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Applying a previously developed non-small cell lung cancer model, we assess ‘cross-scale’ the thera-
peutic efficacy of targeting a variety of molecular components of the epidermal growth factor receptor
(EGFR) signalling pathway. Simulation of therapeutic inhibition and amplification allows for the rank-
ing of the implemented downstream EGFR signalling molecules according to their therapeutic values or
indices. Analysis identifies mitogen-activated protein kinase and extracellular signal-regulated kinase as
top therapeutic targets for both inhibition and amplification-based treatment regimen but indicates that
combined parameter perturbations do not necessarily improve the therapeutic effect of the separate pa-
rameter treatments as much as might be expected. Potential future strategies using thisin silico model to
tailor molecular treatment regimen are discussed.
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1. Introduction

Epidermal growth factor receptor (EGFR) is a transmembrane signalling receptor that is frequently over-
expressed in many cancers, including non-small cell lung cancer (NSCLC) (Hirschet al., 2003). Ligand
binding to EGFR leads to receptor tyrosine kinase activation as well as a series of downstream signalling
events that stimulate cell proliferation, motility, adhesion and invasion, and the overexpression of EGFR
causes cell apoptosis inhibition and resistance to chemotherapy (Mendelsohn & Baselga, 2000). Tyro-
sine kinase inhibitors (TKIs) of EGFR, such as erlotinib and gefitinib, have thus emerged as therapeutic
option for patients with advanced NSCLC (Siegel-Lakhaiet al., 2005). Although treatment with these
drugs so far has resulted in significant tumour regressions in only 10–20% of NSCLC patients (Janne
et al., 2005), the development of novel therapeutic targets continues to be a very active topic in current
cancer research.

c© The author 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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In recent years, interdisciplinary cancer systems biology has drawn much attention in exploring
the quantitative relationship between complicated intra- and intercellular signalling processes and the
behaviour they trigger on the microscopic and macroscopic scales (Anderson & Quaranta, 2008; Sanga
et al., 2007; Wang & Deisboeck, 2008). Many data-driven mathematical and computational models
and analysis methods have been developed, but so far the focus is still mostly on the single-cell level
(Aldridge et al., 2006). As demonstrated elsewhere in systems biology (Swameyeet al., 2003), sensi-
tivity analysis has been widely accepted as a useful tool for studying pathway parameters and signalling
events, which have significant effects on system behaviour. Suchin silico methods are especially useful
when it is not possible or practical to conduct experiments on the living system itself (van Riel, 2006).
However, different sensitivity analysis methods may produce different parameter rankings for a spe-
cific system outcome (Zhang & Rundell, 2006). Moreover, it is quite common that a parameter that is
significant to one specific system outcome may not be significant to others. For example, in a mitogen-
activated protein kinase (MAPK) signalling pathway study, MAPK kinase (MEK) dephosphorylation
was found to have significant impact on the duration and integrated output, but not the amplitude, of
extracellular signal-regulated kinase (ERK) activation (Hornberget al., 2005). Hence, in some cases,
an evaluation function that creates a ‘composite ranking’ indicating the importance of parameters in
multiple system outcomes at one time would be more appropriate. In the case of molecular oncology
therapy, we believe that the optimal target should lead to tumour control; i.e. it should reduce the ability
of cancer cells to grow (and/or cause them to die) as well as diminish cancer cell motility (i.e. reduce
invasion and contain metastasis) as much as possible.

We have previously developed a set of multiscale agent-based lung cancer models integrating both
molecular and microscopic levels to examine NSCLC growth dynamics in 2D and 3D microenviron-
ments (Wanget al., 2007, 2009). Using the 2D model as the computational platform, we also presented
a novel ‘cross-scale’ sensitivity analysis method to identify model parameters that have significant effect
on the tumour’s expansion rate (Wang et al., 2008). Here, we introduce a new evaluation measure,
termed the ‘therapeutic index (TI)’ function. The main purpose of this formula is to help identify key
parameters that are critical in affecting the two main tumour phenotypic traits or ‘outcomes’: on-site
tumour growth and spatiotemporal expansion. We employed the 3D model as the simulation platform
to evaluate the TI function and then compared current results with those from the previously developed
sensitivity analysis. Analysis and comparison results showed that the TI function allows for the ranking
of the critical parameters according to their therapeutic values by assessing the influence of changes in
parameters on multiple tumour outcomes and thus demonstrate that this function is a more powerful tool
for target evaluation.

