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The impact of uncertainty in a blood coagulation model
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Deterministic mathematical models of biochemical processes operate as if the empirically derived rate
constants governing the dynamics are known with certainty. Our objective in this study was to explore the
sensitivity of a deterministic model of blood coagulation to variations in the values of its 44 rate constants.
This was accomplished for each rate constant at a given time by defining a normalized ensemble standard

deviation
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ki
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)

that accounted for the sensitivity of the predicted concentration of each protein species
to variation in that rate constant (from 10 to 1000% of the accepted value). A mean coefficient of variation

derived fromw
f
ki

(t) values for all protein species was defined to quantify the overall variation introduced
into the model’s predictive capacity at that time by the assumed uncertainty in that rate constant. A
time-average value of the coefficient of variation over the 20-min simulation for each rate constant was
then used to rank rate constants. The model’s predictive capacity is particularly sensitive (50% of the
aggregate variation) to uncertainty in five rate constants involved in the regulation of the formation and
function of the factor VIIa–tissue factor complex. Therefore, our analysis has identified specific rate
constants to which the predictive capability of this model is most sensitive and thus where improvements
in measurement accuracy will yield the greatest increase in predictive capability.
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1. Introduction

The blood coagulation process represents the initial phase of the biological repair mechanism designed
to respond to injuries to the vasculature that result in leakage of blood into the surrounding tissue.
Re-establishment of an effective barrier between the intra- and extravascular compartments then allows
the slower phase of wound healing to take place. In terms of a chemical reaction network, coagulation
involves an intricate sequence of highly interwoven concurrent processes with many simultaneous pos-
itive and negative feedback loops regulating its onset, progress and ultimate magnitude. More than 50
soluble and cell-associated protein components of this system have been identified to date (Brummel-
Ziedinset al., 2003). The complexity of the catalytic processes has led a number of investigators to
use ensembles of ordinary differential equations (ODEs) to achieve an adequate recapitulation of their
empirical observations. These include ODE-based models describing the function and regulation of
the prothrombinase complex (Nesheimet al., 1984), the extrinsic tenase complex (Lu et al., 2004),
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fibrinogen conversion to fibrin by thrombin (Lewis et al., 1985) and its regulation by antithrombin III
(Naski & Shafer, 1991), and factor Va inactivation (Hockinet al., 1999).

A comprehensive ODE-based model of tissue factor (TF)-initiated blood coagulation developed by
Hockin et al. (2002) has been used to understand complex biochemical processes (Bungayet al., 2003;
Orfeo et al., 2004, 2005;Butenaset al., 2004; Lo et al., 2005), explore thrombotic risk in healthy
and patient populations (Brummel-Ziedinset al. 2005a; Brummel-Ziedinset al. 2005b) and analyze
the effectiveness of inhibitors (Adamset al., 2003; Panteleevet al., 2007). A number of groups have
reported even more extensive ODE-based models that simulate: blood contributions (Panteleevet al.,
2006; Luan et al., 2007; Anandet al., 2008a); flow and blood contributions (Kuharsky & Fogelson,
2001; Ataullakhanov & Panteleev, 2005; Fogelson & Tania, 2005; Anandet al., 2008b) and flow, blood
and vessel wall contributions (Xu et al., 2008; Runyonet al., 2008) to the overall coagulation process.

A perfect deterministic model of blood coagulation,i .e. a set of ODEs that explicitly represents all
biochemical processes, including the mechanistic contributions of vascular wall elements, extravascular
components and circulating cells, combined with flawless measurements of all the relevant protein factor
concentrations and knowledge of the position and velocity of all molecules involved in blood flow, could
be integrated numerically to make highly accurate predictions of this repair process. However, both
practical and theoretical barriers thwart such a construct at this time. Practical impediments include (1)
incomplete and/or controversial mechanisms and roles for some proteins (e.g. protein S, protein Z); (2)
insufficient empirical data comparing pro- and anticoagulant mechanisms under flow to those observed
in closed model systems and (3) a lack of experimental data from models where vessel wall, blood and
flow contributions can be analyzed and manipulated to validate the predictions of such a model.

A number of approaches have been taken to circumvent these limitations. Parameter optimization
is one approach that addresses insufficiencies in inventory or mechanism by direct fitting of the set
of existing model functions to experimental observations (Orfao et al., 2006). Another approach is to
reduce the complexity of the model by removing equations that have little or no impact on its predictive
capacity (Wagenvoordet al., 2006). However, these reductionist approaches potentially limit the utility
of the adjusted model to the empirical system to which they have been fit.

