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In this article, the authors propose to simultaneously test for marginal genetic association and gene-environment

interaction to discover single nucleotide polymorphisms that may be involved in gene-environment or gene-

treatment interaction. The asymptotic independence of the marginal association estimator and various interaction

estimators leads to a simple and flexible way of combining the 2 tests, allowing for exploitation of gene-

environment independence in estimating gene-environment interaction. The proposed test differs from the 2-df

test proposed by Kraft et al. (Hum Hered. 2007;63(2):111–119) in two respects. First, for the genetic association

component, it tests for marginal association, which is often the primary objective in inference, rather than the

main effect in a model with gene-environment interaction. Second, the gene-environment testing component can

easily exploit putative gene-environment independence using either the case-only estimator or the empirical

Bayes estimator, depending on whether the goal is gene-treatment interaction in a randomized trial or gene-

environment interaction in an observational study. The use of the proposed joint test is illustrated through simula-

tions and a genetic study (1993–2005) from the Women’s Health Initiative.

association; empirical Bayes; genetic epidemiology; genetics; gene-environment interaction; two-stage

procedure

Abbreviations: CC, case-control; CO, case-only; EB, empirical Bayes; FWER, family-wise error rate; MA, marginal association;

OR, odds ratio; SNP, single nucleotide polymorphism.

In recent years, population-based genome-wide associa-
tion studies with single nucleotide polymorphisms (SNPs)
have identified novel susceptibility loci for many complex
traits (1). Genetic associations identified so far are generally
weak, accounting for only a small fraction of heritability
(2). It has been suggested that gene-environment interaction
explains part of the “missing heritability” (3). However,
few loci that interact with environmental exposures have
been identified (4, 5). The shortage of new discoveries may
be caused by the generally low statistical power to detect
gene-environment interaction and the difficulty of reliably
measuring the pertinent environmental attributes. Recogniz-
ing the difficulty involved in identifying gene-environment
interactions, we are concerned in this article with the dis-
covery of genetic association, while accounting for the

potential heterogeneous genetic effects across various
levels of the environmental variable under investigation.
Consider a typical case-control genome-wide association

study. Let Y denote the binary disease outcome, E denote
the environmental variable, and G denote the genetic score
coded by the number of minor (SNP) alleles (0, 1, or 2).
Let W be a vector of potential confounders to be adjusted
for when assessing genetic association (e.g., other clinical
predictors and possibly principal components for popula-
tion substructure). The following two logistic regression
models can be considered for genetic association analysis:

log
PrðY ¼ 1jG;WÞ
PrðY ¼ 0jG;WÞ

� �
¼ b0 þ b1Gþ bT

2W ð1Þ
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and

log
PrðY ¼ 1jG;E;WÞ
PrðY ¼ 0jG;E;WÞ

� �
¼ g0 þ g1E þ g2G

þ g3GE þ gT4W ; ð2Þ

where model 1 can be used to test for the marginal genetic
effect, β1 = 0, and model 2 can be used to test the multipli-
cative gene-environment interaction, γ3 = 0. These are two
distinct hypotheses that are generally being tested in a
SNP-by-SNP fashion separately. It is well known that
despite the case-control retrospective sampling scheme, ef-
ficient estimation of the slope parameters in models 1 and 2
is achieved by maximizing the prospective likelihood with
a standard logistic regression analysis (6).

While estimation of marginal genetic association has
been well established, much recent effort has been devoted
to developing efficient and robust statistical methods for
detecting gene-environment interaction. Some methods
exploit putative gene-environment independence in the esti-
mation (7–11), notably the case-only (CO) estimator (7, 8)
and the empirical Bayes (EB) estimator (10), while others
attempt to enrich gene-environment interaction by restrict-
ing a second-stage analysis to a subset of SNPs that
meet independent filtering criteria (12–15). While gene-
environment interaction is no doubt of keen interest by
itself, another potential use of gene-environment interaction
is perhaps to help better identify and localize genetic
susceptibility loci. To this end, a joint test of the main
genetic effect γ2 and the gene-environment interaction γ3 in
model 2, henceforth referred to as the Kraft 2-df test (16),
was proposed to achieve good power in gene discovery
under a variety of disease penetrance models. Notably, the
Kraft 2-df test has been used to successfully discover a
gene that interacts with coffee in the risk of Parkinson’s
disease (5). We provide a detailed description of these
methods in the Web Appendix, which is posted on the
Journal’s website (http://www.aje.oxfordjournals.org/).