2. Methods

2.1 Multiscale cancer model

We briefly reintroduce the main features of the multiscale 3D agent-based NSCLC model (Wanget al.,
2009), which encompasses both molecular (signalling pathway) and microscopic (multicellular) scales.
At the molecular level, two stimuli, epidermal growth factor (EGF) and transforming growth factorβ
(TGFβ), trigger downstream signalling through different routes but converge at the activation of the Raf
signal. This process then initiates the ERK signalling cascade. Figure1 shows, in brief, the implemented
signalling scheme (seeWanget al., 2009for detailed pathway kinetics). At the microscopic level, we
construct a 3D microenvironment consisting of a discrete cube with 200× 200 × 200 grid points
(Fig. 2); a single distant nutrient source representing a blood vessel is located at grid point (150, 150,
150). A heterogeneous biochemical environment is attained by normally distributing external diffusive
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FIG. 1. Signalling schematic of the integrated pathway, with EGF and TGFβ as the two external stimuli.

FIG. 2. Setup of the 3D virtual biochemical microenvironment.

chemical cues (EGF, TGFβ, glucose and oxygen tension) throughout the 3D microenvironment. The
assigned initial values of these chemical cues are weighted by the distance of a grid point from the
nutrient source. Hence, the nutrient source is the most attractive location for the chemotactically acting
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tumour cells because it maintains the highest weight for each of the aforementioned four cues. Moreover,
throughout the simulation, the concentrations of these four chemical cues are continuously updated at a
fixed rate (seeWanget al., 2009for corresponding equations).

Each cell (agent) carries a self-maintained signalling network, and the computer model records
the molecular profile for each cell at every time step. In an earlier work, we proposed an experi-
mentally supported molecularly driven cellular phenotypic decision algorithm (Wanget al., 2007). In
brief, phospholipase Cγ (PLCγ ) and ERK (two downstream signalling molecules of EGFR) are used to
determine the emergence of two important phenotypic traits: migration and proliferation, respectively.
Experimental studies have shown that transient acceleration of accumulating PLCγ levels leads to cell
migration (Dittmaret al., 2002), while that of ERK leads to cell replication (Santoset al., 2007). There-
fore, in our model, the rate of change of PLCγ determines the cellular migration decision, and the rate
of change of ERK dictates a cellular proliferation fate. If a cell decides to migrate or proliferate, it will
search for a neighbourhood location to move to or for its offspring to occupy. If there are two or more
locations available, the cell will select the one with the highest glucose concentration (this location is
referred to as the appropriate location); if there are two or more appropriate locations available, the cell
will simply randomly pick one. Generally, tumour cells expand towards the nutrient source since these
sites are more permissive with regard to the chemical cues. A simulation run is terminated when the first
cell reaches the nutrient source since at this point a tumour is able to metastasize (as the nutrient source
represents a blood vessel) and consequently is more difficult to contain and treat. Tumour growth and
invasion patterns due to cell proliferation and migration are neither predefined nor intuitive: they emerge
as a result of intracellular signalling of individual cells and the dynamic cellular interactions within the
framework of the 3D biochemical microenvironment.

2.2 Sensitivity analysis and TI function

In a previous cross-scale sensitivity analysis study (Wanget al., 2008), we used a sensitivity coefficient
as an index to evaluate how a change in a single sub-cellular model component affects the overall system
response at the microscopic level. This coefficient is calculated by the following equation:

SM
p =

(Mi − M0)/M0

(pi − p0)/p0
, (1)

wherep represents the parameter that is varied in a simulation andM the response of the system;M0
is obtained by setting all parameters to their reference values, and thus (Mi − M0) is the change inM
due to the change inp, i.e. (pi − p0). It is worth noting that this type of sensitivity analysis belongs to
the ‘local’ sensitivity analysis category (Rabitzet al., 1983), i.e. quantifying the influence of individual
parameters by varying only one parameter at the same time. Equation1 will be used here again for
our sensitivity analysis in this study. The system responseM now corresponds to either tumour volume
(indicated by the final number of viable cancer cells at the time of termination of the simulation run) or
tumour expansion rate (represented by the total simulation steps; however, a simulation that terminates
after a greater number of time steps has a slower tumour expansion rate).