At the theoretical level, ODE-based modelling is constrained because it requires that the rate con-
stants governing the reactions adequately describe the dynamics of the coagulation cascade in all vol-
umes of blood and are without error. In addition, these models assume that rate constants do not vary
across a population of subjects from diverse genetic backgrounds. A related limitation is the assump-
tion that the initial concentrations of model reactants are precisely known. To date, studies that assess
the sensitivity of ODE-based models to the actual uncertainty that characterizes empirically derived
modelling parameters have been used to inform measurement practices (Aldridge et al., 2006), define
probability distributions for more sophisticated stochastic simulations (Lo et al., 2005) and identify drug
targets (Luanet al., 2007).

In this study, we systematically evaluate the effect of perturbing, across an experimentally relevant
range, the rate constants of an empirically validated ODE-based model of TF-initiated blood coagula-
tion. Specific rate constants are identified to which the predictive capacity of the model is most sensitive
and where an increase in measurement accuracy will yield the best performance in model accuracy.

2. Methods

2.1 Model description

The Hockinet al. model (2002) describes TF-initiated blood coagulation and, as modified (Butenas
et al., 2004), consists of a set of 29 chemical reactions describing the concentrations of a subset of
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proteins known to be crucial to the coagulation cascade (see Supplemental Table1) (Jones & Mann,
1994; Hockinet al., 2002). These reactions are converted to a system of 34 ODEs using the laws of mass
action kinetics (see Appendix). These ODEs couple via their shared species yielding a reaction pathway
representing the production and consumption of individual species. The rate constants (see Supplemen-
tal Table1) governing the rate at which the species concentrations change over time are derived from
experimental measurements made under conditions of saturating concentrations of phospholipid or in a
few cases by extrapolation from analogous reactions (Hockinet al., 2002).

Initial reaction conditions for the model are given by the concentrations of the 34 species involved,
9 of which are initially non-zero and reflect the average values observed in a healthy population and one
species, TF, set to 5 pM (see Supplemental Table 2). MatLab’s stiff solver ode15s (Shampine & Reichelt,
2008) was used to integrate the ODE model with variable time steps whose maximum size was set to
5 × 10−3 s. Each simulation consists of a deterministic integration of length 20 min. To evaluate the
rate constants in our model, 836 simulations (19 for each rate constant) were performed yielding 20-min
time courses for all 34 species at 1-s intervals.

2.2 Model output

The output of the model specifies the concentrations of 34 species over time. The selected 20-min time
frame is sufficient to capture the process of thrombin generation in the empirical models used to validate
the Hockin et al. model (2002). In empirical models, thrombin is the most common analyte chosen
for examination because of its ease of measurement and its central and diverse roles (Crawleyet al.,
2007). Thrombin generation in these closed model systems displays three distinct phases: initiation of
coagulation, propagation ofα-thrombin formation and termination of the procoagulant response. To
illustrate in detail the consequences of rate constant uncertainty, we chose eight time points (2, 4.4, 6,
8, 10, 12, 15 and 20 min) reflecting key moments during the process of thrombin generation (a typical
numerical solution is shown in Fig.1). The initiation phase is represented by the 2-min time point

FIG. 1. Typical thrombin generation progress curve illustrating the three phases of the clotting process observed in closed model
systems of coagulation. Labelled arrows refer to specific times where results of sensitivity analyses are shown.
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(Fig. 1, pt A). The 4.4-min time point represents the average clot time in empirical model systems that
relate to theHockin et al. model (2002). Clot time represents the transition point from the initiation
phase to the propagation phase (Fig.1, pt B). The 6-min point represents the propagation phase, a time
of rapid thrombin generation (Fig.1, pt C). The 8-min point represents peak thrombin levels (Fig.1,
pt D). The 10- and 12-min points span the period during which free thrombin levels are rapidly being
suppressed by endogenous protease inhibitors (Fig.1, pts, E,F), while the 15- and 20-minute points
capture the aftermath of the procoagulant response (Fig.1, pts, G,H), a state of potential importance to
the overall barrier function of a clot (Orfeoet al., 2005, 2008).