In randomized clinical trials, identifying genetic variants
that influence treatment response may directly inform “per-
sonalized” treatment or prevention. In this case, the diffi-
culty of measuring a key environmental exposure is
circumvented and the intention-to-treat effect can be unbias-
edly estimated. Our motivational example is genetic studies
carried out within the clinical trial component of the
Women’s Health Initiative. The Women’s Health Initiative
was a major disease-prevention research program carried
out among postmenopausal women which included a ran-
domized controlled clinical trial component and a compan-
ion observational study (17). In the clinical trial component,
4 distinct interventions were evaluated: conjugated equine
estrogens alone, conjugated equine estrogens in combina-
tion with medroxyprogesterone acetate, dietary modification
with a low-fat eating pattern, and calcium and vitamin D
supplementation. Several case-control genetic association
studies have been launched within the Women’s Health Ini-
tiative clinical trials to study the association of genes with
disease risk and gene-treatment interaction. The gene-
treatment independence is guaranteed by the randomization,

so that the CO estimator or semiparametric estimators ex-
ploiting gene-treatment independence can be confidently
used (18). However, the potential of a randomized exposure
to inform joint testing for genetic association and gene-
treatment interaction has yet to be fully elucidated.

In this article, we consider simultaneously testing for
marginal genetic association and gene-environment interac-
tion while exploiting potential gene-environment indepen-
dence, aiming to discover disease-associated loci that may
have heterogeneous effects with respect to environmental
variables. These 2 hypotheses are scientifically related but
statistically independent, as we showed previously (15),
leading to a convenient way of combining both tests. The
benefit of such simultaneous testing is that genes that inter-
act with environmental attributes of disease risk may also
manifest marginal association (MA), unless genetic associ-
ations within exposed and unexposed subgroups cancel out
exactly in the population-average association. A simultane-
ous test, therefore, may improve power over testing these
2 hypotheses separately, particularly when the marginal
effect is moderate and the gene also has moderate differen-
tial effects across various levels of environmental variables.
Compared with the Kraft 2-df test (16), our simultaneous
test offers simplicity and flexibility with which to incorpo-
rate gene-environment independence, whether using the EB
estimator in an observational setting or using the CO esti-
mator for gene-treatment interaction in a randomized con-
trolled trial setting.

MATERIALS AND METHODS

We propose a simultaneous test of whether there is a
marginal genetic association and whether there is heteroge-
neity of genetic effects across the environmental variable.
The 2 null hypotheses are

H01:b1 ¼ 0;
H02:g3 ¼ 0;

where β1 and γ3 are defined as in model 1 and model 2,
respectively. The tests for β1 and γ3 are often the main ob-
jectives of genetic association studies, when there is a
known environmental attribute of the disease risk. Unlike
the 2 parameters (γ2, γ3) in the Kraft 2-df test, which can
be expressed together in a likelihood, the 2 parameters
(β1, γ3) in our test are from two different but related models
capturing two aspects of genetic association: the average
genetic effect and its potential variation across the environ-
mental variable.

If E is independent of G and the true disease-generating
model is model 2, the null hypothesis of the Kraft 2-df test,
γ2 = γ3 = 0, will lead to our null hypothesis β1 = γ3 = 0, not
surprisingly. Under the alternative hypothesis for model 2,
however, β1 is typically a nonlinear function of the parame-
ters in model 2 involving γ2 and γ3, as well as the distribu-
tion of E. Nonetheless, the marginal genetic effect β1 is of
primary interest in genetic studies, regardless of the func-
tional form of E or whether there is potential measurement
error in E, whereas the genetic main effect γ2 is the sub-
group genetic effect when E = 0, which depends on correct
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modeling of E and may be less interpretable when E is
continuous. The motivation for our simultaneous test, simi-
larly to the Kraft 2-df test, is to improve the probability of
detecting disease-associated loci while accounting for gene-
environment interaction.
A benefit of combining H01 and H02 is that the

maximum likelihood estimator of β1 is asymptotically inde-
pendent of various estimators of γ3, including the standard
case-control (CC) interaction estimator, the CO estimator
(15), and the EB estimator, so that combining 2 tests is
easy and implementation is flexible. Henceforth, we refer to
γcc as the standard gene-environment interaction when
fitting model 2 to CC genetic studies, γco as the CO interac-
tion, and γeb as the EB interaction. The expression of the
latter two parameters can be found in the Web Appendix.
The first independence result bb1?bgcc follows a quite
general theorem which states that, for any two nested gen-
eralized linear models with a canonical link function, the
estimators for the parameters in the smaller model are as-
ymptotically independent of the estimators of the parame-
ters in the larger model (15). This result is new to the
statistical literature. It holds when either of the models 1
and 2 is true, or even when both models are misspecified.
The second independence result bb1?bgco is similarly
derived by examining the covariance of respective estimat-
ing functions for the two estimators. Because the EB esti-
mator is a linear combination of the CO estimator and the
standard CC estimator, the marginal effect estimator is also
independent of the EB estimator.
One way to formulate the test statistics for these 3 ver-

sions of simultaneous tests is a typical Wald statistic for
multiple parameter estimates. Because of the independence,
these test statistics can be simplified as the sums of 2
squared z scores. Specifically, in randomized clinical trials
where the CO estimator can be used with confidence, the
test statistic is

