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Large-scale genome-wide association studies (GWAS) have identified over 40 genomic regions significantly

associated with type 2 diabetes mellitus. However, GWAS results are not always straightforward to interpret, and

linking these loci to meaningful disease etiology is often difficult without extensive follow-up studies. The authors

expanded on previously reported type 2 diabetes mellitus GWAS from the nested case-control studies of 2 pros-

pective US cohorts by incorporating expression single nucleotide polymorphism (SNP) information and applying

SNP set enrichment analysis to identify sets of SNPs associated with genes that could provide further biologic

insight to traditional genome-wide analysis. Using data collected between 1989 and 1994 in these previous

studies to form a nested case-control study, the authors found that 3 of the most significantly associated SNPs

to type 2 diabetes mellitus in their study are expression SNPs to the lymphocyte antigen 75 gene (LY75), the
ubiquitin-specific peptidase 36 gene (USP36), and the phosphatidylinositol transfer protein, cytoplasmic 1 gene

(PITPNC1). SNP set enrichment analysis of the GWAS results identified enrichment for expression SNPs to

the macrophage-enriched module and the Gene Ontology (GO) biologic process fat cell differentiation human,

which includes the transcription factor 7-like 2 gene (TCF7L2), as well as other type 2 diabetes mellitus-

associated genes. Integrating genome-wide association, gene expression, and gene set analysis may provide

valuable biologic support for potential type 2 diabetes mellitus susceptibility loci and may be useful in identifying

new targets or pathways of interest for the treatment and prevention of type 2 diabetes mellitus.

expression single nucleotide polymorphism; gene set enrichment analysis; genome-wide association study;

integrative genomic analysis; single nucleotide polymorphism; type 2 diabetes

Abbreviations: eSNP, expression-associated single nucleotide polymorphism; GSEA, gene set enrichment analysis; GWAS,

genome-wide association study(ies); HapMap, International Haplotype Map Project; KEGG, Kyoto Encyclopedia of Genes and

Genomes; SNP, single nucleotide polymorphism; SSEA, single nucleotide polymorphism set enrichment analysis.

Type 2 diabetes afflicts an estimated 270 million adults
worldwide and is projected to increase to 416.5 million by
2030, an increase of 54% (1). In the United States, esti-
mates of projected increases from 2005 to 2050 are as high
as 174% in men and 220% in women (2). Genome-wide
association studies (GWAS) have now identified greater
than 70 single nucleotide polymorphisms (SNPs) spanning
more than 40 genomic regions, each with a small contri-
bution to an individual’s susceptibility to develop type 2

diabetes mellitus (3). The most widely investigated and rep-
licated locus maps to the region of the transcription factor
7-like 2 gene (TCF7L2), which has been linked to diabetes,
prediabetes, insulin response, and complications such as
retinopathy (4–7). However, linking the SNPs identified in
GWAS to a gene of interest and then biologically validating
this gene in the context of the disease is often difficult.
More recently, integrative analyses have been reported that
seek to leverage gene ontology/pathway information to
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provide context for GWAS results (8, 9) similar to gene set
enrichment analysis (GSEA) for gene expression results.
GSEA was first proposed to analyze data from gene expres-
sion-profiling experiments (10) and was later used for anal-
ysis of GWAS data by selecting genes based on their
proximity to the GWAS SNPs (11). We have recently ex-
tended this analytical method to incorporate gene expres-
sion data with SNP association results through the use of
expression-associated SNPs (eSNPs). This analysis is re-
ferred to as SNP set enrichment analysis (SSEA) (9). Com-
bining the genetics of gene expression with GSEA allows
for a direct association between a set of SNPs and a gene
set of interest. This allows identification of sets of genes
whose surrogate SNPs show enriched association with the
endpoints of interest, even though individual SNPs may not
have reached genome-wide significance.
Two nested case-control studies were used to investigate