There are, however, some drawbacks in applying this local sensitivity analysis to target discovery
since (1) can show a parameter’s sensitivity to only ‘one’ tumour outcome at a time, i.e. either tumour
volume or tumour expansion rate. The equation therefore has to be revised especially with respect to
the system output term,M , to concurrently evaluate ‘two or more’ tumour outcomes. Moreover, the
sensitivity coefficient is a relative value showing the correlative relationship between changes in param-
eters and tumour outcome, which means that this value cannot be independently used to evaluate tumour
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outcomes (in our case, to determine the final number of alive cells and simulation steps). We thus seek
to solve this problem and present here a TI function that incorporates tumour outcome terms directly:

TI(xi , yi ) = kx(xi /x0) − ky(yi /y0), i = 1, . . ., n, (2)

wherex andy represent the two tumour outcomes, i.e. simulation steps and the final number of alive
cells, respectively;xi and yi indicate their corresponding values for thei th simulation run;x0 and y0
are their corresponding values for the ‘standard’ simulation (when all model parameters are set to their
reference values);kx andky are weights forx andy and are both greater than or equal to 0. Hence, the
value of TI increases withxi and decreases withyi ; kx andky simply indicate which tumour outcome
(simulation steps or cell number) is more important for the evaluation. In the absence of specific data,
we setkx = ky = 1, meaning that the two types of tumour outcome are equally important. Future works
can specify these coefficients with regard to tumour type, grade and stage or potentially account for the
particular strengths and weaknesses of the drug under consideration.

The goal of our simulations, aimed at uncovering high-value therapeutic targets, is clear: by chang-
ing parameters separately, we attempt to reduce the cell number (corresponding to tumour growth inhi-
bition) while increasing the number of simulation steps (corresponding to tumour expansion inhibition).
Parameters that produce high TIs merit particular attention since, generally, they will produce favourable
anti-tumour outcomes and hence will be valuable therapeutic targets. However, when changing a param-
eter leads to a simulation result with (xi > x0 andyi > y0) or (xi < x0 andyi < y0) and thus a large
value of TI, the particular parameter does not produce a desirable therapeutic outcome because the
tumour still grows in cell number in the former case or spreads faster in the latter. Hence, we further
distinguish between the following two groups:

Group I: (xi , yi ) ∈ {xi > x0, yi 6 y0, (xi , yi ) 6= (x0, y0)} and

Group II: (xi , yi ) /∈ {xi > x0, yi 6 y0, (xi , yi ) 6= (x0, y0)}.

Figure3 schematically shows the distribution of the two groups. Tumour outcome values in Group
I fulfill the requirements that we set for a therapeutic target. Using these definitions, parameters (along
with their variations) will first be classified into these groups before a parameter ranking is produced
through (2) for each group. The evaluation process also implies that a parameter that produces an (x, y)
pair in Group II with a large TI value cannot be accepted as a promising therapeutic target because
changing the component either decreases simulation steps, increases cell number or both.

3. Results

The 3D agent-based model was implemented in C/C++. A total of 27 seed cells arranged in a 3× 3 × 3
cube were initially positioned in the center of the 3D environment. Due to computation intensity, the
maximum number of simulation steps for all runs is set to 250, with each time step corresponding to
2.4 h. It takes 10–12 steps for a cell to complete a proliferation process, which is in agreement with
experimental data (Hegeduset al., 2000). The diameter of each cell is 10μm, and in our model, the cell
shape has been approximated as a cube so that the volume of each cell is 1000μm3. For the standard
simulation case (the final cell number= 16773; the number of elapsed time steps= 222), the resultant
volume (made up of live tumour cells, dead tumour cells and interstitial fractions within the tumour
mass) is approximately 3.75× 10−2 mm3. The variation ranges for individual parameters were set to
(1) [0.1–0.9]-fold for parameter inhibition and (2) [1.1–2, 3–10]-fold for parameter amplification of
their corresponding reference values. Note that we only considered variations of pathway component
concentrations in this study. Each of the variations in the parameters was used as the only change of
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FIG. 3. Distribution of Group I and Group II. Only parameter variations resulting in a larger simulation step and a smaller cell
number, when compared to standard simulation results, belong to Group I.

input when running a simulation, and all other parameters were held fixed at their reference values. This
process was repeated for all parameter values, and the resulting tumour growth indices (i.e. simulation
steps and the final number of live cells) were compiled for further analysis.

