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The impact of uncertainty in a blood coagulation model
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Deterministic mathematical models of biochemical processes operate as if the empirically derived rate
constants governing the dynamics are known with certainty. Our objective in this study was to explore the
sensitivity of a deterministic model of blood coagulation to variations in the values of its 44 rate constants.
This was accomplished for each rate constant at a given time by defining a normalized ensemble standard
deviation(wlji (t)) that accounted for the sensitivity of the predicted concentration of each protein species
to variation in that rate constant (from 10 to 1000% of the accepted value). A mean coefficient of variation
derived fromw f (t) values for all protein species was defined to quantify the overall variation introduced
into the model’s predictive capacity at that time by the assumed uncertainty in that rate constant. A
time-average value of the coefficient of variation over the 20-min simulation for each rate constant was
then used to rank rate constants. The model’s predictive capacity is particularly sensitive (50% of the
aggregate variation) to uncertainty in five rate constants involved in the regulation of the formation and
function of the factor Vlla—tissue factor complex. Therefore, our analysis has identified specific rate
constants to which the predictive capability of this model is most sensitive and thus where improvements
in measurement accuracy will yield the greatest increase in predictive capability.

Keywords blood coagulation; uncertainty; math modeling.

1. Introduction

The blood coagulation process represents the initial phase of the biological repair mechanism designed
to respond to injuries to the vasculature that result in leakage of blood into the surrounding tissue.
Re-establishment of an effective barrier between the intra- and extravascular compartments then allows
the slower phase of wound healing to take place. In terms of a chemical reaction network, coagulation
involves an intricate sequence of highly interwoven concurrent processes with many simultaneous pos-
itive and negative feedback loops regulating its onset, progress and ultimate magnitude. More than 50
soluble and cell-associated protein components of this system have been identified &ruaat@€l-
Ziedinset al, 2003. The complexity of the catalytic processes has led a number of investigators to
use ensembles of ordinary differential equations (ODES) to achieve an adequate recapitulation of their
empirical observations. These include ODE-based models describing the function and regulation of
the prothrombinase complexiésheimet al, 1984, the extrinsic tenase complek|( et al,, 2004,
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fibrinogen conversion to fibrin by thrombihdéwis et al, 1985 and its regulation by antithrombin Il
(Naski & Shafey1991), and factor Va inactivation{ockin et al,, 1999.

A comprehensive ODE-based model of tissue factor (TF)-initiated blood coagulation developed by
Hockinet al. (2002 has been used to understand complex biochemical procéasegayet al., 2003
Orfeo et al, 2004 2005; Butenaset al, 2004 Lo et al, 2009, explore thrombotic risk in healthy
and patient population8¢ummel-Ziedinset al. 2005 Brummel-Ziedinset al. 2005 and analyze
the effectiveness of inhibitorsA\amset al, 2003 Pantelee\et al, 2007). A number of groups have
reported even more extensive ODE-based models that simulate: blood contribBtorns|¢e\et al.,

2006 Luanet al, 2007 Anandet al, 20083; flow and blood contributionskuharsky & Fogelson
2001, Ataullakhanov & Panteleg2005 Fogelson & Tania2005 Anandet al, 20088 and flow, blood
and vessel wall contributionX (1 et al, 2008 Runyonet al,, 2008 to the overall coagulation process.

A perfect deterministic model of blood coagulatiore. a set of ODEs that explicitly represents all
biochemical processes, including the mechanistic contributions of vascular wall elements, extravascular
components and circulating cells, combined with flawless measurements of all the relevant protein factor
concentrations and knowledge of the position and velocity of all molecules involved in blood flow, could
be integrated numerically to make highly accurate predictions of this repair process. However, both
practical and theoretical barriers thwart such a construct at this time. Practical impediments include (1)
incomplete and/or controversial mechanisms and roles for some proteins (e.g. protein S, protein Z); (2)
insufficient empirical data comparing pro- and anticoagulant mechanisms under flow to those observed
in closed model systems and (3) a lack of experimental data from models where vessel wall, blood and
flow contributions can be analyzed and manipulated to validate the predictions of such a model.