the genetics of type 2 diabetes mellitus. These samples
were identified from Nurses’ Health Study and Health Pro-
fessionals Follow-up Study prospective cohorts (12). We
extended the analysis performed by Qi et al. (12) by imput-
ing approximately 2,500,000 genotypes in the 5,773 in-
dividuals and performed single SNP association analysis.
We then used eSNP information from various relevant
tissues, generated from independent cohorts, to provide bio-
logic context in terms of gene associations to our single
SNP association results. Single SNP results are then linked
to eSNPs of genes in gene sets to perform SSEA. SSEA
allows us to identify gene sets or biologic pathways en-
riched with GWAS association signals to provide further
insight to type 2 diabetes mellitus etiology. SSEA identi-
fied gene sets for which none of the constituent eSNPs
showed genome-wide significance associations, as one
might expect when each member of the gene set or
pathway contributes small effects but whose combined
effect is significant, allowing us exploratory mining of
single SNP association results that otherwise may not have
been included in deeper mining efforts.

MATERIALS AND METHODS

The Nurses’ Health Study and Health Professionals
Follow-up Study cohorts have been described previously
(12–14). Briefly, these are prospective studies for which bi-
ennial follow-up through self-administered questionnaires is
used to update information about health and disease, as well
as dietary intake and lifestyle. Blood collection was per-
formed on 32,826 women (Nurses’ Health Study) and
18,159 men (Health Professionals Follow-up Study) between
1989 and 1994. It was from these subjects that the nested
case-control study was formed. Diabetes incidence was iden-
tified by self-report on biennial follow-up questionnaires and
confirmed by a medical record-validated supplementary
questionnaire regarding diabetes symptoms, diagnostic tests,
and treatments. Validation through medical records demon-
strated high reliability (>98%) of the self-report of diabetes
in the supplementary questionnaires (15). Diabetes-free con-
trols were selected to be matched on gender, year of birth,
month of blood collection, and fasting status, although the

matching was later broken because not all subjects gave in-
formed consent for the genome-wide association study.

Genotype data

Genotyping was done on the Affymetrix 6.0 chip (Affy-
metrix, Santa Clara, California) and is available in the data-
base of genotypes and phenotypes known as “dbGAP.”
Quality control was performed as described previously
(12). The current analyses expanded the set of SNPs by im-
puting approximately 2.5 million International Haplotype
Map Project (HapMap) SNPs in the 3,286 and 2,487
(genetically inferred) samples of European ancestry from
the Nurses’ Health Study and the Health Professionals
Follow-up Study, respectively. Imputation was performed
by using MACH HapMap CEU reference II r22 b36 (16).

Single SNP analyses

Genome-wide association analyses were first conducted
separately for the Nurses’ Health Study and Health Profes-
sionals Follow-up Study type 2 diabetes mellitus case-
control studies, followed by a meta-analysis of the 2
studies. Association analyses of the directly assayed SNPs
were performed in PLINK version 1.07 (17) and the
imputed doses in ProbABEL (18). Meta-analyses of the 2
case-control studies were performed by using a fixed-effect
model in PLINK. In order to assess and control for popula-
tion structure, principal component analysis was done prior
to association, separately in the 2 case-control studies, by
using EIGENSTRAT (19). Results of the principal compo-
nent analysis were used as covariates in the association
analysis along with age and body mass index. Only the first
eigenvector from the principal component analysis was
used in this model. However, 2 additional models were run
as sensitivity analyses and did not change the results of the
analysis materially. The first sensitivity model included no
covariates, and the second included age, body mass index,
and the first 3 (Nurses’ Health Study) or 4 (Health Profes-
sionals Follow-up Study) principal components. In all 3
analyses, an additive genetic model was assumed.

