Skip to main content
. Author manuscript; available in PMC: 2012 Nov 15.
Published in final edited form as: Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8370–8374. doi: 10.1002/anie.201005124

Table 3.

Synthesis and in situ use of heterocyclic aluminum reagents in Cu-catalyzed enantioselective allylic substitution reactions.[a]

graphic file with name nihms416939u4.jpg
Entry Heterocycle Substrate [R] mol % 2a SN2′:SN2[b] Yield [%][c] e.r.[d]
1 2-furyl Ph 0.5 >98:2 93 >98:2
2 2-furyl oBrC6H4 0.5 >98:2 86 >98:2
3 2-furyl oMeOC6H4 0.5 >98:2 95 >98:2
4 2-furyl oMeC6H4 1.0 >98:2 98 98:2
5 2-furyl pNO2C6H4 0.5 >98:2 96 >98:2
6 2-furyl SiMe2Ph 1.0 >98:2 91 86.5:13.5
7[e] 3-furyl Ph 1.0 >98:2 90 97:3
8 2-thienyl Ph 0.5 >98:2 98 96:4
9 2-thienyl oBrC6H4 1.5 >98:2 98 98:2
10 2-thienyl pNO2C6H4 0.5 >98:2 96 94:6
11 2-thienyl CO2tBu 0.5 >98:2 94 87.5:12.5
12[e] 3-thienyl Ph 1.0 >98:2 94 94:6
13[e] 3-thienyl oBrC6H4 1.0 >98:2 89 97:3
14[e] 3-thienyl SiMe2Ph 1.0 >98:2 95 94:6
[a–d]

See Table 2.

[e]

The corresponding 3-bromofuran or 3-bromothiophene used as starting materials (treatment with nBuLi in Et2O); see the Supporting Information for experimental details.