bb2
1dVarðbb1Þ

þ bg2codVarðbgcoÞ :
In observational studies, we use the EB estimator, since it
is more robust against violation of the gene-environment
independence assumption than bgco and it is more efficient
than bgcc: The test statistic is

bb2
1dVarðbb1Þ

þ bg2ebdVarðbgebÞ :
If we want to be conservative concerning gene-environment
independence in observational studies, we can simply use
the standard CC estimator in the test statistic, that is,

bb2
1dVarðbb1Þ

þ bg2ccdVarðbgccÞ :
All 3 test statistics are distributed as χ2 with 2 df under the
two null hypotheses. Equivalently, an alternative method of
combining these independent tests is to use Fisher’s χ2

statistic for log-transformed P values (19). The latter ap-
proach provides flexibility when genetic scores (0, 1, 2) in
these analyses are coded by 2 indicators or the testing was
carried out by means of likelihood ratio tests.
Similarly to the Kraft 2-df test, we expect that our simul-

taneous test will maintain good power under diverse
disease penetrance models (e.g., marginal effect only or
gene-environment interaction only). For SNPs with some
marginal effect and some interaction, our test should
improve power over testing either the marginal effect or the
interaction separately. The latter scenario may be quite
common for SNPs with gene-environment interaction. Using
a simultaneous test may help researchers better identify such
SNPs. Because of exploitation of gene-environment inde-
pendence, the simultaneous test with the CO estimator is
likely to be more powerful than the standard Kraft 2-df test
in randomized clinical trials. It is also of interest to
compare the simultaneous test with the 2-stage procedures,
particularly the one using marginal-effect screening (13).
As we discuss in the Web Appendix, the latter procedure
may miss those SNPs which have weak marginal effects.
The simultaneous test leverages information from both
components of genetic association, and all SNPs are inter-
rogated. From the gene-discovery point of view, it circum-
vents the limitation of 2-stage procedures because of
“leaky” filtering, though we acknowledge that the 2-stage
procedures are typically designed for gene-environment in-
teraction testing exclusively.
On the other hand, procedures for exploiting gene-

environment independence in the Kraft 2-df test are less
straightforward. One can extend the Kraft 2-df test to the
constrained semiparametric maximum likelihood estimators
of both the genetic main effect and the interaction (9),
using a Wald test statistic. This can be computationally
cumbersome in the context of genome-wide association
studies. For clinical trials with multiple treatment arms, see
(for example) the Women’s Health Initiative breast cancer
study in the Results section, where MA can be assessed in
all participants while gene-treatment interaction can only be
estimated in the respective treatment arms. It is not clear
how to use the constrained semiparametric maximum likeli-
hood estimators for a joint test. With our simultaneous test,
since no estimation efficiency for the marginal genetic
effect can be gained from gene-environment independence,
we simply plug in the easily computed CO estimator in the
combined test. With additional work, one can also develop
an EB version for jointly testing γ2 = γ3 = 0 using the
method described by Mukherjee et al. (10) and Chen et al.
(20), which provides some robustness toward exploiting
gene-environment independence. Our method allows
straightforward incorporation of the EB interaction estima-
tor in the joint test.

RESULTS

Simulation

We compare the error rate and the power of our simulta-
neous test with that of other existing procedures. Since
comparing the power of tests with different null hypotheses
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is not fair, we instead examine the probability of discover-
ing genetic variants that carry disease risk, which would
then be further analyzed in a replication study. The first set
of simulations is designed to compare 3 versions of simul-
taneous tests: MA with the CO, EB, or CC interaction com-
pared with the Kraft 2-df test in which there is only 1
genetic variant. For completeness, the separate MA, CO,
and EB tests are also included separately in the comparison.
We only simulate 1 SNP, since these tests are all single-
SNP-based and the comparative performance can be extrap-
olated to, say, a million SNPs. We simulate a CC sample
with 500 cases and 500 controls, from a cohort of 25,000

subjects and disease prevalence of 2%. The binary genetic
factor and the binary environmental factor have frequencies
of 0.2 and 0.5, respectively. The disease penetrance model
is specified by the logistic function (model 2), with γ =−4
and varying values of γ1, γ2, and γ3. Tables 1 and 2 show
the empirical type I error and the power for various tests in
1,000 simulations, when gene-environment independence
holds (OR(G, E) = 1) or does not hold (OR(G, E) = 1.25),
respectively (OR, odds ratio).