Expression-associated SNPs

eSNPs have been identified in 3 independent cohorts by
performing whole-genome genotyping by SNP array and
RNA profiling in multiple tissues from the sample individ-
ual. In these studies, an individual’s genotype at each locus
is correlated to the expression of each transcript profiled,
and significant associations were identified at a false dis-
covery rate of 10% (20–22). Our analysis focused on
eSNPs that were within 500 kilobases of the gene of inter-
est or within 1 megabase of the transcript of interest.
Results of our type 2 diabetes mellitus single SNP analysis
were queried against each of the eSNP data sets represent-
ing metabolic related tissues including liver, subcutaneous
adipose, and omental adipose. eSNPs were selected from
metabolic tissues rather than other eSNP cohorts because
they have been shown to be more highly associated with
obesity and type 2 diabetes mellitus traits (21, 23).
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SNP set enrichment analysis

Fifty-three gene sets were selected from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (24), Gene On-
tology, or relevant literature, that were linked to type 2
diabetes mellitus or other metabolic traits of interest (Web
Table 1, the first of 3 Web tables and 2 Web figures posted
on the Journal’s Web site (http://aje.oupjournals.org/)). The
gene sets also included gene coexpression modules, which
in previous studies have been found to be correlated to
insulin, glucose, homeostatic model assessment of insulin
resistance, body mass index, or leptin levels. The modules
are named by a reference color, the tissue, and cohort from
which they were derived (21). Similar to methods described
previously by Zhong et al. (9), for each gene set, a set of
SNPs that had previously been associated with the expres-
sion of each gene in the gene set (eSNPs) was selected. If
more than one SNP was found to be associated with a gene
in a gene set, the eSNP with the most significant associa-
tion to the gene was chosen for inclusion in the analysis. In
the case where no eSNP was identified for a gene in a gene
set, no SNP was selected, and the gene was not represented
in the test. With the SNPs representing each gene set, we
then used the type 2 diabetes mellitus meta-analysis
P values to perform a one-sample, one-sided Kolmogorov-
Smirnov test for departure from uniform, in which a signifi-
cant result indicates that the distribution of P values for the
gene set is stochastically less than that expected under a
uniform (0, 1) distribution. In order to assess the empirical
null distribution of these Kolmogorov-Smirnov test P values,
which may differ from the theoretical, asymptotic distribu-
tion due to departures from the implicit assumptions of the

test, we performed 10,000 permutations of the genotypes rel-
ative to the phenotypes, and the distributions of the permut-
ed SNP set test statistic (i.e., the Kolmogorov-Smirnov test
P values) were compared with those for the observed data in
order to obtain SNP set permutation P values. This proce-
dure is done on a gene set-by-gene set basis. The analysis
and permutations were repeated independently with 141
KEGG pathways, 140 of which had 5 or more genes repre-
sented by eSNPs similar to the analysis performed by Zhong
et al. (9). In order to address the multiple testing due to the
number of gene sets examined, we computed a false discov-
ery rate by using the Benjamini-Hochberg method (25).

RESULTS

Single SNP analysis

After genotype quality control and population inference,
3,214 (1,464 cases, 1,750 controls) individuals in the
Nurses’ Health Study and 2,307 (1,063 cases, 1,244 con-
trols) individuals in the Health Professionals Follow-up
Study were used in the analysis. The most significant associ-
ations with type 2 diabetes mellitus identified from the meta-
analysis were in the region of TCF7L2 (P = 3.26 × 10−13)
(Web Figure 1; Table 1). The second most significant region
identified in our analysis was in the ADAM metallopepti-
dase with thrombospondin type 1 motif, 9 gene (ADAMTS9)
(chromosome 3, P = 1.28 × 10−07). Both of these regions
have been significantly associated with type 2 diabetes melli-
tus susceptibility previously (26–28). Another region identi-
fied from the meta-analysis was on chromosome 2 in the
RNA-binding motif, single-stranded interacting protein 1

Table 1. Type 2 Diabetes Mellitus Genome-wide Association Study Resultsa,b

Chromosome Position Most Significant SNP Meta P Value Odds Ratio In Gene Closest Gene eSNP Gene

