight w(i, j) quantifies the similarity between the voxel i
in the object image μ and the voxel j in the reference image μnd, respectively, which can be
expressed as follows:

(6)

(7)

where the ni and nj denote two local similarity neighborhoods (named patch-windows)
centered at the voxels i and j, respectively. The terms μ(ni) and μnd (nj) denote the vector of
neighborhood voxel values restricted in the patch-windows ni and nj, respectively. The
notation ‖·‖2,α denotes a Gaussian-weighted Euclidean distance between two similarity
patch-windows, where α is the standard deviation of the Gaussian function (Buades et al
2005). In equation (6), h is a parameter controlling the decay of the exponential function.

In PCT imaging, the influence of injected contrast leads to the local enhancement of the
temporal frame images. And the tube voltage and tube current in the contrast enhanced CT
scans are generally different compared to those in the pre-contrast unenhanced scan. As a
result, the associated CT values in several specific regions may exist significantly variation
between the unenhanced and enhanced images. Given the above observations, a local
compensation factor C is naturally incorporated in equation (6) to account for local intensity
change.

(8)

where E(·) denotes the expected value or mean of the intensity in the patch-window ni, and
the threshold factor σ can be determined by estimating the standard deviation of
homogeneous area near the patch-window neighborhood.

Generally, the potential function ϕp(·) in equation (4) could be selected to satisfy two
conditions (Chan et al 2004), i.e., (i) ϕp ∈ C'; and (ii) ϕp(·) is a symmetrical convex function
on any bounded interval. Specifically, in this study, to preserve edges in the reconstructed
image, the following potential function is adopted (Bouman et al 1993):

(9)

where ‖·‖p denotes the p -norm of the discrete magnitude of the image and p can be regarded
as a shape factor which controls the cost of abrupt edges. In the implementation, p was set to
1.2 for all the cases.

In summary, the cost function in equation (2) in the image domain can be rewritten as:
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(10)

2.3. MAP-ndiNLM image reconstruction
Given that the weight w(i, j) in equation (6) is a function of the object image μ and the
reference image μnd, to solve the cost function in equation (10) according to the existing
methods is difficult. Thus, in this paper, a binary optimal scheme (Ma et al 2010) was used
to optimize the cost function in equation (9), which can automatically adjust the weight w(i,
j) in equation (6) according to the similarity between the patch-windows in the current
estimation μn (n is the iterative index) and the normal-dose unenhanced image μnd during
each iteration. The MAP-ndiNLM method for PCT image reconstruction has three main
steps as follows.

1. Prior estimation: Given the current image estimation μn and the normal-dose
unenhanced image μnd, the ndiNLM filter in (5) is first performed between μn and
μnd and then the term R(μ) is calculated in (4).

2. Steepest descent optimization: The steepest descent scheme is utilized to yield new
image estimation, i.e., μn+1, which can be expressed as follows:

(11)

where αn+1 represents the gradient step-size which can be calculated adaptively by
the following estimator (Sullivan et al 1991):

(12)

and

(13)

where Z is the normalizing factor of the ndiNLM filter for each voxel in (5). In the
implementation, because of Z ≫1, let R'(μn) ≈ p sign (μn − ndiNLM(μn))|μn −
ndiNLM(μn)|p−1.

3. Cycle Update: Update μn+1 using the aforementioned steps in each iteration cycle.

In the implementation, the preliminary image reconstructed by the FBP method is used for
setting the threshold factor σ in equation (8), and then the final reconstruction is performed
using the set threshold factor σ.

2.4. Experimental data acquisitions
To evaluate the performance of the present MAP-ndiNLM for enhanced PCT image
reconstruction, three modified digital Shepp-Logan phantoms and clinical brain PCT images
were used in the experiments.