A number of approaches have been taken to circumvent these limitations. Parameter optimization
is one approach that addresses insufficiencies in inventory or mechanism by direct fitting of the set
of existing model functions to experimental observatiddsigo et al,, 2006. Another approach is to
reduce the complexity of the model by removing equations that have little or no impact on its predictive
capacity (Vagenvoorcet al., 2006. However, these reductionist approaches potentially limit the utility
of the adjusted model to the empirical system to which they have been fit.

At the theoretical level, ODE-based modelling is constrained because it requires that the rate con-
stants governing the reactions adequately describe the dynamics of the coagulation cascade in all vol-
umes of blood and are without error. In addition, these models assume that rate constants do not vary
across a population of subjects from diverse genetic backgrounds. A related limitation is the assump-
tion that the initial concentrations of model reactants are precisely known. To date, studies that assess
the sensitivity of ODE-based models to the actual uncertainty that characterizes empirically derived
modelling parameters have been used to inform measurement pragtidgedde et al, 2009, define
probability distributions for more sophisticated stochastic simulatibog{ al., 2005 and identify drug
targets (Luanet al,, 2007).

In this study, we systematically evaluate the effect of perturbing, across an experimentally relevant
range, the rate constants of an empirically validated ODE-based model of TF-initiated blood coagula-
tion. Specific rate constants are identified to which the predictive capacity of the model is most sensitive
and where an increase in measurement accuracy will yield the best performance in model accuracy.

2. Methods

2.1 Model description

The Hockinet al. model (2002) describes TF-initiated blood coagulation and, as modHiettifas
et al, 2004, consists of a set of 29 chemical reactions describing the concentrations of a subset of
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proteins known to be crucial to the coagulation cascade (see Supplementall)fahees & Mann
1994 Hockinet al, 2002. These reactions are converted to a system of 34 ODEs using the laws of mass
action kinetics (see Appendix). These ODEs couple via their shared species yielding a reaction pathway
representing the production and consumption of individual species. The rate constants (see Supplemen-
tal Tablel) governing the rate at which the species concentrations change over time are derived from
experimental measurements made under conditions of saturating concentrations of phospholipid or in a
few cases by extrapolation from analogous reactibfzskin et al., 2002).

Initial reaction conditions for the model are given by the concentrations of the 34 species involved,
9 of which are initially non-zero and reflect the average values observed in a healthy population and one
species, TF, setto 5 pM (see Supplemental Table 2). MatLab’s stiff solver od&i&sipine & Reichelt
2009 was used to integrate the ODE model with variable time steps whose maximum size was set to
5 x 10~3 s. Each simulation consists of a deterministic integration of length 20 min. To evaluate the
rate constants in our model, 836 simulations (19 for each rate constant) were performed yielding 20-min
time courses for all 34 species at 1-s intervals.

2.2 Model output

The output of the model specifies the concentrations of 34 species over time. The selected 20-min time
frame is sufficient to capture the process of thrombin generation in the empirical models used to validate
the Hockin et al. model (2002). In empirical models, thrombin is the most common analyte chosen
for examination because of its ease of measurement and its central and divers€raldsy(et al,

2007. Thrombin generation in these closed model systems displays three distinct phases: initiation of
coagulation, propagation af-thrombin formation and termination of the procoagulant response. To
illustrate in detail the consequences of rate constant uncertainty, we chose eight time points (2, 4.4, 6,
8, 10, 12, 15 and 20 min) reflecting key moments during the process of thrombin generation (a typical
numerical solution is shown in Fid.). The initiation phase is represented by the 2-min time point
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FiG. 1. Typical thrombin generation progress curve illustrating the three phases of the clotting process observed in closed model
systems of coagulation. Labelled arrows refer to specific times where results of sensitivity analyses are shown.
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(Fig. 1, pt A). The 4.4-min time point represents the average clot time in empirical model systems that
relate to theHockin et al. model (2002. Clot time represents the transition point from the initiation
phase to the propagation phase (Higpt B). The 6-min point represents the propagation phase, a time
of rapid thrombin generation (Fid., pt C). The 8-min point represents peak thrombin levels (Eig.

pt D). The 10- and 12-min points span the period during which free thrombin levels are rapidly being
suppressed by endogenous protease inhibitors (Figts, E,F), while the 15- and 20-minute points
capture the aftermath of the procoagulant response {Fgs, G,H), a state of potential importance to
the overall barrier function of a cloQffeoet al, 2005 2008.