10 114748339 rs7903146 3.26 × 10−13 0.72 TCF7L2

2 160922421 rs6718526 7.65 × 10−7 1.30 RBMS1 LY75

3 64711617 rs2371765 8.90 × 10−7 1.22 ADAMTS9

17 74333763 rs1531797 1.22 × 10−6 0.82 USP36 USP36

1 202547459 rs16853272 2.47 × 10−6 1.90 PLEKHA6

15 240948199 rs12148430 3.90 × 10−6 0.73 GABRB3

14 71978830 rs2283381 5.86 × 10−6 1.24 RGS6

20 60009590 rs17750066 5.98 × 10−6 0.64 TAF4

21 37158147 rs7282868 6.63 × 10−6 1.27 HLCS

17 62804441 rs8866 7.17 × 10−6 1.24 PITPNC1 PITPNC1

1 183539106 rs1208517 8.73 × 10−6 1.29 IVNS1ABP

Abbreviations: eSNP, expression-associated single nucleotide polymorphism; rs, reference single nucleotide polymorphism (identification

number); SNP, single nucleotide polymorphism.
a If multiple SNPs in linkage disequilibrium in the region were identified, the most significant SNP is noted, and the eSNP gene to any SNP in

the region is noted. The P values reported are based on meta-analysis results from the Nurses’ Health Study and the Health Professionals

Follow-Up Study.
b ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif, 9 gene; GABRB3, gamma-aminobutyric acid A receptor, beta 3

gene; HLCS, holocarboxylase synthetase gene; IVNS1ABP, influenza virus NS1A binding protein gene; LY75, lymphocyte antigen 75 gene;

PITPNC1, phosphatidylinositol transfer protein, cytoplasmic 1 gene; PLEKHA6, pleckstrin homology domain containing, family A member 6

gene; RBMS1, RNA-binding motif, single-stranded interacting protein 1 gene; RGS6, regulator of G-protein signaling 6 gene; TAF4, TAF4 RNA

polymerase II gene; TCF7L2, transcription factor 7-like 2 gene; USP36, ubiquitin-specific peptidase 36 gene.
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gene (RBMS1). In silico replication (i.e., replication sought
in available GWAS data from collaborators) of the SNP as-
sociations identified in this region was reported previously
(12). The top associated SNPs in this region are not eSNPs
but in tight linkage disequilibrium (r2 = 0.86) to an eSNP
(rs10929981) to the lymphocyte antigen 75 gene (LY75) in
blood and adipose tissue (20). A region on chromosome 17
identified in our meta-analysis (P = 1.22 × 10−6) has been
found previously as suggestive in the Wellcome Trust Case-
Control Consortium type 2 diabetes mellitus case-control
study (P = 1 × 10−4) (4). The SNPs identified in our study
are eSNPs with strong associations with the ubiquitin-specif-
ic peptidase 36 gene (USP36) in multiple tissues
(rs2279308; eSNP P = 1.35 × 10−99 (omental adipose), P =
9.51 × 10−79 (subcutaneous adipose), P = 1.01 × 10−69

(liver)). Another region of interest from our analysis on chro-
mosome 17 (rs8866; P = 7.17 × 10−6) is an eSNP to the
phosphatidylinositol transfer protein, cytoplasmic 1 gene
(PITPNC1). Differences in results from those reported by Qi
et al. (12) likely stem from the covariates used in this analy-
sis, specifically age and body mass index, and the fact that
these results are from the meta-analysis of imputed SNPs
from the 2 studies. eSNP data for GWAS results with P <
0.001 are reported in Web Table 2 for reference.

SNP set enrichment analysis

Three gene sets were identified as significant at a false dis-
covery rate threshold of 0.05. These gene sets are as follows:

• Human homolog of the Macrophage-enriched Metabolic
Network (also known as the “MEM Network”; uncorrect-
ed P = 0.0005, false discovery rate = 0.027) (29);

• Gene Ontology “fat cell differentiation human” (uncor-
rected P = 0.002, false discovery rate = 0.035); and

• “Oxidative stress” (uncorrected P = 0.001, false discovery
rate = 0.034) (30).

