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There is increasing suspicion that HIV-induced immune activation contributes to accelerated
cellular turnover, CD4+ T-cell losses and increased morbidity and mortality of HIV-infected
individuals, even for those on antiretroviral treatment 1,2,3,4. For example, Kuller et al.5

found that higher levels of interleukin-6 (IL-6) were significantly associated with an
increased risk of all-cause mortality; similar associations with mortality were seen for higher
levels of d-dimer and hsCRP. Deeks et al.6 have hypothesized that the preserved
immunologic function in many treated patients with drug-resistant viremia is the result of a
reduction in T cell activation. Hunt et al.7 reported that antiretroviral-treated patients with
drug-resistant viremia have lower T cell activation than untreated patients, controlling for
plasma HIV-1 RNA level. Kitchen et al.8 reported an oscillatory relationship between T cell
activation, CD4 T cell counts and HIV-1 RNA levels over time in a group of subjects with
highly resistant HIV infection followed longitudinally.

To test the hypothesis that drug resistant virus has reduced ability to induce immune
activation, we analyzed the relationship between drug resistance and both soluble markers of
inflammation (IL-6, TNF-α, TNF-rII) and cellular activation markers (CD38/HLA-DR
expression on CD4 and CD8 T-cells) before and after short-term treatment interruption,
using data from 16 of the 21 subjects randomized to the structured treatment interruption
(STI) arm of the Adult Clinical Trials Group (ACTG) 5086 study. Subjects were excluded
from analysis due to the unavailability of activation (4 subjects) or resistance data (1
subject).

ACTG 5086 was a randomized clinical trial of 41 patients with multiple drug class-resistant
HIV. Subjects were randomized to undergo a 16-week STI followed by antiretroviral
treatment, to evaluate if treatment responses are improved and if the new regimen started
after a short-term treatment interruption can revert circulating virus to wild-type;9 this
strategy was not successful. We measured plasma cytokine levels and T-cell activation at
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baseline and then at the end of treatment interruption at a time when viruses with fewer
resistance mutations were expected to predominate. HIV-1 drug resistance in virus from
plasma was obtained at baseline and at the end of STI (prior to initiation of optimized
treatment) from standard genotyping (ViroSeq version 2, Celera Diagnostics), but only a
minority of subjects had nearly complete re-emergence of drug-susceptible HIV-1.9

Here we focus on the relationship between immune activation, drug resistance and HIV-1
RNA levels. Based on the association between protease inhibitor (PI) mutations and immune
activation6, we defined a PI score, the number of major PI resistance mutations, using the
list of major PI drug resistance mutations from the Stanford HIV drug resistance database
(http://hivdb.stanford.edu/pages/documentPage/PI_mutationClassification.html, last updated
on 2011–5–6), that is, mutations at amino acid positions 30, 32, 46, 47, 48, 50, 54, 76, 82,
84, 88, and 90. We also calculated a nucleoside reverse transcriptase inhibitor (NRTI) score
and a non-nucleoside reverse transcriptase inhibitor (NNRTI) score similarly based on
mutations at amino acid positions 41, 65, 67, 69, 70, 74, 75,115, 151, 184, 210 and 215 for
NRTIs and 100, 101, 103, 106, 179, 181, 188, 190, 230, and 236 for NNRTIs. Associations
were examined using Spearman correlations; partial correlations were used to adjust for
plasma HIV-1 RNA levels. Median changes were analyzed using the sign rank test. The
Baron and Kenny method10 was used to investigate whether the effect of drug resistance on
immune activation was mediated through HIV-1 RNA levels.