2.3 Model sensitivity

To characterize the impact of rate constant uncertainty, the magnitude of variation for a given output (e.g.
time to peak thrombin level) resulting from simultaneous perturbation of all rate constants across a spe-
cific range of values should be calculated. However, such an ensemble experiment, even if each rate con-
stant was only assigned three hypothetical values, would regtfirer3- 10?° individual simulations.

If each takes 1 min on a single computer, the total computing time would be approximately 1,000,000
billion central processing unit years. The alternative approach taken here to characterize the impact of
rate constantk{) uncertainty was to use values of the rate constants perturbed, one at a time, between
10 and 1000% (Ak; — 10k;) of the accepted values. The range of variation was selected to encompass
the range of variation characterizing the estimates of these rate constants in the published literature. One
hundred percent is the standard model value and 10 — 1000% will be referred to as the ensemble range.
The sensitivity of rate constaki is examined by integrating the ODE model with rate congtagtven

by 10 linearly spaced values between 10 and 100% ahd 10 linearly spaced values between 100 and
1000% ofk; . The model response to changegiiis measured by changes in specié€s¢oncentrations.

2.4 Ensemble standard deviation

For any given model species ) at any selected timea), an ensemble standard deviati@m: (t)) char-
acterizing the variation in that species concentration is calculated from the set of predicted time courses
for that species generated by varying a given rate condgragross a linearly spaced range (10—-1000)

of values.

2.5 Coefficient of variation

The coefficient of varlatlor@wk (t)) is defined to be the ensemble standard deviation normalized by the
peak value P(f)) of the standard model curve (100% model values) for each species. For example,

thrombin (lla) response to variancekgs is given byw”a(t) = ;ggs,\),l, where 264 nM thrombin is the

peak concentration of thrombin under standard condltlons (seelFiblormalization was performed

in order to avoid numerical effects related to the differences in concentratioh€% between species

in the pathway. The peak concentratio®(f)) was chosen as the normalization factor rather than
the corresponding concentration at titmffom the standard model curve or the ensemble mean curve
because these are both time dependent.

2.6 Time-averaged coefficient of variation

For every rate constant and each species, the coefficients of var@anﬁim) were averaged over the
20-min simulation. For rate constark; ) at timet, the mean coefficient of variation for all protein
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species is given by; (t) = 3—14 Z3f4=1 wkfi (t). The time average af; (t) for k; over the 20-min simulation

is given by 7. This value is a measure of the overall sensitivity of all factors to variatidg.ifhe

relative magnitude of these values provide a simple measure of each species response to uncertainty in
rate constark; . Thrombin was evaluated individually and then a global assessment of the impact on all
species was conducted.

2.7 Explained variance

K -
K T AL
2= =, where/7 is given by
j=11]
sorted by magnitude. Thrombin was evaluated individually and then a global assessment of the impact
on all species was conducted. The explained variance is a mechanism for ranking rate constants on the
basis of their contribution to the total variance and thereby identifies rate constants for which uncertainty

in their values has the greatest consequences.

To comparel’j values, we define ‘explained variance’ Bg(K) =

3. Results
3.1 Sensitivity of thrombin to uncertainty

Figure 2 presents the results of varying two of the rate constants on thrombin generation: Panel A
presents the family of time course data generated by vakgpgTF-Vlla-Xa + TFPI TF-Vila-Xa:
TFPI) and Fig. 2B by varying4 (lla + AT — lla-AT). The ensemble standard deviatien({)) (dark
solid curve) provides a quantitative measure of the range of variation in thrombin concentration at each
time point induced by rate constant uncertainty. The primary consequences of éggare observed
as alterations in the duration of the initiation phase with times to peak thrombin concentrations rang-
ing from 4 to greater than 20 min. However, measurement err&jgjimesults in peak thrombin lev-
els varying over a 20-fold range, while times to peak thrombin concentrations are relatively constant.
Normalization of thes (t) generated the dimensionless coefficient of varia(io;i (t)) as a first ap-
proximation for comparative purposes of the thrombin response to uncertaikty(ifig. 2C). The
temporal dependence of baifit) and wkf. (t) illustrate the extent to which the sensitivity 6f(in this
case thrombin) to variance iy can be related to discrete phases of the coagulation process. For ex-
ample, the results of the analysis showing that variatioksinhas the most profound effects on the
progress of the reaction during the initiation phase are consistent with empirical findings demonstrating
that independence from TW¥lla is achieved prior to the onset of the propagation ph&séep et al,
2005.