An additional, notable gene set is suggestive at a false dis-
covery rate = 0.083: the black module derived from the
Roux en Y Gastric Bypass (RNGB) cohort (21) (Table 2).
The black module is a gene coexpression module, which
was found to be correlated with body mass index and leptin
levels from a cohort of extremely obese individuals.
In addition to the 53 gene sets tested, we also performed

SSEAwith 141 KEGG pathways, for comparison with recent-
ly reported results for the Wellcome Trust Case-Control Con-
sortium type 2 diabetes mellitus cohort (9). Some of these
pathways were included in our original 53 gene sets, such as
the peroxisome proliferator-activated receptor gene (PPAR)
signaling because of their known associations with type 2 dia-
betes mellitus. Eight pathways had an uncorrected significance
level of P < 0.05 (Web Table 3). However, none of the KEGG
pathways tested was found to be significantly enriched in anal-
ysis of our cohort with a false discovery rate of less than 0.2.

DISCUSSION

We have built on previously reported GWAS for type 2
diabetes mellitus through imputation, genetics of gene

expression, and SSEA in an attempt to provide context for
SNPs shown by previous studies to be associated with
genes and pathways that are related to the development of
type 2 diabetes mellitus that could be targeted for interven-
tion. Imputation of HapMap SNPs to include >2,500,000
genotypes and use of additional covariates, such as body
mass index and age, in our analysis strengthened the results
in a number of regions of the genome including around
TCF7L2 and ADAMTS9, which have been implicated in
type 2 diabetes mellitus GWAS previously. Between our
analysis and that of a previously reported GWAS on this
data set, associations in the region of TCF7L2 were
strengthened from 2.13 × 10−9 to 3.26 × 10−13, by including
imputed SNPs and body mass index as a covariate in the
analysis. It has recently been reported that there is a signifi-
cant interaction between the SNPs around TCF7L2 and
body mass index in this cohort when gene/environment in-
teractions are explored (31). The region of ADAMTS9 has
been linked to type 2 diabetes mellitus in large GWAS pre-
viously (4). None of the significant SNPs identified within
the region of TCF7L2 or ADAMTS9 to our knowledge has
been associated with human gene expression in any genet-
ics study of gene expression to date.
Through eSNP and network information, we were able to

inform a number of single SNP associations with gene in-
formation that have only previously been identified as sug-
gestive or associated with the nearest gene to the GWAS
SNP in previous studies. Previous analysis of the Nurses’
Health Study/Health Professionals Follow-up Study impli-
cated RBMS1 and the integrin beta 6 gene (ITGB6) as the
genes of interest on chromosome 2q24; our most significant
SNP, rs6718526, is in RBMS1. However, eSNP analysis
identified an association between this SNP and LY75. LY75
is a transmembrane receptor that plays a role in antigen
processing and presentation, cellular defense response, and
receptor-mediated endocytosis. The gene is overexpressed
in the thyroid, blood, gut, pancreas, and subcutaneous
adipose. We reviewed connections to LY75 in mouse

Table 2. Single Nucleotide Polymorphism Set Enrichment Analysis

Resultsa

Gene Set Name
Source, Year

(Reference No.)
Permutation

P Value
FDR

MEM Network
human homolog

Chen et al., 2008
(29)

0.0005 0.027

Oxidative stress Furukawa et al.,
2005 (30)

0.0013 0.034

Fat cell
differentiation
human

GO biologic
process

0.0020 0.035

RYGB black
module

Greenawalt et al.,
2011 (21)

0.0063 0.083

Abbreviations: FDR, false discovery rate; GO, Gene Ontology;

MEM, macrophage-enriched module; RYGB, Roux-en-Y gastric

bypass.
a The results reported are from the meta-analysis of the primary

model. Additional description of the gene sets can be found in Web

Table 1 posted on the Journal’s Web site (http://aje.oupjournals.org/).
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Bayesian networks, which have previously been construct-
ed from mouse cross quantitative trait loci studies for meta-
bolic disorders (32). LY75 was found to be directly
connected to the expression of the pyruvate dehydrogenase
kinase, isozyme 1, gene (PDK1), which is known to have a
role in insulin resistance (Web Figure 2). Network analysis
of the other implicated gene in the region of rs6718526,
RBMS1, did not identify such associations.