At baseline and as expected, plasma HIV-1 RNA levels in these persons with multi-drug
resistant virus tended to correlate positively with markers of immune activation: TNF-α
(r=0.77, p<0.001), TNF-rII (r=0.53, p=0.04), IL-6 (r=0.50, p=0.05). We did not, however,
observe a significant correlation between baseline HIV-1 RNA levels and CD38 expression
on CD8+ cells (r=0.18, p=0.52), CD38+/HLA-DR+ co-expression on CD8+ cells (r= −0.24,
p=0.40), or CD38+/HLA-DR+ co-expression on CD4+ cells (r=0.12, p=0.68). We observed
a significant negative correlation between CD4 cell counts and CD38 expression on CD8+
cells (r= −0.63, p=0.02). CD4 cell counts appeared to be negatively correlated with CD38+/
HLA-DR+ co-expression on CD4+ cells (r= −0.46) and RNA levels (r= −0.41), but did not
reach statistical significance (p=0.10 and 0.12 respectively). CD4 cells were not correlated
with CD38+/HLA-DR+ co-expression on CD8 cells (r=0.002, p=0.99). As plasma HIV-1
RNA rose after treatment interruption (median increase 0.2 log10 copies/ml, p=0.006) (Table
1), CD4+ cell count dropped significantly (median change −54 cells/mm3, p<0.001); levels
also tended to increase for TNF-α (median increase 0.3 log10 pg/ml, p=0.04), IL-6 (median
increase 0.4 log10 pg/ml, p=0.04), and CD38+/HLA-DR+ co-expression on CD4+ cells
(median increase 3%, p=0.03), but less so with TNF-rII (median increase 0.03 log10 pg/ml,
p=0.08), CD38+ expression on CD8+ cells (median increase 4%, p=0.15), or CD38+/HLA-
DR+ co-expression on CD8+ cells (median increase 4%, p=0.35).

At baseline, the number of PI mutations were negatively correlated with levels of TNF-α (r=
−0.49; p=0.05) and with levels of TNF-rII (r = −0.51; p=0.04). After adjusting for log10
HIV-1 RNA level, the correlation between PI mutations and TNF-rII was similar (r= −0.61;
p=0.03), but the correlation with TNF-α appeared to be attenuated (r= −0.20; p=0.53).
Further regression analyses for test of mediation revealed that, after controlling for the
number of PI mutations, HIV-1 RNA levels were not significantly associated with TNF-α
levels (p=0.12), suggesting that the effect of PI mutations on TNF-α was not mediated
through HIV-1 RNA levels. As the number of resistance mutations to PI fell after the
treatment interruption (p=0.008, median change −1.0), no correlations between number of PI
mutations and TNF-α, TNF-rII or IL-6 were seen at the end of the treatment interruption (r
=0.02 to 0.08; p>0.7 for all).
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At baseline, the numbers of NRTI mutations appeared to be negatively correlated with TNF-
α (r= −0.46, p=0.07). Similar correlation was observed after controlling for HIV-1 RNA
levels (r= −0.49; p=0.09). NRTI mutations were not correlated with TNF-rII or IL-6 (both
p>0.90). As the frequency of resistance mutations to NRTI decreased after the treatment
interruption (p=0.002, median change −1.0), the negative association between NRTI
resistance score and TNF-α was no longer seen (p=0.25).

NNRTI resistance mutations at baseline (median score 1) were less prevalent than were
resistance mutations to PI or NRTI. Frequencies of resistance mutations to NNRTI
decreased after the treatment interruption (p=0.02). No significant correlations between
NNRTI resistance score and any of the inflammatory markers (TNF-α, TNF-rII, or IL-6)
were observed, either at baseline or at the end of treatment interruption.11 Among 8 patients
failing a NNRTI-based regimen, at baseline, HIV-1 RNA levels were positively correlated
with IL6 (r=0.85; p=0.008), and appeared to be positively correlated with TNF-α (r=0.61)
and with TNF-rII (r=0.44), but these correlations did not reach statistical significance
(p=0.11 and 0.27 respectively); at the end of treatment interruption, we did not observe any
correlation between HIV-1 RNA levels and TNF-α, TNF-rII, or IL6 (p>0.5 for all).

At baseline, total numbers of mutations were negatively correlated with TNF-α levels (r=
−0.64; p=0.008) and remained statistically significant with similar magnitude after
controlling for HIV-1 RNA levels (r= −0.59; p=0.03).

We examined correlations between changes in drug resistance mutations and changes in
immune activation markers, with or without adjusting for changes in HIV-1 RNA levels, and
did not observe any significant associations.