In Table 1, where gene-environment independence holds,
the type I errors for all tests evidently maintain the nominal
level. Under all parameter combinations, the power of our

Table 1. Type I Error and Statistical Power of Various Tests of Genetic Association or Gene-Environment Interaction in Simulations Where

OR(G, E ) = 1

γ1
a γ2

a γ3
a MA CC CO EB Kraft 2-df Test Kraft 2-df-indb

Simultaneous Test

MA +CO MA + EB MA +CC

0 0 −Log2 0.367 0.467 0.704 0.613 0.608 0.735 0.762 0.684 0.595

−Log1.5 0.197 0.195 0.311 0.265 0.267 0.332 0.348 0.317 0.261

0 0.052 0.045 0.040 0.036 0.047 0.047 0.048 0.038 0.045

Log1.5 0.271 0.257 0.436 0.338 0.362 0.524 0.509 0.441 0.374

Log2 0.750 0.629 0.905 0.794 0.882 0.973 0.969 0.941 0.895

Log1.5 −Log2 0.102 0.543 0.837 0.724 0.49 0.779 0.770 0.658 0.495

−Log1.5 0.271 0.245 0.425 0.329 0.353 0.522 0.515 0.437 0.359

0 0.752 0.051 0.043 0.032 0.648 0.652 0.646 0.643 0.651

Log1.5 0.994 0.264 0.517 0.401 0.992 0.992 0.991 0.989 0.992

Log2 1 0.645 0.940 0.832 1 1 1 1 1

Log2 −Log2 0.767 0.582 0.898 0.777 0.870 0.968 0.964 0.936 0.882

−Log1.5 0.926 0.243 0.495 0.384 0.908 0.940 0.939 0.926 0.913

0 0.995 0.062 0.045 0.041 0.991 0.991 0.991 0.991 0.991

Log1.5 1 0.279 0.551 0.409 1 1 1 1 1

Log2 1 0.670 0.944 0.851 1 1 1 1 1

Log2 0 −Log2 0.680 0.501 0.732 0.654 0.765 0.899 0.916 0.883 0.814

−Log1.5 0.346 0.213 0.347 0.271 0.355 0.462 0.478 0.442 0.396

0 0.047 0.049 0.052 0.040 0.049 0.047 0.048 0.042 0.045

Log1.5 0.458 0.227 0.377 0.305 0.420 0.615 0.603 0.552 0.486

Log2 0.926 0.569 0.841 0.751 0.901 0.986 0.985 0.978 0.956

Log1.5 −Log2 0.035 0.602 0.857 0.756 0.509 0.767 0.769 0.663 0.512

−Log1.5 0.174 0.241 0.452 0.351 0.316 0.471 0.46 0.375 0.282

0 0.757 0.044 0.043 0.034 0.645 0.653 0.647 0.642 0.650

Log1.5 0.997 0.250 0.414 0.331 0.991 0.997 0.997 0.997 0.997

Log2 1 0.613 0.866 0.770 1 1 1 1 1

Log2 −Log2 0.488 0.605 0.895 0.774 0.824 0.932 0.930 0.865 0.77

−Log1.5 0.841 0.266 0.515 0.387 0.875 0.888 0.884 0.857 0.843

0 0.996 0.032 0.051 0.035 0.992 0.993 0.993 0.994 0.993

Log1.5 1 0.272 0.429 0.35 1 1 1 1 1

Log2 1 0.620 0.852 0.776 1 1 1 1 1

Abbreviations: CC, standard case-control interaction estimator; CO, case-only interaction estimator; EB, empirical Bayes estimator;

MA, marginal association; OR, odds ratio.
a Parameters in logistic regression model 2 without additional confounder W.
b Kraft 2-df test exploiting gene-environment independence.
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simultaneous test of MA and the CO interaction (MA +
CO) is either the best procedure considered or close to the
best of all procedures considered. The simultaneous test,
particularly with CO or EB, is more powerful than the stan-
dard Kraft 2-df test. In some settings, the power is in-
creased by 20%–30%. The power gain appears to mainly
derive from the use of the CO estimator in the joint test,
since there is little difference when we compare the MA +
CC test with the Kraft 2-df test. When compared with
testing for interaction alone, using either the CO test or the
EB test, the simultaneous test MA + CO or MA + EB
almost always yields better power, except in situations
where there is a strong qualitative interaction such that the

marginal effect is small. Notably, both versions of the joint
test outperform the test for interaction alone even when
there is no genetic main effect—an observation previously
reported (16). Similarly, the simultaneous test MA + CO or
MA + EB is almost always superior to the test for MA
alone, except in situations where there is no interaction.
The EB test is outperformed by the CO test, as gene and
environment are independent in this set of simulations.
Similarly, among 3 simultaneous tests, the performance of
MA + EB is intermediate to that of MA + CO and MA +
CC, as expected.
We also implemented the Kraft 2-df test exploiting gene-

environment independence using the constrained maximum

Table 2. Type I Error and Statistical Power of Various Tests of Genetic Association or Gene-Environment Interaction in Simulations Where