Figure 3 depicts the coefficient of variation for thromhéi ”_a) as a function ok; at specific times
during the phases of coagulation (See Supplemental Table 1 for equations associated with each rate
constant). Larger bars indicate that measurement error in those rate constants would have more profound
consequences on predicting thrombin levels at that time. Consistent with the more detailed analysis
presented for each individual rate constdag, andks (Fig. 2),the magnitude of the effect of error in
each rate constant on thrombin generation has a unique pattern with respect to its temporal dependence.
Visual inspection suggests that error in certain rate constantkge .§. ks) has a comparitively larger
impact with respect to predicting thrombin levels throughout the reaction time course.

In order to globally compare the effect of uncertainty in eichvith respect to thrombin levels,
a time-averaged coefficient for each rate constant was generated and then expressed as a fraction of
the sum of all the time-averaged coefficients for all 44 rate constants. These values (termed explained
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FIG. 2. Sensitivity ofz-thrombin concentration to rate constalgt)(variation: time series of thrombin concentrations when varying
kagor kgq1. Panel A: variation okzg (governing the formation of TFVIla - Xa - TFPI from the reaction of TFVIla - Xa with
TFPI) from 32 x 10’ M~1s~1 (dotted curve) to 2 x 108 M~1s~1 (standard model value, dashed curve) ®310° M~1s~1
(dash dot curve). The standard deviation associated with the mean thrombin concentration at each time point is shown as a solid
line. Panel B: variation okg; (governing the reaction of AT with-Ila) from 7.2 x 12 M—1s1 (dotted curve) to 4 x 103
M~1s~1 (standard model value, dashed curve) tb ¥ 10* M~1s~1 (dash dot curve). The standard deviation associated with
the mean thrombin concentration at each time point is shown as a solid line. Panel C: the coefficient of \(ajﬂﬁt(b)) at each

time point is plotted foksg andk,1. The time-averaged coefficient of variation values (defined as the mean of the coefficient of
variations across the 20-min simulation) are also shown for each rate constant.

variance,lj) indicate the relative magnitude of the contribution of uncertainty in &oh the overall
variance in thrombin levels induced by the assumed range of measurement error.4Riquesents

a ranked ordering of the 20 most contributive rate constants. The first 10 rate constants contribute ap-
proximately 50% of the variance observed. The reactions governed by these 10 rate constants are shown
in Fig. 4B. These 10 rate constants control processes throughout all three phases of the reaction. Of
the remaining 34 rate constants, 24 (not shown in Fig. 4) contribute less than 20% of the aggregate
variance.
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FiG. 3. Thrombin sensitivity across the 10-1000% parameter range for each rate constant at selected times. The coefficient of
variation(wll('ia(t)) characterizing predicted thrombin concentrations is plotted for kachy att = 2, 4.4, 6, 8, 10, 12, 15 and
20 min.
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FIG. 4. Ranking rate constants by the effect that uncertainty in their values has on thrombin levels. The explained variance is
defined as the time-averaged coefficient of variation for thrombin for a ¢iverpressed as a fraction of the sum of all the time-
averaged coefficients of variation for lla for all 44 Panel A: rate constantg-axis, see Appendix for list of equations) ranked
in descending order by the magnitude of their contributiop) ¢o the overall varianceyfaxis). The line displays the aggregate
explained variance as each rate constant’s contribution is added. Panel B: the reactions governed by the 10 rate constants where
uncertainty in the rate constants has the greatest effect on thrombin levels.

3.2 Sensitivity of all model species ( f) to uncertainty

The above analysis stratified rate constants based on the impact that uncertainty in their values would
have on the prediction of thrombin levels. The primacy of thrombin as an analyte in experimental coagu-
lation models, however, does not extend to this computational approach where the goal is to recapitulate
the complexity of the processge. adequately represent time course data for its 34 species.