3.1 Parameter sensitivity rankings

Using (1), we calculated sensitivity coefficients for all of the pathway components over the entire prede-
fined variation range for each of the two tumour growth indices. Table1 shows the parameter sensitivity
rankings. As described before, a sensitivity coefficient value only reports how sensitive the system out-
come is to a particular parameter and is a relative measure. From Table1, one cannot determine what
variation of which parameter produces a particular tumour outcome because a coefficient value is cal-
culated specific to only one tumour outcome, ignoring others. For example, although EGFR is the most
sensitive parameter in both simulation steps and cell number, a 0.9-fold variation in EGFR concentration
results in an increase in both tumour outcomes, which does not qualify it to be a therapeutic target. Note
that the same 0.9-fold variation in EGFR results in distinct sensitivity coefficient values for different
tumour outcomes.

3.2 Parameter TI rankings

The parameter rankings based on the value of TI for parameter inhibition and amplification are pre-
sented in Tables2 and3, respectively. Under parameter inhibition, MEK with a 0.5-fold variation re-
sults in the maximum value in TI, and thus MEK emerges as the number one therapeutic target for this
treatment strategy. However, further decreasing the MEK concentration fails to add therapeutic value.
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TABLE 1 Sensitivity rankings with respect to simulation step and cell number; SC standards for
sensitivity coefficient (calculated according to (1)); * indicates that multiple values exist. For a spe-
cific parameter, only the variation resulting in the maximum absolute value of SCs with respect to
simulation step and cell number, respectively, islisted

Rankings Parameter Variation SC Cell number Simulationstep
Tumour output: simulation step

1 EGFR 0.9 −0.8108 20102 ↑ 240 ↑
2 ERK 0.9 0.6306 15079 ↓ 208 ↓
3 PLCγ 0.7 −0.4054 17449 ↑ 240 ↑
4 MEK 1.2 −0.3153 11417 ↓ 208 ↓
4 TGFβR 0.8 0.3153 15224 ↓ 208 ↓
6 Raf 0.5 0.1261 14787 ↓ 208 ↓
7 PKC 3 0.018 19058 ↑ 230 ↑
8 Ras 0.1–10.0 0 * * 222 —

Tumour output: cell number
1 EGFR 0.9 −1.9847 20102 ↑ 240 ↑
2 ERK 1.1 −1.8428 13682 ↓ 222 —
3 PLCγ 1.4 −1.662 5,622 ↓ 188 ↓
4 TGFβR 1.1 0.6296 17829 ↑ 222 ↑
5 MEK 0.7 0.5678 13916 ↓ 220 ↓
6 Raf 0.9 −0.4561 17538 ↑ 222 —
7 PKC 3 0.0681 19058 ↑ 230 ↑
8 Ras 0.2 −0.0581 17552 ↑ 222 —

For example, while a variation of 0.4-fold in MEK (Group II section in Table2) results in an even
smaller cell number, it is also accompanied by the ‘adverse effect’ of faster tumour expansion (a smaller
number of simulation steps in the standard simulation). Under parameter amplification, ERK with a
1.1-fold variation results in the maximum TI, which implies that increasing the concentration of ERK
contributes to an increase in the number of simulation steps and a reduction in the cancer cell num-
ber. However, similar to the result for MEK inhibition, further increasing the ERK concentration (e.g.
to 1.2-fold) causes faster tumour expansion, thus putting ERK with a 1.2-fold variation into Group II.
Figure4 displays the overall change in TI values for MEK and ERK and depicts a series of selected
simulation snapshots for the standard simulation, with MEK set to a variation of 0.4-fold and ERK to
a variation of 1.1-fold. As can be seen, the MEK treatment simulation takes longer to finish, and both
MEK and ERK treatment cases exhibit a smaller tumour volume than that produced by the standard
simulation.