OR(G, E) = 1.25

γ1
a γ2

a γ3
a MA CC CO EB Kraft 2-df Test Kraft 2-df-indb

Simultaneous Test

MA + CO MA + EB MA +CC

0 0 −Log2 0.315 0.457 0.920 0.669 0.585 0.908 0.915 0.731 0.560

−Log1.5 0.152 0.216 0.671 0.402 0.247 0.631 0.644 0.407 0.232

0 0.049 0.044 0.163 0.070 0.052 0.125 0.129 0.067 0.051

Log1.5 0.239 0.250 0.109 0.141 0.349 0.242 0.236 0.276 0.342

Log2 0.684 0.611 0.570 0.576 0.854 0.843 0.833 0.851 0.859

Log1.5 −Log2 0.139 0.577 0.969 0.756 0.522 0.949 0.949 0.723 0.541

−Log1.5 0.302 0.242 0.828 0.463 0.395 0.825 0.823 0.551 0.413

0 0.749 0.051 0.215 0.092 0.663 0.751 0.743 0.682 0.663

Log1.5 0.989 0.263 0.129 0.151 0.987 0.982 0.982 0.982 0.986

Log2 1 0.640 0.628 0.620 1 1 1 1 1

Log2 −Log2 0.828 0.625 0.987 0.773 0.898 0.997 0.995 0.950 0.917

−Log1.5 0.942 0.265 0.884 0.497 0.919 0.990 0.988 0.953 0.926

0 0.999 0.064 0.226 0.089 0.998 0.996 0.996 0.998 0.998

Log1.5 1 0.277 0.122 0.158 1 1 1 1 1

Log2 1 0.644 0.621 0.611 1 1 1 1 1

Log2 0 −Log2 0.688 0.559 0.944 0.742 0.735 0.981 0.986 0.900 0.835

−Log1.5 0.366 0.239 0.718 0.407 0.341 0.767 0.780 0.569 0.437

0 0.063 0.059 0.164 0.076 0.060 0.129 0.137 0.087 0.072

Log1.5 0.299 0.233 0.083 0.127 0.373 0.271 0.264 0.300 0.368

Log2 0.814 0.542 0.438 0.467 0.87 0.891 0.881 0.897 0.897

Log1.5 −Log2 0.051 0.582 0.982 0.750 0.503 0.951 0.952 0.68 0.489

−Log1.5 0.118 0.280 0.813 0.475 0.352 0.763 0.760 0.447 0.282

0 0.647 0.041 0.217 0.071 0.632 0.646 0.645 0.559 0.535

Log1.5 0.992 0.233 0.085 0.140 0.989 0.981 0.981 0.985 0.987

Log2 1 0.600 0.486 0.532 1 1 1 1 1

Log2 −Log2 0.437 0.630 0.985 0.790 0.826 0.986 0.986 0.847 0.738

−Log1.5 0.804 0.280 0.862 0.499 0.874 0.960 0.959 0.856 0.792

0 0.993 0.047 0.249 0.084 0.987 0.988 0.987 0.980 0.981

Log1.5 1 0.243 0.096 0.149 1 1 1 1 1

Log2 1 0.615 0.489 0.539 1 1 1 1 1

Abbreviations: CC, standard case-control interaction estimator; CO, case-only interaction estimator; EB, empirical Bayes estimator;

MA, marginal association; OR, odds ratio.
a Parameters in logistic regression model 2 without additional confounder W.
b Kraft 2-df test exploiting gene-environment independence.
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likelihood method (9). Interestingly, this test yields a virtu-
ally interchangeable power performance compared with our
simultaneous test MA + CO, even though these two joint
tests have different null hypotheses. The advantage of our
test is that computation is easier because it does not involve
a covariance matrix.

In Table 2, we simulate moderate gene-environment de-
pendence, OR(G, E) = 1.25, as it could arise in an observa-
tional study. In reality, this odds ratio is fairly large, as we
rarely observe gene-environment correlation of this size.
The CO estimator, the simultaneous test MA + CO, and the
Kraft 2-df test exploiting independence fail badly to pre-
serve the type I error, where the EB estimator yields a
slightly inflated type I error. Similar to the results in
Table 1, the simultaneous test MA + EB seems to maintain
good power in all simulation settings. The advantage of
MA + EB over the standard Kraft 2-df test is less pro-
nounced when compared with the results in Table 1, since
the CC interaction estimator would dominate in the EB
estimator.

We further evaluate the performance of the simultaneous
test in the setting with high-dimensional genotypes. The
purpose of this set of simulations is 3-fold. First, we intend
to investigate the validity of the simultaneous test, particu-
larly MA + EB, in situations where a small proportion of
genotypes may be correlated with environment. Second, we
want to explore the comparison between the simultaneous
test and the 2-stage procedures, particularly the 2-stage pro-
cedure using marginal-effect screening, since they are two
ways of using information in MA. We recognize that it is
not entirely fair to compare the 2-stage procedures with the
simultaneous test in power performance in general, since
the former is for testing exclusively for interaction while
the latter is for both marginal effect and interaction. We
thus restrict attention to the scenario in which there is no
genetic main effect (γ2 = 0) and no environmental main
effect (γ1 = 0)—that is, the genetic effect exists only in the

exposed subjects, so that MA (β1) is fully derived from the
subgroup effect γ3.