Figure 5 presents coefficients of variatiﬁmkfi) for a subset of species for all 44 rate constants at
specific time points during the three phases of coagulation. Different colored bars represent the various
species with the magnitude of the coefficient of variation depicted by bar length. Only 15 species,
including the species present at the onset of the reaction and their activated products, are depicted in
order to reduce the complexity of the image. A supplemental movie is available that visualizes each
second of the reaction in terms of the coefficients of variations of all species for all 44 rate constants.
The overall length of each composite bar for each rate constant provides a basis for identifying the rate
constants where the assumed error range (or lack of accuracy in the rate constant value) generates the
largest variation in species concentrations at that time point.

Table1 identifies for all 34 model species the rate constants to which all species concentrations are
most 5% of total variation) and least sensitive.05% of the total variation) in the overall evaluation
of the TF-initiated pathway. The analysis in Fig. 5 focuses on 15 of these species. The aggregate bar
length of each rate constant is expressed as a fraction of the sum of all the bar lengths within one time
point. The analysis indicates that at any time, the major contribution to the overall variance in species
concentrations due to uncertainty is from a small number of rate constants and that the ensemble of these
rate constants differs at each time point. Across the selected time points, only 10 different rate constants
meet the>5% criteria. The number of rate constants contributit@y05% ranges from 6 to 13 at any of
the selected times and involves 17 unique rate constants.

Reevaluating the data in terms of explained variance resulted in the identification and ranking of
the 20 largest contributors to the overall variance for all species @Ry.This analysis indicates that
measurement uncertainty in five rate constants contribute approximately 50% of the variance observed
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FiIG. 5. Sensitivity of a selected group of model species across the 10-1000% parameter range for each rate constant. Protein
species are identified by colors and block size represents the magnitude of the coefficient of v(anféﬁi(mm x-axis) for each
species for eacky_z4 (y-axis) att = 2, 4.4, 6, 8, 10, 12, 15 and 20 min.
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TABLE 1 Time-dependent sensitivity of rate constantsrioertainty

Time Most Sensitie Least Sensitive
(min) Rate Constants Rate Constants

2 |ka kiz ksg kasa ko Kksi|koz kog kio kos ks k7 kig k37 kor koo kaz koa kig
4.4 | ks ki1 ks ko koz koo kiz ks ksz7 Ksz

6 |Kkiy kg ka kis ko ksp|kio koo ks ko3 ks7 kaz

8 |ki1 kss ks ks ko ki ko ks k37 koz ka3

10 |kis ki1 kss ko ka ko | koo Kkiz ks Kksz7 kaz ko

12 | kis ki1 kse ko koo ks Ki2 ksz k37 kaz ka3

15 | ks ki1 kss ko ks kzo Ki2 k33 kaz k37 kog kig kos

20 |kig kiz ko ksg Kig koa|ks koo kio kaz kog Kig kaz kas Kaz

- 5% of total variation.
+<0.5% of total variation.
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1411369 4 2191 2415133831 8 222710393240

Rate Constant
FIG. 6. Ranking rate constants by the effect that uncertainty in their values has on the levels of all model species. Panel A: rate
constantsx-axis, see Appendix for list of equations) ranked in descending order by the magnitude of their contribyifitm (
the overall varianceyfaxis). The line displays the aggregate explained variance as each rate constant’'s contribution is added.
Panel B: the reactions governed by the 10 rate constants where uncertainty in the rate constants has the greatest effect on model
predictability.

from perturbation of all 44 rate constants; the reactions controlled by these rate constants are shown
in Fig. 6B. These five rate constants govern reactions in the initiation phase and are involved in the
regulation of the formation and function of \Ala. Twenty-four rate constants, not displayed in Fig.
contribute less than 13% of the total variance calculated.

3.3 Stability of the system of ODEs

During a single numerical simulation, using normal values for rate constants and factor concentra-
tions, the number of eigenvalues of the Jacobian (matrix of partial derivatives) with positive real part is
bounded between 1 and 10 and averages approximately 5. This implies that during a typical simulation,
the numerical solution is unstable in as many as 10 different directions in the state space and on average
uncertainty in factor concentrations will be growing in approximately 5 dimensions (some very slowly)
and shrinking in approximately 24 directions (most very slowlyu(forth & Yorke 20086).
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with positive real part and 21 with negative real part. The system of ODE's is stiff, with a condition number (ratio of the largest
singular value to the smallest) of roughly?Paatt = 4.4 min.

