Skip to main content
. 2012 Jul 25;109(5):269–279. doi: 10.1038/hdy.2012.37

Table 5. Estimation of parameters based on local linear regression on the 10 000 closest to the observed data set simulations using the best scenario (see Figure 4).

Parameter Mean of the posterior distribution Median of the posterior distribution RMAE
N 3.82E+04 3.31E+04 0.420
NOgy 6.10E+04 6.65E+04 0.405
NOu 2.90E+04 1.98E+04 0.419
NBb 7.82E+00 5.66E+00 0.341
NBe 1.89E+01 1.45E+01 0.296
NBgt 5.47E+00 3.86E+00 0.281
NBgy 4.61E+00 3.10E+00 0.287
NBu 1.85E+01 1.44E+01 0.317
Nb 5.33E+04 5.50E+04 0.423
Ne 5.33E+04 5.45E+04 0.393
Ngt 4.93E+04 4.92E+04 0.434
Ngy 5.48E+04 5.74E+04 0.402
Nu 4.91E+04 4.89E+04 0.418
TO 2.86E+04 2.07E+04 0.339
TFgy 1.83E+02 1.55E+02 0.276
TFu 2.44E+02 2.26E+02 0.323
TSb 1.01E+02 8.39E+01 0.340
TSe 2.62E+01 2.18E+01 0.387
TSgt 5.20E+01 4.01E+01 0.405
Mμmic 2.48E−04 1.88E−04 0.282
MP 1.80E−01 1.69E−01 0.235
Mμsni 3.89E−06 2.40E−07 0.949

Abbreviation: RMAE, relative median of the absolute error.

RMAE taking the median of the posterior distribution as point estimates was computed on 300 pseudo-observed data sets simulated using the best scenario. Parameter names are the same as in Table 1.