2.4.1. Digital Shepp-Logan phantoms—Three modified 2D Shepp-Logan phantoms
are demonstrated in figure 1. Figure 1(a) shows the pre-contrast unenhanced CT image.
Figure 1(b) shows the corresponding enhanced image wherein the large bright region
represents the enhanced tissue. Figure 1(c) shows the enhanced image with a low-contrast
lesion indicated by an arrow. Each phantom is composed by 256 × 256 square pixels with
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the intensity value from 0 to 1200 HU. Table 1 lists the parameters of the ellipsoids (or
objects) in the modified 2D Shepp-Logan phantom as shown in figure 1(c). The size of each
pixel is 1.0 mm × 1.0 mm. We chose a geometry that was representative for a mono-
energetic fan-beam CT scanner setup with a circular orbit to acquire 984 views over 2π. The
number of channels per view was 888. The distance from the rotation center to the curved
detector is 408 mm and the distance from the X-ray source to the detector is 949 mm. Each
projection datum along a X-ray through the sectional image is computed based on the
known densities and intersection areas of the ray with the geometric shapes of the objects in
the sectional image.

For the sinogram data simulation, similar to the study (La Rivière et al 2006), after
calculating the noise-free line integral y as a direct projection operation based on model (1),
the noisy measurement bi at each bin i was generated according to the statistical model of
pre-logarithm projection data:

(14)

where I0 denotes the incident X-ray intensity and  is the background electronic noise

variance. In the present study, the X-ray exposure level I0 was set to 2.5×105 and  was set
to 10 for low-dose scan simulation. The noisy measurement yi was calculated by the
logarithm transform of bi.

2.4.2. Clinical cerebral PCT data—Clinical cerebral PCT images of a patient with an
old infarction were acquired with a 64-slice multi-detector CT (MDCT) scanner from
Siemens without table movement. First, a pre-contrast unenhanced scan of the whole brain
was performed with a tube current of 240 mA, tube voltage of 80 kVp. Then, 50 ml of
Iopromide 30 370 (Ultravist, Schering, Germany) was injected at a rate of 5.0 ml/s. The cine
(continuous) enhanced normal-dose scan was performed by the following protocol: 200 mA,
80 kVp, slice thickness 8.0 mm, 1 s per rotation for duration of 39 s, and reconstruction
kernel of H30s. The parameters of scanning imaging were as follows: (1) each rotation
included 1160 projection views evenly spaced on a circular orbit; (2) each view contained
672 data elements each from one of the 672 detector bins; (3) the source-to-detector distance
was 1040 mm; (4) The source-to-isocenter distance was 570 mm; and (5) the space of each
detector bin was 0.6 mm.

To reduce radiation dose, instead of scanning the patient twice, we simulated the low-dose
cerebral perfusion enhanced CT sinogram data by the simulation method (La Rivière et al
2006) described in subsection of 2.4.1 from the acquired normal-dose enhanced images
which were used as the digital phantom data based on the above described Siemens 64-slice
MDCT imaging parameters. The CT dose index (CTDIvol) for the normal-dose enhanced
scan is 380.80 mGy. The CTDIvol for the simulated low-dose contrast-enhanced CT data is
about one-seventh of that from the normal-dose scan.

2.5. Performance evaluation
2.5.1. Evaluation by noise reduction—The following three metrics were utilized to
evaluate the noise reduction for the quantitative comparison: (1) local signal to noise ratio
(lSNR); (2) mean per cent squared error (MPSE); and (3) mean per cent absolute error
(MPAE):
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(15)

(16)

(17)

where μ(m) denotes the voxel value of estimated low-dose image, μxtrue(m) and μ̄xtrue(m)
denote the voxel value and the associated average voxel value in the region of interest (ROI)
of normal-dose image, Q is the total number of voxels in the ROI.