Figure7 presents the analysis of one time point, 4.4 min. At this time, there are 8 eigenvalues with
positive real part and 21 with negative real part (Fig.Five of the eigenvalues are zero due to the fact
that chemical expressions 23 through 27, seen in Supplemental Tabteduce species that do not
interact (antithrombin Il complexes with enzymes). Across the entire 20-min time frame, the average
number of eigenvalues with positive real part is seen to vary between 4 and 7 for one-by-one perturbation
of rate constants (data not shown). Rate constants whose accuracy was shown to have little effect on pre-
dicted species levels (the 24 rate constants that accounted 8% of the explained variance in Fig).
were also seen to have negligible effect on the average number of eigenvalues with positive real part.

4. Discussion

In this study, we evaluate the effect of uncertainty in the value of rate constants used in a previously
published mathematical modél¢ckinet al, 2002 describing the TF-initiated pathway of coagulation.
These analyses have identified 5 of 44 rate constants to which the predictive capacity of the model is
most sensitive, accounting for 50% of the overall variation induced by the selected parameter range.
These same rate constants explain 25% of the aggregate variation in predicted thrombin levels.

Compilations of empirically derived rate constant(s) for a given process typically yield a range of
values when reported by different laboratories or from the same laboratory at different times. Sources of
this variation are well known to investigators and include the origins of the proteins (e.g. recombinant
vs. plasma derived), variations in the specific activity of proteins after isolation from the same source,
variable buffer composition, differences in the handling and assay of relatively unstable species (e.qg.
factor Vllla) and differences in the surfaces upon which many coagulation catalytic complexes must
assemble and function (e.g. phospholipid composition and concentration). Even for a relatively simple
reaction, one without surface or cofactor dependence, like the reaction of factor Xa with antithrombin
Il (ksg in this analysis), published values from four laboratories vary over a 3-fold range.

In principle, a single integration of a deterministic ODE-based model cannot incorporate available
empirical estimates of the magnitude of measurement variation as part of its respective model values
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and therefore can not generate predictions that capture the consequences of this uncertainty. The current
analysis attempts to gauge the implications of measurement imprecision in a reaction network governed
by 44 rate constants by mechanically probing a parameter range extending from 10-fold below to 10-fold
above the standard model value for each rate constant. The intent was to exceed the range of variation
that characterizes the state of the art with respect to the most complex of the modeled reactions. A
central result of our analyses was that rate constants could be stratified in terms of the impact that
uncertainty in their values, i.e. measurement imprecision, caused in model outputs. If the consequences
of perturbing each of the rate constants across the same parameter range had been of equal significance,
each would have contributed 1/44th 2.3%) to the aggregate variance. However, with respect to the
output of all model species across the entire time frame, 10 rate constants contribute less than 0.1% each
to the aggregate variance and 24 rate constants collectively contribute no mokgsthbome. A similar

result was observed when thrombin was the monitored output parameter: 12 rate constants contributed
less than 0.1% each and the contribution of the most sensitive rate comkgtantds equivalent to the
contribution of the 19 least influential rate constants.

In the global analysis of the effects of rate constant uncertainty, the five most sensitive rate constants
govern reactions critical to events during the initiation phase. All involve the TF-Vlla complex. The
effect of uncertainty in these rate constants is not limited to the prediction of species levels during the
initiation phase but is seen throughout the 20-min reaction time course (seelJlaMeen the analysis
is focused on a single species, thrombin, a major difference from the global assessment is the importance
of ky1, which governs the inhibition of thrombin by antithrombin Il1. Literature valuekfgrare in good
agreement, falling within a 2-fold range. However, the importance of rate con&tgntg1 andky is
still present, reflecting the importance of accurately measuring the rate constants governing the initiating
complex.

In summary, our analyses identified a handful of rate constants for which the effects on the pre-
dictive capacity of the model are most severe if differences exist between the current model values
and the ‘actual’ values governing reactions in a given empirical setting under study. Improvements, if
possible, in the measurement accuracy of these rate constants will yield the greatest benefits to the pre-
dictive capacity of this model. Likewise, rate constants whose variance is determined to have little effect
should remain unperturbed in predictions made by drawing ensembles of rate constants from stochastic
distributions. The lack of sensitivity to uncertainty in these rate constants reduces the dimension of the
space from which the ensemble is sampling.
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