We simulate a CC sample from a study population with
40,000 subjects and 5% disease prevalence. A dichotomous
environmental factor is generated with frequency 0.5. We
generate 100,000 independent binary genetic factors, one of
which has elevated disease risk in the logistic model. The
frequency of the risk allele is 0.2, with OR(G, E) = 0.8,
OR(G, E) = 1, and OR(G, E) = 1.2. The other (null) genetic
factors have frequencies generated from a uniform distribu-
tion in (0.1, 0.3). The log gene-environment odds ratios for
the null genetic factors are from a mixture of 0 and a normal
distribution: pindδ0 + (1− pind)N(0, SD = log1.5/2), where δ0
is a point mass at 0 (SD, standard deviation). We vary pind
from 0.95 to 1, with 1 pertinent to a randomized clinical trial
and 0.95 suggesting an observational genome-wide associa-
tion study in which the majority of SNPs in the study are
probably independent of the environmental exposure. We
assume that the main environmental effect (γ1) is 0 and the
main genetic effect (γ2) is 0. The size of the interaction (γ3)
ranges from 0 to log 2. We sample all cases and an identical
number of controls from the study population. The average
number of cases is 2,000.

We apply the simultaneous test to all genetic factors,
either MA plus the CO interaction or MA plus the EB in-
teraction, depending on the simulated OR(G, E). We evalu-
ate its family-wise error rate (FWER) among null markers
and compare the power to three 2-stage procedures: the
modified 2-stage procedure using the EB estimator after
screening by MA (13), which is denoted by MA→ EB, the
Murcray procedure (12), and the hybrid procedure (14).
The proportion of genetic factors that pass the filtering is
set to 0.001, a commonly used threshold in the literature
(12–14).

Table 3 shows the empirical FWER and the expected
number of false-positive findings for various procedures
under a range of the probability of gene-environment

Table 3. Family-Wise Error Rate for Various Methods of Detecting Gene-Environment Interaction Under a Range of Probabilities of Gene-

Environment Independence

pa
ind

Simultaneous Test 2-Stage Test

MA + CO MA + EB MA +CC MA→EB Murcrayb Hybridc Kraft 2-df Test

FWER ENFP FWER ENFP FWER ENFP FWER ENFP FWER ENFP FWER ENFP FWER ENFP

0.9500 1.000 49.70 0.136 0.147 0.031 0.033 0.060 0.061 0.062 0.064 0.057 0.059 0.028 0.030

0.9900 1.000 9.917 0.044 0.047 0.034 0.034 0.032 0.032 0.046 0.048 0.040 0.043 0.027 0.027

0.9950 0.992 5.073 0.031 0.031 0.039 0.040 0.024 0.025 0.043 0.044 0.041 0.042 0.038 0.039

0.9975 0.914 2.429 0.028 0.028 0.046 0.047 0.029 0.029 0.053 0.055 0.045 0.048 0.042 0.043

0.9995 0.397 0.520 0.026 0.027 0.037 0.037 0.028 0.028 0.045 0.048 0.034 0.037 0.036 0.036

1.0000 0.036 0.037 0.024 0.024 0.036 0.037 0.024 0.024 0.044 0.045 0.048 0.049 0.032 0.032

Abbreviations: CC, standard case-control interaction estimator; CO, case-only interaction estimator; EB, empirical Bayes estimator; ENFP,

expected number of false-positives; FWER, family-wise error rate; MA, marginal association; OR, odds ratio; SNP, single nucleotide

polymorphism.
a p ind, proportion of SNPs with SNP-environment independence.
b Murcray, the 2-stage procedure using gene-environment correlation in the combined sample as a filter (12).
c Hybrid, the 2-stage procedure splitting filtering by MA and gene-environment correlation (14).
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independence in 1,000 simulations. The simultaneous test
of MA and the CO interaction (MA + CO) fails to preserve
FWER whenever there is some gene-environment depen-
dence. On the other hand, the simultaneous test of MA and
the EB estimator (MA + EB) seems to preserve FWER
when the proportion of gene-environment dependence is
less than 0.01. This is consistent with the behavior of the
EB estimator reported in genome-wide association studies
(21). Interestingly, the 2-stage procedure using MA→ EB
maintains the control of FWER even when the proportion
of gene-environment dependence is 0.05, possibly because
the marginal-effect filter helps to remove false positives.
All other procedures maintain the control of FWER as
expected.
Figure 1 shows power performance for the procedures