2.3 Model sensitivity

To characterize the impact of rate constant uncertainty, the magnitude of variation for a given output (e.g.
time to peak thrombin level) resulting from simultaneous perturbation of all rate constants across a spe-
cific range of values should be calculated. However, such an ensemble experiment, even if each rate con-
stant was only assigned three hypothetical values, would require 344 or ∼ 1020 individual simulations.
If each takes 1 min on a single computer, the total computing time would be approximately 1,000,000
billion central processing unit years. The alternative approach taken here to characterize the impact of
rate constant (ki ) uncertainty was to use values of the rate constants perturbed, one at a time, between
10 and 1000% (0.1ki − 10ki ) of the accepted values. The range of variation was selected to encompass
the range of variation characterizing the estimates of these rate constants in the published literature. One
hundred percent is the standard model value and 10 – 1000% will be referred to as the ensemble range.
The sensitivity of rate constantki is examined by integrating the ODE model with rate constantki given
by 10 linearly spaced values between 10 and 100% ofki and 10 linearly spaced values between 100 and
1000% ofki . The model response to changes inki is measured by changes in species (f ) concentrations.

2.4 Ensemble standard deviation

For any given model species (f ) at any selected time (t), an ensemble standard deviation
(
σ

f
ki

(t)
)

char-
acterizing the variation in that species concentration is calculated from the set of predicted time courses
for that species generated by varying a given rate constant (ki ) across a linearly spaced range (10–1000)
of values.

2.5 Coefficient of variation

The coefficient of variation
(
w

f
ki
(t)
)

is defined to be the ensemble standard deviation normalized by the
peak value (P( f )) of the standard model curve (100% model values) for each species. For example,

thrombin (IIa) response to variance ink36 is given bywIIa
36(t) =

σ IIa
36 (t)

264nM, where 264 nM thrombin is the
peak concentration of thrombin under standard conditions (see Fig.1). Normalization was performed
in order to avoid numerical effects related to the differences in concentrations (> 106) between species
in the pathway. The peak concentration (P( f )) was chosen as the normalization factor rather than
the corresponding concentration at timet from the standard model curve or the ensemble mean curve
because these are both time dependent.

2.6 Time-averaged coefficient of variation

For every rate constant and each species, the coefficients of variation
(
w

f
ki
(t)
)

were averaged over the
20-min simulation. For rate constant (ki ) at time t , the mean coefficient of variation for all protein
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species is given byγi (t) = 1
34

∑34
f =1 w

f
ki
(t). The time average ofγi (t) for ki over the 20-min simulation

is given byΓ j . This value is a measure of the overall sensitivity of all factors to variation inki . The
relative magnitude of these values provide a simple measure of each species response to uncertainty in
rate constantki . Thrombin was evaluated individually and then a global assessment of the impact on all
species was conducted.

2.7 Explained variance

To compareΓ j values, we define ‘explained variance’ asEvar(K ) =
∑K

j =1 Γ̂ j
∑44

j =1 Γ̂ j
, whereΓ̂ j is given byΓ j

sorted by magnitude. Thrombin was evaluated individually and then a global assessment of the impact
on all species was conducted. The explained variance is a mechanism for ranking rate constants on the
basis of their contribution to the total variance and thereby identifies rate constants for which uncertainty
in their values has the greatest consequences.

3. Results

3.1 Sensitivity of thrombin to uncertainty

Figure 2 presents the results of varying two of the rate constants on thrombin generation: Panel A
presents the family of time course data generated by varyingk36 (TF∙VIIa∙Xa + TFPI→TF∙VIIa∙Xa∙
TFPI) and Fig. 2B by varying k41 (IIa + AT → IIa∙AT). The ensemble standard deviation (σ(t)) (dark
solid curve) provides a quantitative measure of the range of variation in thrombin concentration at each
time point induced by rate constant uncertainty. The primary consequences of error ink36 are observed
as alterations in the duration of the initiation phase with times to peak thrombin concentrations rang-
ing from 4 to greater than 20 min. However, measurement error ink41 results in peak thrombin lev-
els varying over a 20-fold range, while times to peak thrombin concentrations are relatively constant.
Normalization of theσ(t) generated the dimensionless coefficient of variation

(
w

f
ki
(t)
)

as a first ap-
proximation for comparative purposes of the thrombin response to uncertainty inki (Fig. 2C). The
temporal dependence of bothσ(t) andw

f
ki
(t) illustrate the extent to which the sensitivity off (in this

case thrombin) to variance inki can be related to discrete phases of the coagulation process. For ex-
ample, the results of the analysis showing that variation ink36 has the most profound effects on the
progress of the reaction during the initiation phase are consistent with empirical findings demonstrating
that independence from TF∙VIIa is achieved prior to the onset of the propagation phase (Orfeo et al.,
2005).