2.5.2. Noise-resolution tradeoffs—The noise-resolution tradeoff curves from the FBP,
MAP-Huber and MAP-ndiNLM methods were generated from the simulated sinogram data
using the modified Shepp-Logan phantom in figure 1(b). Image reconstruction was
performed on a 256×256 array size. The image resolution was analyzed by the edge spread
function (ESF) along the vertical profile as indicated by a line in figure 1(b). Based on the
strategy described in (La Rivière and Billmire 2005), assuming the broadening kernel is a
Gaussian function with standard deviation δb, an error function (erf) can be used to represent
the ESF function parameterized by δb. Consequently, the parameter δb can be calculated by
fitting the vertical profile to the error function, and the associated full-width at half-
maximum (FWHM) of the Gaussian broadening kernel can be denoted as 2.35 δb which is
used to indicate the resolution of the reconstructed image. In this study, the noise level of the
reconstructed image was characterized by the standard deviation of a uniform region of size
19×19 in the background region around the large bright region. Since the reconstruction
kernel of FBP method significantly influences the image quality, the associative images
were reconstructed by using the different Hanning filters with the Nyquist frequency cut-off
from 90% to 50%. By varying the penalty parameter β for the MAP-ndiNLM from 2.0×10−4

to 2.5×10−3 and for the MAP-Huber from 2.0×103 to 2.5×104, we obtained the
corresponding noise-resolution tradeoff curves as illustrated in figure 4.

2.5.3. Receiver operating characteristic study—The ability of lesion detection is a
general principle for evaluating the performance of a medical imaging system. Receiver
operating characteristic (ROC) curve may provide a most comprehensive description as they
indicate all of the combinations of sensitivity and specificity in a diagnostic test. In practice,
a variety of pairs of true positive fraction (TPF) and false positive fraction (FPF) can be first
generated, and then ROC curve can be drawn or fitted from the obtained TPF and FPF (Metz
1986). The diagnostic accuracies indicated by these curves can be ranked unambiguously in
terms of the total area under each curve within the unit square. The associated area index is
often named as “AUC”. In CT image reconstruction, larger AUC usually reflects better
lesion detectability. To eliminate the intra human observer variation, the channelized
Hotelling observer (CHO) was usually employed to generate the ROC curves (Myers and
Barrett 1987). The series of ratings from the output were subsequently analyzed using the
ROCKIT package with bi-normal model (http://metz-roc.uchicago.edu/). In this paper, ROC
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studies were performed from the computer-generated datasets by adding a low-contrast
small lesion (5% higher than background intensity) in a modified Sheep-Logan phantom as
indicated by an arrow in Figure 1(c). To evaluate the ability of lesion detection of the MAP-
ndiNLM method, a total of 100 noisy sinogram data were generated according to equation
(14) using the Shepp-Logan phantom with and without the low-contrast region. The
associated images were reconstructed by the FBP, MAP-Huber and MAP-ndiNLM methods
from the same noisy sinogram data, respectively.

2.5.4. Time density curves study—The estimation of hemodynamic functional
parameters is obtained from the measurement of the temporal evolution of the concentration
of contrast agent at each pixel position in the ROI. The associated temporal evolution can be
denoted by time density curve (TDC). However, the noise in the individual time frame
images would produce negative influence in the calculation of the TDCs. Thus, curve fitting
(like the gamma fit) is often used in TDC calculation. In this study, to make the evaluation
more intuitive, the curve fitting was not adopted and the rough TDCs were directly
calculated from the reconstructed sequential images.

2.5.5. Hemodynamic parameters evaluation—Another main goal of PCT imaging is
to achieve the functional hemodynamic parameters, which reflects the blood supply. In our
studies, cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time
(MTT) maps were calculated by using a free software program, Perfusion Mismatch
Analyzer (PMA) software (Kudo 2009). As a standardize software, PMA was developed in
the activity of Acute Stroke Imaging Standardization group in Japan. A standard singular-
value decomposition method was used with the PMA for perfusion parameter calculation in
our study.

2.6. Other experiments settings
To validate and evaluate the performance of the present MAP-ndiNLM method, the FBP
method using the Hanning filter with cutoff at 80% Nyquist frequency and the MAP-Huber
method described in (Wang et al 2009) were adopted for comparison. The MAP-Huber was
implemented by incorporating the following penalty term:

(18)

where the weight wij is a positive value that denotes the interaction degree between the
pixels i and j, Si is a local neighborhood. The associative Huber potential function is given
as follows:

(19)

where δ is a threshold parameter. The Huber potential function penalizes the difference
between neighboring pixels if the absolute difference pixel value |t| is smaller than some
threshold δ and it will apply a linear penalty to the large difference of |t| >δ which usually
occurs at edges.