3.3 Combined parameter perturbations

We next sought to gain an understanding of the influence of combined parameter perturbations on
tumour outcome, using our cross-scale computer simulation and applying the TI method. The param-
eters and their variations that we use for this analysis are those in Group I of Tables2 and 3 for a
total of eight parameter variation elements. There are 26 combinations of these elements (note: varia-
tion pairs of Ras (0.4-fold) and Ras (4.0-fold), and PKC (0.7-fold) and PKC (2.0-fold) are impossible,
and thus are eliminated). Table4 shows the analysis results. It is somewhat surprising that only 15 out
of the 26 variation pairs (about 58%) show a therapeutic gain. Of these 15 pairs, the variation pair of
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TABLE 2 Rankings with respect to TI for parameter inhibition([0.1–0.9]-fold of each parameter’s
reference value)

Rankings Parameter Variation TI Cell number Simulationstep
Group I

1 MEK 0.5 0.1308 15184 ↓ 230 ↑
2 PLCγ 0.8 0.1004 16449 ↓ 240 ↑
3 Ras 0.4 0.0138 16542 ↓ 222 —
4 PKC 0.7 0.0007 16762 ↓ 222 —

Group II
1 ERK 0.1 0.7517 1444 ↓ 186 ↓
2 MEK 0.4 0.252 11413 ↓ 207 ↓
3 EGFR 0.1–0.5 0.1142 16897 ↑ 249 ↑
3 PLCγ 0.1–0.4 0.1142 16897 ↑ 249 ↑
5 TGFβR 0.1 0.0874 14249 ↓ 208 ↓
6 Raf 0.1 0.0805 14365 ↓ 208 ↓
7 PKC 0.9 0 16773 — 222 —
8 Ras 0.8 −0.0002 16777 ↑ 222 —

TGFβR (3.0-fold) and PKC (2.0-fold) results in the biggest TI value. More surprisingly, only in two of
the variation pairs, PLCγ (0.8-fold) and Ras (0.4-fold), and PLCγ (0.8-fold) and Ras (4.0-fold), does
the simulation obtain a greater TI value than when the parameters of the variation pair were varied
individually.

4. Discussion

Despite advances in molecular therapies, only modest improvements have been made in the treatment
of patients with advanced NSCLC (Horn & Sandler, 2009). We have presented here a new method for
evaluating therapeutic NSCLC targets by applying a previously developed multiscale model. Because
this computational model links molecular and microscopic scales, we are able to assess the influence of
parameters at the molecular level on the tumour’s spatiotemporal behaviour at the microscopic and mul-
ticellular level. The most important feature of the method is that it takes both tumour growth measures
(simulation steps and cell number) into account, while general local sensitivity analysis only focuses on
one system output (Rabitzet al., 1983). Hence, the model presented in this paper is more appropriate
for evaluating therapeutic targets when two or more tumour outcomes are involved (as is realistic) than
is the general sensitivity analysis method, which only yields the relative information between the sys-
tem input and output. The comparison results confirm the effectiveness of the new method in yielding
parameter rankings based on both main tumour features (growth and motility), which is a significant
improvement over local sensitivity analysis.

Since PLCγ and ERK have been experimentally proven to play significant roles in cancer cell
growth and invasion (Dittmar et al., 2002; Santoset al., 2007), they have been implemented as ‘de-
cision’ molecules in determining a cell’s migration and proliferation fates in this 3D model (Wang
et al., 2009). It is thus reasonable to expect them to be more prominent than other parameters in the
therapeutic value rankings. Indeed, based on our analysis, PLCγ is a therapeutic target under parame-
ter inhibition strategy (Table2), while ERK qualifies as a valuable target in an amplification regimen
(Table3). What is unexpected, however, is that MEK exceeds PLCγ as the most important parameter in
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TABLE 3 Rankings with respect to TI for parameter amplification([1.1–2, 3–10]-fold of each
parameter’s reference value)

Rankings Parameter Variation TI Cell number Simulationstep
Group I

1 ERK 1.1 0.1843 13682 ↓ 222 —
2 TGFβR 3 0.1756 13828 ↓ 222 —
3 Ras 4 0.0161 16503 ↓ 222 —
4 PKC 2 0.0024 16732 ↓ 222 —

Group II
1 PLCγ 6 0.7395 214 ↓ 167 ↓
2 EGFR 10 0.7111 766 ↓ 168 ↓
3 MEK 10 0.4678 5829 ↓ 181 ↓
4 ERK 1.2 0.2518 11417 ↓ 207 ↓
5 TGFβR 10 0.184 13535 ↓ 220 ↓
6 Raf 3 0.0253 16198 ↓ 220 ↓
7 PKC 1.2-1.3 −0.0001 16775 ↑ 222 —

the inhibition regimen. We note that it has already been demonstrated experimentally that MEK plays
a significant role in the MAPK cascade (Wakeling, 2005). Overall, our result is also in good agreement
with another control analysis study on a more complex kinetic model of EGF-induced MAPK signalling
where both MEK and ERK have been identified to be critical for cellular signal transduction (Hornberg
et al., 2005). It is then straightforward to modify the representation of the signalling pathway (Fig.1)
using parameter rankings provided in Tables2 and3 in an effort to graphically represent therapeutic
target information. A tentative way to achieve this is shown in Fig.5 from which one can easily identify
which components can serve as therapeutic targets as well as their positions relative to other molecules
in the downstream EGFR signalling cascade. For example, it is easy to observe that PKC and Ras can
serve as therapeutic targets for both parameter inhibition and amplification treatments.