Figure 3 depicts the coefficient of variation for thrombin
(
wIIa

ki

)
as a function ofki at specific times

during the phases of coagulation (See Supplemental Table 1 for equations associated with each rate
constant). Larger bars indicate that measurement error in those rate constants would have more profound
consequences on predicting thrombin levels at that time. Consistent with the more detailed analysis
presented for each individual rate constant,k36 andk41 (Fig. 2),the magnitude of the effect of error in
each rate constant on thrombin generation has a unique pattern with respect to its temporal dependence.
Visual inspection suggests that error in certain rate constants (e.g.k41 & k4) has a comparitively larger
impact with respect to predicting thrombin levels throughout the reaction time course.

In order to globally compare the effect of uncertainty in eachki with respect to thrombin levels,
a time-averaged coefficient for each rate constant was generated and then expressed as a fraction of
the sum of all the time-averaged coefficients for all 44 rate constants. These values (termed explained
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FIG. 2. Sensitivity ofα-thrombin concentration to rate constant (ki ) variation: time series of thrombin concentrations when varying
k36or k41. Panel A: variation ofk36 (governing the formation of TF∙ VIIa ∙ Xa ∙ TFPI from the reaction of TF∙ VIIa ∙ Xa with
TFPI) from 3.2× 107 M−1s−1 (dotted curve) to 3.2× 108 M−1s−1 (standard model value, dashed curve) to 3.2× 109 M−1s−1

(dash dot curve). The standard deviation associated with the mean thrombin concentration at each time point is shown as a solid
line. Panel B: variation ofk41 (governing the reaction of AT withα-IIa) from 7.2 × 102 M−1 s−1 (dotted curve) to 7.1 × 103

M−1s−1 (standard model value, dashed curve) to 7.1 × 104 M−1s−1 (dash dot curve). The standard deviation associated with
the mean thrombin concentration at each time point is shown as a solid line. Panel C: the coefficient of variation

(
wIIa

ki
(t)
)

at each
time point is plotted fork36 andk41. The time-averaged coefficient of variation values (defined as the mean of the coefficient of
variations across the 20-min simulation) are also shown for each rate constant.

variance,Γ j ) indicate the relative magnitude of the contribution of uncertainty in eachki to the overall
variance in thrombin levels induced by the assumed range of measurement error. Figure4A presents
a ranked ordering of the 20 most contributive rate constants. The first 10 rate constants contribute ap-
proximately 50% of the variance observed. The reactions governed by these 10 rate constants are shown
in Fig. 4B. These 10 rate constants control processes throughout all three phases of the reaction. Of
the remaining 34 rate constants, 24 (not shown in Fig. 4) contribute less than 20% of the aggregate
variance.
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FIG. 3. Thrombin sensitivity across the 10–1000% parameter range for each rate constant at selected times. The coefficient of
variation

(
wIIa

ki
(t)
)

characterizing predicted thrombin concentrations is plotted for eachk1−44 at t = 2, 4.4, 6, 8, 10, 12, 15 and
20 min.
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FIG. 4. Ranking rate constants by the effect that uncertainty in their values has on thrombin levels. The explained variance is
defined as the time-averaged coefficient of variation for thrombin for a givenki expressed as a fraction of the sum of all the time-
averaged coefficients of variation for IIa for all 44ki . Panel A: rate constants (x-axis, see Appendix for list of equations) ranked
in descending order by the magnitude of their contribution (Γ j ) to the overall variance (y-axis). The line displays the aggregate
explained variance as each rate constant’s contribution is added. Panel B: the reactions governed by the 10 rate constants where
uncertainty in the rate constants has the greatest effect on thrombin levels.

3.2 Sensitivity of all model species ( f ) to uncertainty

The above analysis stratified rate constants based on the impact that uncertainty in their values would
have on the prediction of thrombin levels. The primacy of thrombin as an analyte in experimental coagu-
lation models, however, does not extend to this computational approach where the goal is to recapitulate
the complexity of the process,i .e. adequately represent time course data for its 34 species.