The related parameters in the implementation were selected as follows: For the MAP-
ndiNLM, (1) the size of the “search-window” Ni was 23 × 23; (2) the size of the “patch-
window” n was 5 × 5; (3) the standard deviation α of the Gaussian function was 1; (4) the
parameters h and β were selected for different cases by visual inspection. And for the MAP-

Huber, (1) the weight wij was 1 for first-order neighbors and  for second-order
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neighbors; (2) the threshold δ was 0.1; (3) the parameter β was selected for different cases
by visual inspection. All the algorithms were implemented in Matlab 7.9 (The Math Works,
Inc.) programming environment. The codes were run on a typical desktop computer with
AMD Phenom (TM) II X6 1055T Processor, 2.80 GHz and 16GB of RAM memory.

3. Results
3.1. Digital phantom studies

Figure 2 shows the results reconstructed by different methods. Figure 2(a) shows the noise-
free Shepp-Logan phantom image, which serves as a “ground truth” for comparison. Figure
2(b) shows the image reconstructed by the FBP method from the noisy sinogram data.
Serious noise-induced artifacts can be observed. Figure 2(c) shows the image reconstructed
by the MAP-Huber method from the noisy sinogram data. Noise-induced artifacts were
suppressed successfully, but some new artifacts can be observed in the background region.
Figure 2(d) shows the image reconstructed by the MAP-ndiNLM method from the noisy
sinogram data. The MAP-ndiNLM method can not only significantly suppress the noise-
induced streak artifacts, but also greatly preserve the edge structure information.
Furthermore, the profiles in figure 3 demonstrates that the MAP-ndiNLM achieves more
noticeable gains than the MAP-Huber in preserving the edge details as indicated by the three
arrows in figure 3(b). To evaluate the MAP-ndiNLM method quantitatively, the noise
reduction, noise-resolution tradeoffs and ROC curve were measured in the following
subsections.

3.1.1. Noise reduction measurement—Table 2 lists the lSNR, MPSE and MPAE
metrics of three ROIs derived from the low-dose CT reconstructions by three different
methods. The results from both the MAP-ndiNLM and the MAP-Huber methods exhibit
significant gains over the FBP method in terms of the three metrics. Moreover, the MAP-
ndiNLM method performs better than the MAP-Huber method with more than 7%, 56%,
and 21% gains of lSNR in three different ROIs, respectively. The MPSE, MPAE metrics
also further demonstrate better performance of the present MAP-ndiNLM approach than
other two methods with smaller metric values in three ROIs.

3.1.2. Noise-resolution tradeoffs—Figure4 shows the noise-resolution curves of
different methods. We can see the noise-resolution curves from the FBP, MAP-Huber and
MAP-ndiNLM methods have similar trends, but the MAP-ndiNLM method shows better
performance than the FBP and MAP-Huber methods in terms of the noise-resolution
tradeoff curve.

3.1.3. ROC curve—Figure 5 shows the ROC curves from the FBP, MAP-Huber and
MAP-ndiNLM methods. The area under the ROC curve from the MAP-ndiNLM method is
0.8605 whereas the areas under the ROC curve from the MAP-Huber and FBP methods are
0.8283, 0.7669, respectively. The results indicate that the MAP-ndiNLM method slightly
outperforms the FBP and MAP-Huber methods in terms of detectability of abnormality in
low-contrast diagnosis.

3.2.Clinical studies
Figure 6(a) shows the original pre-contrast unenhanced scan image which acts as the
reference image for the MAP-ndiNLM method. Figure 6(b) shows the normal-dose
enhanced image which is used as a golden standard for comparison. Figure 6(c) shows the
simulated low-dose enhanced image reconstructed by the FBP method wherein serious
noise-induced artifacts can be observed, which obscure the enhancement information. Figure
6(d) shows the low-dose enhanced image reconstructed by the MAP-Huber method. Lastly,
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figure 6(e) shows the low-dose enhanced image reconstructed by the MAP-ndiNLM
method. The clearly delineated and enhanced signal in the MAP-ndiNLM image is better
reproduced than that from the MAP-Huber method with the edge preservation and noise
suppression. However, from the zoomed images displayed in the right bottom corners, it can
be seen that compared to the normal-dose FBP image, the MAP-ndiNLM method yields
result with little loss of spatial resolution. Figure 7 depicts the horizontal profiles of the
images in figure 6, wherein one from the normal-dose image is regarded as a golden
standard. The profile from the MAP-ndiNLM method matches well with that from the
normal-dose image. In other words, the gains from the present MAP-ndiNLM method are
more noticeable than those from the MAP-Huber method.