It can also be deduced from our analysis that targeting a parameter should be conducted in a cautious
manner. As shown in Fig.2a, MEK and ERK can only be considered as therapeutic targets when they
are at a variation of 0.5-fold and 1.1-fold, respectively. Other variations in these two parameters do not
satisfy the requirements for a therapeutic target; i.e. although some variations result in bigger TIs, the
adverse effects preclude them from being effective targets. This finding thus suggests that the amount
of molecular-targeted drugs on site represents a significantly important factor where minor fluctuations
can quickly change a therapeutic gain into a loss and vice versa.

Because it can track molecular signalling dynamics on a single-cell level, the multiscale computa-
tional platform employed in this study can potentially help us understand why MEK with a variation
of 0.5-fold and ERK with a variation of 1.1-fold are on the top of the therapeutic target list. We only
present some preliminary results here. Figure6 shows changes in concentration of PLCγ over time at
both population and single-cell levels for three simulations: the standard simulation, MEK (0.5-fold)
and ERK (1.1-fold), respectively. We chose to investigate PLCγ because it is the molecular determi-
nant for cell migration in our setup. The cancer cell reaching the nutrient source first is of particular
interest because it represents how fast the tumour system expands. From Fig.6, one sees that this partic-
ular cell experiences a greater change in PLCγ concentration than does the entire cell population in all
three simulations, which may explain why this cell reaches the nutrient source first. Moreover, there is
a clear difference between the graphs for MEK (0.5-fold) and the standard simulation, but only a small
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FIG. 4. (a) Plot of TI values for all variations in MEK and ERK. (b) Selected simulation snapshots for the standard simulation
(upper panel), MEK with a variation of 0.5-fold (middle panel) and ERK with a variation of 1.1-fold (lower panel). In the
snapshots, migrating cells are indicated in ‘red’, proliferating cells in ‘blue’ and quiescent cells in ‘green’. A colour version of
this figure is available atwww.imammb.oxfordjournals.org.

difference between the graphs for ERK (1.1-fold) and the standard simulation. This result confirms our
simulation results on tumour expansion rate (the number of simulation steps): 222 steps for both the
standard simulation and ERK (1.1-fold) and 230 steps for MEK (0.5-fold). Furthermore, the emergence
of the first new cell in the simulation via proliferation happens later in MEK (0.5-fold) than in the other
two simulation cases, which shows the effect MEK inhibition has, at this variation, on suppressing
tumour expansion.

The success of molecular-targeted therapeutics is often hindered by the capacity of tumour cells to
acquire resistance (Bublil & Yarden, 2007), the onset of which may be delayed by the ‘combination’ of
more than one inhibitor. Clinical investigators have begun to evaluate the benefit and efficacy of various
drug combinations, e.g. monoclonal antibodies and tyrosine kinase inhibitors (Guarinoet al., 2009),
anti-receptor therapy with EGFR downstream signalling inhibitors (Milton et al., 2007) and angiogene-
sis inhibitors (Morabitoet al., 2009). Hence, we conducted a set of pilot systemic analyses investigating
the effects of combined parameter perturbations on tumour growth and expansion (Table4). We hypoth-
esized that such a theoretical ‘combination therapy’ would produce a greater decrease in cell number
and increase in simulation steps in the tumour system (reflected in a greater TI value) than would in-
dividual therapies with the parameters involved in the particular combination therapy. However, only 2
out of 26 variation pairs showed such an improved effect (a 21.6% increase in TI for PLCγ [0.8-fold]
and Ras [0.4-fold] variation pair and 17.0% increase for PLCγ [0.8-fold] and Ras [0.4-fold], compared
to the individual parameter perturbation: PLCγ [0.8-fold] with TI = 0.1004 [see Table2]). Hence, in
this model, most of the combined parameter perturbations did not show improvement when compared
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TABLE 4 Systematic analysis of combined parameterperturbations