Figure 5 presents coefficients of variation
(
w

f
ki

)
for a subset of species for all 44 rate constants at

specific time points during the three phases of coagulation. Different colored bars represent the various
species with the magnitude of the coefficient of variation depicted by bar length. Only 15 species,
including the species present at the onset of the reaction and their activated products, are depicted in
order to reduce the complexity of the image. A supplemental movie is available that visualizes each
second of the reaction in terms of the coefficients of variations of all species for all 44 rate constants.
The overall length of each composite bar for each rate constant provides a basis for identifying the rate
constants where the assumed error range (or lack of accuracy in the rate constant value) generates the
largest variation in species concentrations at that time point.

Table1 identifies for all 34 model species the rate constants to which all species concentrations are
most (>5% of total variation) and least sensitive (<0.05% of the total variation) in the overall evaluation
of the TF-initiated pathway. The analysis in Fig. 5 focuses on 15 of these species. The aggregate bar
length of each rate constant is expressed as a fraction of the sum of all the bar lengths within one time
point. The analysis indicates that at any time, the major contribution to the overall variance in species
concentrations due to uncertainty is from a small number of rate constants and that the ensemble of these
rate constants differs at each time point. Across the selected time points, only 10 different rate constants
meet the>5% criteria. The number of rate constants contributing<0.05% ranges from 6 to 13 at any of
the selected times and involves 17 unique rate constants.

Reevaluating the data in terms of explained variance resulted in the identification and ranking of
the 20 largest contributors to the overall variance for all species (Fig.6A). This analysis indicates that
measurement uncertainty in five rate constants contribute approximately 50% of the variance observed
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FIG. 5. Sensitivity of a selected group of model species across the 10–1000% parameter range for each rate constant. Protein
species are identified by colors and block size represents the magnitude of the coefficient of variation

(
wIIa

ki
(t), x-axis

)
for each

species for eachk1−44 (y-axis) att = 2, 4.4, 6, 8, 10, 12, 15 and 20 min.
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TABLE 1 Time-dependent sensitivity of rate constants touncertainty

Time Most Sensitive Least Sensitive
(min) Rate Constants† Rate Constants‡

2 k4 k11 k36 k44 k2 k31 k23 k20 k12 k25 k5 k7 k18 k37 k21 k22 k33 k24 k19
4.4 k4 k11 k36 k2 k23 k20 k12 k5 k37 k33
6 k11 k36 k4 k14 k2 k31 k12 k20 k5 k23 k37 k33
8 k11 k36 k14 k4 k2 k12 k20 k5 k37 k23 k33
10 k14 k11 k36 k9 k4 k2 k20 k12 k5 k37 k33 k23
12 k14 k11 k36 k9 k20 k5 k12 k33 k37 k23 k43
15 k14 k11 k36 k9 k5 k20 k12 k33 k43 k37 k26 k16 k23
20 k14 k11 k9 k36 k19 k24 k5 k20 k12 k43 k26 k16 k33 k44 k37

†>5% of total variation.
‡<0.5% of total variation.

FIG. 6. Ranking rate constants by the effect that uncertainty in their values has on the levels of all model species. Panel A: rate
constants (x-axis, see Appendix for list of equations) ranked in descending order by the magnitude of their contribution (Γ j ) to
the overall variance (y-axis). The line displays the aggregate explained variance as each rate constant’s contribution is added.
Panel B: the reactions governed by the 10 rate constants where uncertainty in the rate constants has the greatest effect on model
predictability.

from perturbation of all 44 rate constants; the reactions controlled by these rate constants are shown
in Fig. 6B. These five rate constants govern reactions in the initiation phase and are involved in the
regulation of the formation and function of TF∙VIIa. Twenty-four rate constants, not displayed in Fig.6,
contribute less than 13% of the total variance calculated.

3.3 Stability of the system of ODEs

During a single numerical simulation, using normal values for rate constants and factor concentra-
tions, the number of eigenvalues of the Jacobian (matrix of partial derivatives) with positive real part is
bounded between 1 and 10 and averages approximately 5. This implies that during a typical simulation,
the numerical solution is unstable in as many as 10 different directions in the state space and on average
uncertainty in factor concentrations will be growing in approximately 5 dimensions (some very slowly)
and shrinking in approximately 24 directions (most very slowly) (Danforth & Yorke, 2006).
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FIG. 7. The eigenvalue spectrum for the Jacobian matrix associated with the ODE model at timet = 4 min. There are 8 eigenvalues
with positive real part and 21 with negative real part. The system of ODE’s is stiff, with a condition number (ratio of the largest
singular value to the smallest) of roughly 1025 at t = 4.4 min.