The 2 suggestive associations identified on chromo-
some 17, rs1531797 and rs8866, were eSNPs to USP36
and PITPNC1, respectively. USP36 is a deubiquitinating
enzyme that acts in regulation of nucleolar structure and
function. USP36 expression has also been shown to be con-
trolled by the master regulators hepatocyte nuclear factor
transcription factor, in the pancreas, which has been shown
to contribute to type 2 diabetes mellitus, and the hepatocyte
nuclear factor 4, alpha gene (HNF4A) (33). PITPNC1 is a
cytoplasmic phosphatidylinositol transfer protein, involved
in lipid transport. To our knowledge, PITPNC1 has not
been associated with type 2 diabetes mellitus in the litera-
ture previously. While eSNP and network information does
not provide a causal link between the SNP and the gene, it
provides further clarity when exploring the biologic rele-
vance of an SNP identified in a GWAS to a disease. This
method is also useful for prioritizing SNPs/genes for repli-
cation or further laboratory-based follow-up.

Because of the current design of association studies,
GWAS analysis will only identify relatively common vari-
ants with moderately large effects. For complex diseases in
which a number of genes have small contributions to disease
risk, the signal for most of these genes will not be detected
above the false positives, given the multiple testing in a
genome-wide analysis. For this reason, GSEA and SSEA,
which test for enrichment of low P values in prehypothe-
sized sets of genes, can be powerful when all or some of the
genes in a pathway contribute small risk effects. Given the P
values that must be achieved to reach genome-wide signifi-
cance in a GWAS, SSEA allows interrogating suggestive
SNPs in a biologically meaningful manner. SSEA allowed
us to extend single SNP association results to gene sets of
interest, through the use of SNPs that had previously been
associated with the expression of genes of interest.

The MEM Network of genes was identified by Chen
et al. in 2008 (34) as a group of genes that were causal for
obesity in a mouse intercross between the apolipoprotein E
null C57BL/6J mouse strain and the apolipoprotein E null
C3H/HeJ mouse strain raised on a high-fat diet in order to
induce metabolic and vascular disorder phenotypes. A
similar gene set was later found to be associated with
obesity in 2 human data sets (20, 21). The module contains
580 genes, 341 of which are represented by eSNPs. The
gene set is enriched for genes involved in immune response
(Fisher’s exact test, corrected P value (E) = 8.48 × 10−14),
defense response (E = 3.29 × 10−12), and response to stress
(E = 8.52 × 10−14). It has long been known that type 2 dia-
betes mellitus is a proinflammatory disease, which involves
activation of the innate immune system (for review, refer to
Reference 35).

The Gene Ontology biologic process, fat cell differentia-
tion human, includes 39 genes, 23 of which are represented

by eSNPs (Table 3). This gene set includes a number of
well-known type 2 diabetes mellitus-associated genes in-
cluding the peroxisome proliferator-activated receptor
gamma gene (PPARG), TCF7L2, and the insulin receptor
gene (INSR). In our analysis, TCF7L2 and INSR were not
represented by eSNPs, but this gene set was still found to
be significant, supporting the power and utility of this
method. The oxidative stress gene set was selected because
of its relation with insulin secretion and glucose transport
(30). Interestingly, 2 of the gene sets identified as signifi-
cant through SSEA are associated with immune response.
However, gene sets that one might expect to find significant
in a type 2 diabetes mellitus cohort analysis including the
pathways type 2 diabetes mellitus, insulin signaling, and
PPAR signaling did not achieve statistical significance.
This could be due to a bias of the genes included in the
analysis due to representation by eSNPs. However, 2 previ-
ous GSEA and SSEA studies on independent type 2 diabe-
tes mellitus cohorts did not find these genes sets to be
significant after multiple testing corrections either. The
PPAR signaling pathway was previously found to have an
enrichment P = 0.029 (false discovery rate = 0.2) by SSEA,
and the type 2 diabetes mellitus pathway had a P = 0.04
(false discovery rate = 0.78) by GSEA (9, 36). Our analysis
replicated the results found for the gene sets, “antigen pro-
cessing” and “presentation and ether lipid metabolism”
identified by Zhong et al. (9). Pathway analysis of the Well-
come Trust Case-Control Consortium on type 2 diabetes
mellitus results through GSEA identified the Wingless-type
mouse mammary tumor virus integration site family
(WNT) signaling pathway as the top associated pathway;
however, no other KEGG pathways were found to be sig-
nificantly enriched (36). In our current study, the WNT sig-
naling gene set achieved an uncorrected P = 0.056. Our
study was conducted in a cohort that was predominately of
European ancestry and, given its size, had relatively low
power to identify significant, but weaker associations. In-
creased power in the GWAS would likely strengthen our
SSEA results. Therefore, it is important to replicate these
results in an independent larger cohort.