Parameter 1 Variation 1 Parameter 2 Variation 2 TI Cell number Simulationstep
Group I

PLCγ 0.8 PKC 0.7 0.0932 16569 240
PLCγ 0.8 PKC 2 0.0998 16459 240
PLCγ 0.8 ERK 1.1 0.1216 16093 240
PLCγ 0.8 TGFβR 3 0.1243 16048 240
PLCγ 0.8 Ras 0.4 0.1281 15984 240
PLCγ 0.8 Ras 4 0.1209 16105 240
PKC 0.7 ERK 1.1 0.1432 14371 222
PKC 0.7 TGFβR 3 0.1609 14075 222
MEK 0.5 PLCγ 0.8 0.1098 16064 237
ERK 1.1 PKC 2 0.1442 14354 222
ERK 1.1 Ras 4 0.1443 14352 222

TGFβR 3 PKC 2 0.1696 13929 222
TGFβR 3 Ras 4 0.1527 14211 222
Ras 0.4 ERK 1.1 0.1259 14662 222
Ras 0.4 TGFβR 3 0.1601 14088 222

Group II
PKC 0.7 Ras 4 −0.0178 17071 222
MEK 0.5 PKC 0.7 0.1882 13466 220
MEK 0.5 PKC 2 0.1899 13436 220
MEK 0.5 ERK 1.1 −0.0488 19631 249
MEK 0.5 TGFβR 3 0.1895 13142 216
MEK 0.5 Ras 0.4 0.1899 13436 220
MEK 0.5 Ras 4 0.1847 13524 220
ERK 1.1 TGFβR 3 0.2439 11549 207
Ras 0.4 PKC 0.7 −0.0136 17001 222
Ras 0.4 PKC 2 −0.0073 16896 222
Ras 4 PKC 2 −0.0153 17030 222

to individual parameter inhibition or amplification treatments. One explanation for this is that the under-
lying signalling system, represented by a system of differential equations in the model, is a non-linear
system, i.e. a change in the cellular responses (output) is not directly proportional to molecular changes
(input). Regardless, current clinical trials of multitargeted therapy in NSCLC treatment have indeed
only benefited a small percentage of patients who have been treated with chemotherapy and monoclonal
antibody therapy (Felip et al., 2007), which, to some degree, confirms our finding where most of the
combination therapy examinations failed to show additional therapeutic gain.

In summary, we have presented a new method for evaluating the effect of parameter variations on
two or more cancer traits or system outputs at the same time. This TI ranked the pathway components
according to their target value in order to achieve tumour control. In the future, other relevant output
factors, e.g. cell density and tumour diameter, will be incorporated into the TI equation form as well. We
note that TIs can also be used to examine which pathway mutations (to pathway components or their
association and dissociation kinetic rates) can be the leading causes of the cancer type implemented
in silico. Moreover, to facilitate ‘computational target discovery’, we plan to (1) integrate more inter-
connected signalling pathways that play key roles in cancer initiation and progression and (2) revise
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FIG. 5. Signalling pathway with encoded therapeutic value information. Therapeutic targets are presented with a different colour
(red for pathway inhibition (a) and blue for parameter amplification (b)) and font size according to their TI rankings; a target with
a higher ranking has a deeper colour and larger font size. The number at the top-right corner of each target indicates the variation
that leads to a favourable tumour outcome. A colour version of this figure is available atwww.imammb.oxfordjournals.org.

FIG. 6. Preliminary results of changes in concentration of PLCγ over time for three representative simulations: the standard
simulation (blue), MEK with a variation of 0.5-fold (green) and ERK with a variation of 1.1-fold (brown). Both the average
concentration values of all live cancer cells and the signalling dynamics for the first mobile cancer cell reaching the nutrient source
are depicted. The emergence of the first new cell via proliferation in the standard simulation and ERK (1.1-fold) occurs during Step
no. 42 and that of MEK (0.5-fold) in Step no. 53. A colour version of this figure is available atwww.imammb.oxfordjournals.org.
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the current model to understand tumour responses to different drug dosing regimen, e.g. continuous
and periodic drug infusion. We argue that the TI method paired with the cross-scale capacities of such
advanced agent-based modelling lend themselves to a more integrated approach of studying the thera-
peutic susceptibility of signalling pathways in cancer.
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