3.2.1. Time density curves measurement—Figure 8 depicts the TDC accuracy of the
arterial input function (AIF), venous output function (VOF) and tissue perfusion of dynamic
images reconstructed from the noisy sinogram data. It can be observed that the TDCs of the
AIF and VOF from the low-dose reconstructions by three methods match well with the ones
from the normal-dose FBP image as shown in figure 8(a) and 8(d) because the contrast agent
flow in the enhanced CT value is higher enough in such large vessels than that in the tissue
and small vessels. The main aim of PCT imaging is to reconstruct the signal values within
the “tissue bed”. Typical results for such regions are shown in figure 8(b) and 8(c) wherein
the ROIs exclude the areas containing major blood vessel branches and suspected abnormal
signs. It can be observed that the TDCs from the reconstructed images by the MAP-Huber
and MAP-ndiNLM algorithms exhibit better match with ones from the normal-dose FBP
image than those from the low-dose FBP reconstructions. Furthermore, the MAP-ndiNLM
method works slight better than the MAP-Huber method.

To quantitatively measure the consistency between the TDCs from the normal-dose FBP
images and the TDCs from the simulated low-dose images reconstructed by the FBP, MAP-
Huber MAP-ndiNLM methods, table 3 lists the Lin’s concordance correlation (Ma et al
2012b) coefficients of four 3×3 ROIs indicated by the squares in figure 6(b). The results
demonstrate that well consistency between the TDCs from the simulated low-dose FBP
images and the normal-dose FBP images can be found in both the AIF and VOF regions
with the Lin’s concordance correlation coefficients higher than 0.95. However, in the tissue
2, Lin’s concordance correlation coefficient from the low-dose FBP images is below than
0.7 while the corresponding Lin’s concordance correlation coefficient from the
reconstructed images by the present MAP-ndiNLM method is higher than 0.9, even in cases
where all lower bounds of the 95% confidence interval of the concordance correlation
coefficients are higher than 0.86. In other words, the results may suggest a significant
agreement between the TDCs from the MAP-ndiNLM images and the normal-dose images.

3.2.2. Hemodynamic parameters maps measurement—Figure 9 shows the
perfusion parameters maps calculated from the original normal-dose images and the low-
dose images reconstructed by different methods from the noisy sinogram data which related
to about one-seventh radiation dose of the normal-dose scan. The MTT should be first
analyzed because it shows the most prominent regional abnormalities and facilitates
depiction of the ischemic area. It can be observed that the MTT map (column one) derived
from the MAP-ndiNLM method is similar with that derived from the original normal-dose
images. For the CBF (column two) and CBV (column three) maps, the MAP-ndiNLM
method can yield sharper edges and higher contrast between gray and white matter than the
conventional FBP and MAP-Huber methods. To further show the performance of the present
MAP-ndiNLM method, the zoomed ROIs of the MTT, CBF and CBV maps are shown in
figure 10. The results clearly demonstrate that the MAP-ndiNLM method get more gians
than the FBP and MAP-Huber methods in preserving dynamic detail information, which
further indicates more reliable cerebral perfusion parameters.
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To demonstrate the merits of the present MAP-ndiNLM method quantitatively, we manually
selected 20 specific ROIs in figure 6(b) which exclude the areas that contain major blood
vessel branches and suspected abnormal signs. The ROIs were located at both hemispheres
in grey matter, white matter and basal ganglia. Figure 11 illustrates the correlation
coefficients, regression equation and corresponding Bland-Altman plots of MTT values in
different conditions. It can be seen that the correlation coefficient derived from the normal-
dose images and the low-dose image reconstructed by the MAP-ndiNLM method is higher
than that from the low-dose images of other methods, whereas the difference in the ordinate
axis on the Bland-Altman plot smaller. Figures 12 and 13 provide similar results from the
CBV and CBF parameters. However, it is worth to mention that for the CBF parameters in
figure 13 the bias from MAP-ndiNLM method is more than those from both the FBP and
MAP-Huber methods. Thus, extensive study using more patients with various types of
ischemic diseases should be performed to enhance the CBF parameter calculation reliability.
Nevertheless, these figures may partially suggest that the MAP-ndiNLM method can
achieve noticeable performance in low-dose PCT image reconstruction with the accuracy of
diagnostic physiological parameters.