Our analysis included 53 gene sets, including KEGG
pathways, gene ontologies, and gene sets of interest, linked
to type 2 diabetes mellitus or associated traits. This is a su-
pervised approach to gene selection that strengthened asso-
ciations previously reported with SSEA and GSEA, which
looked at KEGG pathways or gene ontology gene sets
without filtering for relevance to type 2 diabetes mellitus.
Although agnostic exploration of data can be useful, in this
case directed exploration of known or suspected type 2 dia-
betes mellitus gene sets reduced the multiple testing burden
and allowed us to identify 4 gene sets that were highly in-
teresting. This supervised gene set selection method has
not been tested on an independent type 2 diabetes mellitus
cohort, and the results should be replicated to confirm their
validity.

GWAS identify a small number of common variants that
associate with susceptibility for disease. However, it is
often difficult to link identified SNPs with biology relevant
to the disease of interest. Through the use of eSNPs, we
were able to link SNPs with suggestive significance to type
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2 diabetes mellitus to a number of genes of interest in
insulin signaling and lipid metabolism. Although TCF7L2
was not represented by an eSNP, in our analysis the gene
set “fat cell differentiation human” was identified as signifi-
cant, which contains TCF7L2 as well as a number of other
genes that have been linked to type 2 diabetes mellitus pre-
viously, further supporting the relevance of our analysis to
type 2 diabetes mellitus. Further analysis of the other genes
in this gene set may identify interesting genes or pathways
to target for treatment of type 2 diabetes mellitus. As more
combination therapies are developed, taking a pathway

approach to drug development will likely increase success
in identifying targets for treatment of complex disorders
such as type 2 diabetes mellitus.
GWAS can be used to identify disease-associated vari-

ants that are relatively common and with relatively large
effects. The rarer the variant or the smaller the effect, the
larger the sample size needed, and sample sizes will always
be limited by cost and feasibility. In some cases, adequate
sample size can only be achieved through consortia and
meta-analysis of numerous individual studies. On the other
hand, in vivo work, model organisms, and other, more