Figure7 presents the analysis of one time point, 4.4 min. At this time, there are 8 eigenvalues with
positive real part and 21 with negative real part (Fig.7). Five of the eigenvalues are zero due to the fact
that chemical expressions 23 through 27, seen in Supplemental Table1, produce species that do not
interact (antithrombin III complexes with enzymes). Across the entire 20-min time frame, the average
number of eigenvalues with positive real part is seen to vary between 4 and 7 for one-by-one perturbation
of rate constants (data not shown). Rate constants whose accuracy was shown to have little effect on pre-
dicted species levels (the 24 rate constants that accounted for<13% of the explained variance in Fig.6)
were also seen to have negligible effect on the average number of eigenvalues with positive real part.

4. Discussion

In this study, we evaluate the effect of uncertainty in the value of rate constants used in a previously
published mathematical model (Hockinet al., 2002) describing the TF-initiated pathway of coagulation.
These analyses have identified 5 of 44 rate constants to which the predictive capacity of the model is
most sensitive, accounting for 50% of the overall variation induced by the selected parameter range.
These same rate constants explain 25% of the aggregate variation in predicted thrombin levels.

Compilations of empirically derived rate constant(s) for a given process typically yield a range of
values when reported by different laboratories or from the same laboratory at different times. Sources of
this variation are well known to investigators and include the origins of the proteins (e.g. recombinant
vs. plasma derived), variations in the specific activity of proteins after isolation from the same source,
variable buffer composition, differences in the handling and assay of relatively unstable species (e.g.
factor VIIIa) and differences in the surfaces upon which many coagulation catalytic complexes must
assemble and function (e.g. phospholipid composition and concentration). Even for a relatively simple
reaction, one without surface or cofactor dependence, like the reaction of factor Xa with antithrombin
III ( k38 in this analysis), published values from four laboratories vary over a 3-fold range.

In principle, a single integration of a deterministic ODE-based model cannot incorporate available
empirical estimates of the magnitude of measurement variation as part of its respective model values
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and therefore can not generate predictions that capture the consequences of this uncertainty. The current
analysis attempts to gauge the implications of measurement imprecision in a reaction network governed
by 44 rate constants by mechanically probing a parameter range extending from 10-fold below to 10-fold
above the standard model value for each rate constant. The intent was to exceed the range of variation
that characterizes the state of the art with respect to the most complex of the modeled reactions. A
central result of our analyses was that rate constants could be stratified in terms of the impact that
uncertainty in their values, i.e. measurement imprecision, caused in model outputs. If the consequences
of perturbing each of the rate constants across the same parameter range had been of equal significance,
each would have contributed 1/44th(∼ 2.3%) to the aggregate variance. However, with respect to the
output of all model species across the entire time frame, 10 rate constants contribute less than 0.1% each
to the aggregate variance and 24 rate constants collectively contribute no more thank14 alone. A similar
result was observed when thrombin was the monitored output parameter: 12 rate constants contributed
less than 0.1% each and the contribution of the most sensitive rate constant (k41) was equivalent to the
contribution of the 19 least influential rate constants.

In the global analysis of the effects of rate constant uncertainty, the five most sensitive rate constants
govern reactions critical to events during the initiation phase. All involve the TF–VIIa complex. The
effect of uncertainty in these rate constants is not limited to the prediction of species levels during the
initiation phase but is seen throughout the 20-min reaction time course (see Table1). When the analysis
is focused on a single species, thrombin, a major difference from the global assessment is the importance
of k41, which governs the inhibition of thrombin by antithrombin III. Literature values fork41 are in good
agreement, falling within a 2-fold range. However, the importance of rate constantsk36, k11 andk4 is
still present, reflecting the importance of accurately measuring the rate constants governing the initiating
complex.

In summary, our analyses identified a handful of rate constants for which the effects on the pre-
dictive capacity of the model are most severe if differences exist between the current model values
and the ‘actual’ values governing reactions in a given empirical setting under study. Improvements, if
possible, in the measurement accuracy of these rate constants will yield the greatest benefits to the pre-
dictive capacity of this model. Likewise, rate constants whose variance is determined to have little effect
should remain unperturbed in predictions made by drawing ensembles of rate constants from stochastic
distributions. The lack of sensitivity to uncertainty in these rate constants reduces the dimension of the
space from which the ensemble is sampling.
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