4. Conclusion and discussion
In this paper, we present a normal-dose enhanced scan induced edge-preserving prior for
cerebral PCT iterative image reconstruction based on the MAP principle. The experimental
results show that the present MAP-ndiNLM method can yield more significant performance
gains than the existing MAP-Huber method in terms of different measurement metrics.

The penalty prior reflects the information of the desired CT image. The traditional edge-
preserving priors usually extract information in a local neighborhood of the estimated image.
In general, given that the homogeneous regions with sharp boundaries compose the desired
CT image with a low noise level, these priors might work well. Meanwhile, given that the
noise level is relatively significant and no clear separation of homogeneous regions exists in
the desired CT image, these priors would tend to produce the so-called staircase effect. More
importantly, such condition is dangerous in clinical situation because the related staircase
effect may be misinterpreted as certain nonexistent objects. In PCT imaging, the pre-contrast
unenhanced CT scan is executed before the enhanced CT scans. The normal-dose high-
quality unenhanced CT images provide strong a priori information of the patient and it
would be a natural choice for using the normal-dose unenhanced CT image to induce PCT
iterative image reconstruction from the measured noisy data. However, the contrast agent
used and the tissue deformation make such application challenging. Thus, to fully use the
pre-contrast unenhanced CT images of the same patient, dedicated image registration
techniques are needed. As discussed in detail previously (Ma et al 2011a), the ndiNLM filter
may be a good candidate to use the previous scanned CT image for current image estimation
because it does not heavily depend on the accuracy of the image registration. Consequently,
an important novelty of the present MAP-ndiNLM method in this paper is the utilization of
the pre-contrast normal-dose images without needing accurate image registration. In other
words, the MAP-ndiNLM method can relax the need for accurate image registration
processing through its patch-based search mechanism during the reconstruction process.

As for the present ndiNLM prior and the corresponding PCT iterative image reconstruction
algorithm, we would like to make the following discussions. First, as a version of the
widely-used one-step-late (OSL) iteration algorithm, the present ndiNLM prior based
steepest descent algorithm can be feasibly and effectively implemented using the binary
optimal reconstruction strategy (Ma et al 2010). However, given that the weight w(i, j) in
equation (6) depend on the unknown enhanced CT image intensity and the pre-contrast
unenhanced CT image intensity, to guarantee the convex of ndiNLM prior in the whole
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optimization is difficult. Similar with many existing OSL algorithms whose global
convergence is an open issue, the present algorithm also suffers from the lack of strict global
convergence proof. Meanwhile, even without a guarantee of global convergence, our
practical experiments suggest that the present algorithm is still effective in practice for
searching at least a local maximum similar to the strategy proposed by Mignotte (2008).

As one disadvantage of the present algorithm, four parameters should be selected manually,
namely, the search-window Nj, the patch-window ni, the control parameter h and the hyper-
parameter β. It is worth to mention that all the related parameters are likely dependent on the
application and the prescribed FOV in practice use. As for the ndiNLM prior construction,
the search-window Nj should be sufficiently large to acquire more similarity information
while minimizing the influence of the mismatched tissues. In our present study, by extensive
experiments with visual inspection and quantitative measurements, we found that a 2 3×2 3
search-window and a 5×5 patch-window are adequate for effective noise and artifacts
suppression while retaining computational efficiency. For the parameters h and β, in this
paper, we briefly fixed the sizes of the search-window and patch-window and did not
consider methods for optimizing them adaptively, but instead we studied the results obtained
by a broad range of parameter values by hand in term of visual inspection and quantitative
measurements. This scheme can also be considered as a process of trial and error. More
theoretical insight in optimizing the parameters is necessary, which may be a topic for future
research.