Table 3. Fat Cell Differentiation Human Gene Set and

Accompanying eSNP Informationa

Gene Symbolb eSNP Tissue eSNP rs id
GWAS P
Value

CTSS Omental adipose rs10305724 0.05

ADAM12 Subcutaneous
adipose

rs4962528 0.05

PPARD Subcutaneous
adipose

rs6906237 0.06

TAF8 Omental adipose rs9381135 0.06

ADRB1 Liver rs7915120 0.07

ERAP1 Omental adipose rs13160562 0.07

HOXC4 Subcutaneous
adipose

rs11614913 0.11

CCND1 Subcutaneous
adipose

rs12808959 0.13

ADRB2 Omental adipose rs7729953 0.24

BMPR1B Omental adipose rs1434546 0.26

GPD1 Liver rs7532 0.29

KLF7 Liver rs6732724 0.29

CBY1 Liver rs4820345 0.34

ENPP1 Liver rs9493120 0.34

SMAD3 Omental adipose rs7166081 0.35

WWTR1 Omental adipose rs10513355 0.38

PPARG Liver rs1797912 0.39

STEAP4 Liver rs3745178 0.43

SOCS1 Omental adipose rs7197119 0.44

UCP1 Omental adipose rs17005845 0.65

MAP3K5 Omental adipose rs9373173 0.69

LRRC8C Omental adipose rs2224652 0.74

SFRP1 Liver rs6998193 0.79

ADIG

BMP7

CEBPA

CEBPB

HMGA2

IL11

INSR

JARID1A

KLF6

Table continues

Table 3. Continued

Gene Symbolb eSNP Tissue eSNP rs id
GWAS P
Value

MED1

NFATC4

NR5A2

PPARGC1A

RUNX1T1

SAFB

TCF7L2

Abbreviations: dbSNP, National Institutes of Health single

nucleotide polymorphism database; eSNP, expression-associated

single nucleotide polymorphism; GWAS, genome-wide association

studies; rs id, reference single nucleotide polymorphism identifier;

SSEA, single nucleotide polymorphism set enrichment analysis.
a Genes represented by an eSNP in the SSEA are noted by

tissue and dbSNP rs id information.
bADAM12, ADAM metallopeptidase domain 12 gene; ADIG,

adipogenin gene; ADRB1, adrenergic, beta-1-receptor gene;

ADRB2, adrenergic, beta-2-receptor; BMP7, bone morphogenetic

protein 7 gene; BMPR1B, bone morphogenetic protein receptor,

type IB gene; CBY1, chibby homolog 1 gene; CCND1, cyclin D1

gene; CEBPA, CCAAT/enhancer binding protein, alpha gene;

CEBPB, CCAAT/enhancer binding protein, beta gene; CTSS,
cathepsin S gene; ENPP1, ectonucleotide pyrophosphatase/

phosphodiesterase 1 gene; ERAP1, endoplasmic reticulum amino-

peptidase 1 gene; GPD1, glycerol-3-phosphate dehydrogenase 1

gene; HMGA2, high mobility group AT-hook 2 gene; HOXC4,
homeobox C4 gene; IL11, interleukin 11 gene; INSR, insulin receptor

gene; JARID1A, lysine-specific demethylase 5A gene; KLF6, Kruppel-
like factor 6 gene; KLF7, Kruppel-like factor 7 gene; LRRC8C,
leucine-rich repeat containing 8 family, member C gene; MAP3K5,
mitogen-activated protein kinase kinase kinase 5 gene; MED1,
mediator complex subunit 1 gene; NFATC4, nuclear factor of

activated T-cells calcineurin-dependent 4 gene; NR5A2, nuclear

receptor subfamily 5, group A, member 2 gene; PPARD, peroxi-

some proliferator-activated receptor delta gene; PPARG, peroxisome

proliferator-activated receptor gamma gene; PPARGC1A, peroxisome

proliferator-activated receptor gamma, coactivator 1 alpha gene;

RUNX1T1, runt-related transcription factor 1 gene; translocated to 1,

gene; SAFB, scaffold attachment factor B gene; SFRP1, secreted

frizzled-related protein 1 gene; SMAD3, SMAD family member 3

gene; SOCS1, suppressor of cytokine signaling 1 gene; STEAP4,
STEAP family member 4 gene; TAF8, TAF8 RNA polymerase II

gene; TCF7L2, transcription factor 7-like 2 gene; UCP1, uncoupling
protein 1 gene; WWTR1, WW domain containing transcription

regulator 1 gene.

428 Greenawalt et al.

Am J Epidemiol. 2012;176(5):423–430



traditional, methods can create hypotheses about drivers of
disease, which are difficult to validate in humans. We hope
that our exploratory methods integrating GWAS data for a
disease of interest, along with data on the genetics of gene
expression for relevant tissues and hypotheses about gene
sets of interest based on cell or animal model research, will
allow further insight into the mechanism of disease in
humans, beyond the information available from the top
genome-wide significant SNPs.
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