under a variety of parameter settings. Panels A–C show
power for a model without genetic main effect γ2 = 0 and
with OR(G, E) = 0.8, 1, and 1.2, respectively. We add
the joint test of MA and the CO estimator only when
OR(G, E) = 1 in Figure 1B, because this is the scenario in
which the randomized clinical trials and the CO estimator
can be confidently used. In this setting, the simultaneous test
using MA+CO performs consistently on top of all other
procedures, followed by the modified Kooperberg procedure
with MA→CO. This shows the superior power of incorpo-
rating the CO estimator in the simultaneous test when gene-
environment independence does hold. Figure 1A shows the
scenario in which the negative gene-environment correlation
cancels out with the positive gene-environment correlation in
cases induced by gene-environment interaction. In this case,
the Murcray procedure using gene-environment correlation in
the combined CC sample has no power. The simultaneous
test using MA+CC performs the best, closely followed by
the Kraft 2-df test. The simultaneous test using MA+ EB is
outperformed by MA+CC because, for negatively depen-
dent gene and environment, the CO test is not as powerful as
the standard CC test. In Figure 1C, the gene-environment
correlation induced in cases by gene-environment interaction
adds to the gene-environment correlation so that MA + EB
has superior power over all other procedures.
In all 3 panels of Figure 1, the simultaneous test always

yields more power than the corresponding 2-stage test, sug-
gesting that in this setting combining information in a joint
test is perhaps better than splitting information into screening
and testing, though again the 2-stage procedures are focused
solely on testing for gene-environment interaction. We also
observe that across Figure 1 and Tables 1 and 2, the perfor-
mance of the simultaneous test using MA+CC is very close
to that of the Kraft 2-df test, presumably because they can be
considered two ways of using the same genetic information.

Figure 1. Comparison of statistical power for detecting single
nucleotide polymorphism (SNP)-environment interaction by means
of the simultaneous test, the Kraft 2-df test, and the 2-stage
procedures. One thousand simulated data sets were generated with
10,000 SNPs and 2,000 cases and 2,000 controls. Panels A, B, and
C show power for a model with genetic main effect γ2 = 0 and
environmental main effect γ1 = 0 and with OR(G, E) = 0.8, OR(G, E) = 1,
and OR(G, E) = 1.2, respectively (OR, odds ratio). MA + EB, the
simultaneous test for marginal association (MA) and the empirical
Bayes (EB) interaction; MA→EB, the 2-stage test with MA screening

followed by the EB interaction testing; Murcray, the 2-stage test with
gene-environment correlation screening (12); Hybrid, the 2-stage test
using both MA and gene-environment correlation in screening (14);
Kraft, the Kraft 2-df test; MA +CC, the simultaneous test for MA
and the standard case-control (CC) interaction; MA +CO, the
simultaneous test for MA and the case-only (CO) interaction;
MA→CO, the 2-stage test with MA screening followed by CO
interaction testing.
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Data application

To discover the genetic variants that may influence
breast cancer risk, perhaps jointly with the clinical trial in-
terventions (19, 21–25), Women’s Health Initiative investi-
gators studied 4,988 SNPs among 2,242 invasive breast
cancer cases and 1:1 matched controls, sampled across all 4
clinical trials (1993–2005). SNPs were selected on the
basis of prior suggestive evidence of association with
breast cancer. The design and detailed analysis of this
genetic study have been published previously (26–28). We
showcase the analytical approach taken to discover loci in-
teracting with the randomized treatments, the simultaneous
test of MA and the CO gene-treatment interaction we pro-
posed, that lead to suggestive evidence of gene-treatment
interaction in 2 genomic regions.

Since the data are from 4 randomized clinical trials con-
ducted in the Women’s Health Initiative, a 5-component test
statistic is constructed to test MA and the CO interaction with
each of 4 interventions. Since the 4 interventions are random-
ized according to a partial factorial design, the marginal
genetic effect is asymptotically independent of the 4 CO in-
teractions, and the CO tests for conjugated equine estrogens
alone and conjugated equine estrogens in combination with
medroxyprogesterone acetate are independent, since they are
based on nonoverlapping sets of women. A “sandwich” vari-
ance estimator was used to account for correlations among
other CO tests that were conducted in overlapping sets of
women. Under the joint null hypothesis, this statistic is dis-
tributed as a χ2 distribution with 5 df. The false discovery

rate was computed based on the ranking of nominal P values
(29), assuming the joint null of no marginal effect and no
interaction. Details of the statistical analysis have been pub-
lished elsewhere (28).