Another major drawback of the present MAP-ndiNLM algorithm is its computational
burden, especially in the 3D case, as it contains the nidNLM filtration step comparing with
the MAP-Huber algorithm. For example, in the case of 2D image reconstruction, given a
23×23 search-window and a 5×5 patch-window, the MAP-ndiNLM algorithm takes about
0.8 min to finish one iteration to reconstruct the image of size 512×512 using a PC with 2.80
GHz CPU. Meanwhile, the corresponding reconstruction time of MAP-Huber algorithm for
one iteration is about 0.6 min. However, several techniques presented by Coupe´ et al (2008)
can be used to reduce the computational complexity for the ndiNLM prior construction
including the optimal voxel selection in the search-window, block-wise implementation, and
parallel computation. In addition, with the development of fast computers and dedicated
hardwares (Xu and Mueller 2005), iterative reconstruction algorithm may be used for
clinical CT image reconstruction in the near future.

In this work, our effort was focused on the noise suppression of PCT image reconstruction
using the iterative reconstruction algorithm. In clinics, the present method can be applied in
other applications in which a high quality prior image is acquired and subsequent scans are
performed, such as puncture and radiotherapy. Therefore, the present method can be adapted
to the associated applications for radiation dose reduction, which may be another topic for
future research.
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Figure 1.
Three Shepp-Logan phantoms used in the studies. (a) the pre-contrast unenhanced phantom;
(b) the enhanced phantom wherein the large bright region represents the enhanced tissue;
and (c) the enhanced phantom with a low-contrast lesion indicated by an arrow. The display
window option: width is 220 HU, level is 670 HU.
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Figure 2.
Shepp-Logan phantom reconstructions by different methods. (a) the noise-free phantom
image; (b) the image reconstructed by the FBP method from the noisy sinogram data; (c) the
image reconstructed by the MAP-Huber method from the noisy sinogram data (β =
8.0×103); and (d) the image reconstructed by the MAP-ndiNLM method from the noisy
sinogram data (h =40.0; β = 1.5×10−3). The display window option: width is 220 HU, level
is 670 HU.
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Figure 3.
Vertical profiles located at the pixel positions x =103 and y from 60 to 180 of images in
figure 2. The ‘blue line’ is image reconstructed by the FBP method while the ‘red line’ is
from the image reconstructed by the MAP-ndiNLM and MAP-Huber methods, respectively,
and the “dotted black line” is from the noise-free phantom which acts as a ground-truth.
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Figure 4.
The noise-resolution tradeoff curves of the FBP, MAP-Huber and MAP-ndiNLM methods.
The resolution was measured by the FWHM in pixel unit.
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Figure 5.
The ROC curves of the FBP, MAP-Huber, and MAP-ndiNLM methods.
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Figure 6.
Cerebral PCT image reconstructions by different methods from the simulated low-dose
singoram data. (a) the pre-contrast unenhanced image reconstructed by the FBP method
from the pre-contrast normal-dose scan, which acts as the reference image; (b) the image
reconstructed by the FBP method from the normal-dose scan; (c) the image reconstructed by
the FBP method from the simulated low-dose sinogram data; (d) the image reconstructed by
the MAP-Huber method from the simulated low-dose sinogram data (β = 1.0×103); and (e)
the image reconstructed by the MAP-ndiNLM method from the simulated low-dose
sinogram data (h =80.0, β = 5.0×10−2). The display window option: width is 160 HU, level
is 56 HU.
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Figure 7.
Horizontal profiles through the center of the images in figure 6. The “blue line” is from the
FBP reconstruction while the “red line” is from the reconstructions with the MAP-ndiNLM
and MAP-Huber methods, and the “dotted black line” is from the normal-dose image which
acts as the ground-truth for comparison.
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Figure 8.
TDC accuracy of the AIF, VOF and tissue perfusion of dynamic images reconstructed from
the noisy sinogram data. (a) TDCs of the AIF (the 3×3 ROI indicated by a red square in
Figure 6(b)); (b) TDCs of tissue 1 (the 3×3 ROI indicated by a magenta square in figure
6(b)); (c) TDCs of tissue 2 (the 3×3 ROI indicated by a yellow square in figure 6(b)); and
(d) TDCs of the VOF(the 3×3 ROI indicated by a blue square in Figure 6(b)).
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Figure 9.
The MTT (column one), CBF (column two), and CBV (column three) maps calculated from
the different brain PCT images. The first row was calculated from the normal-dose images;
the second, third and fourth rows were calculated from the simulated low-dose images
reconstructed by the FBP, MAP-Huber, and MAP-ndiNLM methods, respectively. The
radiation dose in the low-dose sinogram data simulation is about one-seventh of the normal
dose.
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Figure 10.
Zoomed ROIs of the MTT (column one), CBF (column two), and CBV (column three) maps
in figure 9. The first row was calculated from the normal-dose images; the second, third and
fourth rows were calculated from the simulated low-dose images reconstructed by the FBP,
MAP-Huber, and MAP-ndiNLM methods, respectively. The radiation dose in the low-dose
sinogram data simulation is about one-seventh of the normal dose.
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Figure 11.
The correlation (left column) and Bland–Altman plot (right column) between the MTT
computed from the normal-dose images and the low-dose images reconstructed by different
methods. Plots (a) and (b) represent the results obtained from the normal- and low-dose FBP
reconstructions. Plots (c) and (d) represent the corresponding results obtained from the
normal-dose images and the low-dose MAP-Huber reconstructions. Plots (e) and (f)
represent the corresponding results obtained from the normal-dose images and the low-dose
MAP-ndiNLM reconstructions.