In this investigation of immune activation in extensively treated individuals with drug-
resistant virus, soluble markers of immune activation tended to correlate negatively with the
number of drug-resistant mutations at baseline and this effect appeared to be independent of
HIV-1 RNA levels, consistent with the results presented in Hunt et al.7 This suggests that
drug-resistant virus has reduced ability to induce immune activation, also consistent with the
lower levels of CD8 activation that were seen in persons with drug-resistant virus as
described by Hunt et al.7 The lack of a correlation between resistance mutations and CD8
activation at baseline may be due to the small sample size in the present study or to the
characteristics of the study population since only patients with drug resistance were
examined, in contrast to Hunt et al.7 who compared subjects with drug resistance to those
with wild-type virus. Another possible explanation for the difference between our findings
and those of the Hunt study may relate to the magnitude of viremia in patients with drug
resistance which in the present study was higher than in the Hunt study. At the end of STI,
correlations were much weaker than at baseline. It is possible that viral populations were
still in a dynamic phase at this time, not yet at a new steady state, as supported by
heterogeneity in the rate of reversion of drug resistance seen in a similar 4-month treatment
interruption study.12 We also assessed the effect of single point mutations I54V and V82A
on immune activation as Natesampillai et al. found differential effects of major PI mutations
on caspase-induced apoptosis.13 We did not observe any significant correlation between
these two mutations, individually or in combination, with any of the immune activation
markers, at baseline or when changes from baseline are examined.

In contrast to previous studies, we did not observe significant correlation between baseline
HIV-1 RNA and expression of cell activation markers. The magnitude of viremia is one of
several factors that contribute to the level of immune activation in HIV-1 infection and in
many treated subjects, immune activation persists even when viremia is controlled. Most
studies demonstrating a relationship between the magnitude of viremia and indices of
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immune activation were studies of patients not receiving antiretroviral therapies (ART). The
effects of incompletely suppressive ART and the relatively small sample size of this study
may have confounded this relationship. Resistance mutations were associated with immune
activation, especially for TNF-alpha; this relationship did not appear to be mediated by
HIV-1 RNA levels.

Markers of immune activation significantly increased during the 4-month treatment
interruption, as was seen after 1 month of treatment interruption in Kuller et al.5 which also
showed that higher IL-6 levels during follow-up were associated with increased mortality.
These findings, together with the studies showing that treatment interruption does not
improve virologic responses to salvage regimens,9,14,15 provides further argument against
the use of treatment interruption strategies in the clinical management of HIV-infected
individuals.
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Table 1

Drug Resistance score, HIV RNA, CD4+ cell count and markers of immune activation at baseline and changes
after treatment interruption.

Baseline Change from Baseline

Median (Q1, Q3) Median (Q1, Q3) p-value*

PI Score (n=16) 2.5 (1.5, 4.0) −1.0 (−3.5, 0) 0.008

NNRTI Score (n=16) 1.0 (1.0, 2.0) 0 (−1.0, 0) 0.02

NRTI Score (n=16) 4.0 (1.0, 5.5) −1.0 (−2.5, 0) 0.002

HIV RNA (log10 copies/ml) (n=16) 4.8 (4.3, 5.3) 0.2 (0.1, 0.8) 0.006

CD4 (cells/mm3) (n=15) 217 (87, 329) −54 (−85, −6) <0.001

Cellular Activation Markers (n=15):

% CD38+ CD8 cells 85 (74, 90) 4 (−2, 8) 0.15

% CD38+/HLA-DR+ CD8 cells 47 (37, 66) 4 (−4, 9) 0.35

% CD38+/HLA-DR+ CD4 cells 17 (13, 31) 3 (2, 8) 0.03

Soluble Activation Markers (n=16):

TNF-α (log10 pg/ml) 2.8 (2.2, 2.9) 0.3 (−0.1, 0.7) 0.04

TNF-rII (log10 pg/ml) 3.5 (3.3, 3.6) 0.03 (−0.01, 0.1) 0.08

IL-6 (log10 pg/ml) 1.1 (0.8, 1.6) 0.4 (−0.03, 0.8) 0.04

*
Signed rank test (2-tailed).
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