Table 4 shows the significance from testing of MA,
SNP-treatment CO interactions, and the simultaneous test
for the top 15 SNPs ranked by the simultaneous test. The
top 1–6 SNPs are all located in the region of the fibroblast
growth factor receptor 2 gene (FGFR2), which has been
previously reported to have a significant marginal effect on
breast cancer and suggestive evidence of SNP-treatment in-
teraction (26, 27). Clearly, marginal genetic association in
FGFR2 dominates in the significance of the simultaneous
test. Eight out of 9 SNPs ranked 7–15 in significance of the
simultaneous test are from a linkage disequilibrium region
in the mitochondrial ribosomal protein S30 gene (MRPS30)
on chromosome 5p12. They all have increased significance
of the simultaneous test compared with either the signifi-
cance of MA or the significance of interactions. None of
the SNP-treatment interactions are significant after correc-
tion for multiple testing; however, adding SNP-treatment
interaction in a joint test seems to elevate the evidence
of genetic association with breast cancer. In particular, the
joint test for rs7705343 yields a false discovery rate of
0.0419, with suggestive evidence of interaction with 3 of
the randomized treatments. Although none of the MRPS30
SNPs reach FWER significance, the result that these SNPs
show suggestive evidence of marginal effect and interaction
with one or multiple treatments makes this region a poten-
tially interesting candidate for a replication study.

Table 4. Significance Levels for Tests of a Marginal Effect, Interaction, or Both on the Odds of Breast Cancer for the Top 15 Single Nucleotide

Polymorphisms Ranked by the Simultaneous Test, Women’s Health Initiative Clinical Trials, 1993–2005

Reference SNP Gene P for MA
P for SNP-Treatment Interaction Simultaneous Test

E-Alone E + P DMQa CaD P Value FDR Rank

1219648 FGFR2 3.90 × 10−10 0.413 0.661 0.040 0.547 6.45 × 10−9 3.21 × 10−5 1

2981579 FGFR2 2.78 × 10−9 0.284 0.084 0.058 0.313 7.76 × 10−9 1.94 × 10−5 2

3750817 FGFR2 9.02 × 10−8 0.046 0.033 0.005 0.544 5.61 × 10−8 9.32 × 10−5 3

11200014 FGFR2 3.40 × 10−9 0.425 0.380 0.122 0.682 1.08 × 10−7 0.00014 4

2420946 FGFR2 1.49 × 10−8 0.160 0.662 0.049 0.235 1.56 × 10−7 0.00016 5

2981582 FGFR2 9.99 × 10−8 0.045 0.369 0.049 0.422 5.25 × 10−7 0.00044 6

7705343 MRPS30 0.00036 0.043 0.863 0.042 0.046 5.88 × 10−5 0.0419 7

13159598 MRPS30 0.00043 0.056 0.920 0.057 0.048 0.000136 0.0846 8

11746980 MRPS30 0.00051 0.064 0.790 0.043 0.095 0.000240 0.133 9

9790879 MRPS30 0.00096 0.117 0.762 0.042 0.047 0.000244 0.122 10

2330572 MRPS30 0.00129 0.042 0.880 0.043 0.106 0.000294 0.133 11

7555040 Unknown 0.00248 0.825 0.769 0.359 0.0005 0.000336 0.140 12

4415084 MRPS30 0.00044 0.242 0.944 0.127 0.146 0.000400 0.153 13

994793 MRPS30 0.00184 0.084 0.798 0.041 0.080 0.000417 0.148 14

2218080 MRPS30 0.00274 0.273 0.933 0.025 0.069 0.000446 0.148 15

Abbreviations: CaD, calcium and vitamin D supplementation; DMQ, dietary modification upper quartile; E-Alone, conjugated equine

estrogens alone; E + P, conjugated equine estrogens in combination with medroxyprogesterone acetate; FDR, false discovery rate; FGFR2,

fibroblast growth factor receptor 2; MA, marginal association; MRPS30, mitochondrial ribosomal protein S30; SNP, single nucleotide

polymorphism.
a Subcohort with the upper quartile of baseline percentage of energy derived from fat in the dietary modification trial.
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DISCUSSION

We propose a new way to combine the test of marginal
genetic effect and the test of gene-environment interaction,
utilizing the independence between the two tests. The
average effect of 1 primary variable of interest on a pheno-
type and the potential heterogeneity of this effect over
another modifying variable are statistically independent but
scientifically related hypotheses, as we discuss in this paper.
Our simultaneous test allows assessing both aspects of the
association in a flexible and powerful way. It can be applied
to more general settings beyond gene discovery—for
example, the test of association of a phenotype with an envi-
ronmental exposure potentially interacting with other environ-
mental exposures.
The proposed testing strategy is particularly useful in

genetic association studies within randomized clinical trials,
where gene-treatment interaction is of interest, because the
CO interaction can be used with confidence and ease. In ob-
servational genetic studies, the simultaneous test uses the
EB estimator of gene-environment interaction; it maintains
FWER if gene-environment independence holds for a major-
ity of SNPs (>99%) and generally outperforms the standard
Kraft 2-df test. The power gain of the simultaneous test rela-
tive to the Kraft 2-df test comes mostly from use of the CO
estimator or the EB estimator. When compared with the
Kraft test also exploiting the independence, the advantage
of our simultaneous test is its simplicity—the sum of 2
squared z scores or log P values and the ease of incorporat-
ing the EB estimator in a joint test.
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