Ma et al. Page 25

Phys Med Biol. Author manuscript; available in PMC 2012 December 21.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 12.
The correlation (left column) and Bland–Altman plot (right column) between the CBV
values computed from the normal-dose images and the low-dose images reconstructed by
different methods. Plots (a) and (b) represent the results obtained from the normal- and low-
dose FBP reconstructions. Plots (c) and (d) represent the corresponding results obtained
from the normal-dose images and the low-dose MAP-Huber reconstructions. Plots (e) and
(f) represent the corresponding results obtained from the normal-dose images and the low-
dose MAP-ndiNLM reconstructions.
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Figure 13.
The correlation (left column) and Bland–Altman plot (right column) between the CBF
values computed from the normal-dose images and the low-dose images reconstructed by
different methods. Plots (a) and (b) represent the results obtained from the normal- and low-
dose FBP reconstructions. Plots (c) and (d) represent the corresponding results obtained
from the normal-dose images and the low-dose MAP-Huber reconstructions. Plots (e) and
(f) represent the corresponding results obtained from the normal-dose images and the low-
dose MAP-ndiNLM reconstructions.
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Table 1

Parameters of the modified 2D Shepp-Logan phantom as shown in figure 1(c).

Coordinates of center Axis lengths Rotation angles Intensity

(0.0,0.0) (0.69,0.92) 90 1200

(0.0,−0.0184) (0.6224,0.874) 90 −480

(−0.22,0.0) (0.41,0.16) 108 −120

(0.22,0.0) (0.31,0.11) 72 −120

(0.0,0.35) (0.21,0.25) 90   60

(0.0,0.1) (0.046,0.046) 0   60

(0.0,−0.1) (0.046,0.046) 0   60

(−0.08,−0.605) (0.046,0.023) 0   80

(0.0,−0.605) (0.023,0.023) 0   80

(0.06,−0.605) (0.046,0.023) 90   80

(0.0,0.61) (0.029,0.029) 0   36

*
Last row of the table lists the parameters of the lesion used in the ROC study.
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