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Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective
animal behaviour. Originally, SPP models were proposed with metric interactions, where
each individual coordinates with neighbours within a fixed metric radius. However, recent
experiments on bird flocks indicate that interactions are topological: each individual interacts
with a fixed number of neighbours, irrespective of their distance. It has been argued that
topological interactions are more robust than metric ones against external perturbations, a
significant evolutionary advantage for systems under constant predatory pressure. Here, we
test this hypothesis by comparing the stability of metric versus topological SPP models in
three dimensions. We show that topological models are more stable than metric ones. We
also show that a significantly better stability is achieved when neighbours are selected accord-
ing to a spatially balanced topological rule, namely when interacting neighbours are evenly
distributed in angle around the focal individual. Finally, we find that the minimal number
of interacting neighbours needed to achieve fully stable cohesion in a spatially balanced
model is compatible with the value observed in field experiments on starling flocks.
1. INTRODUCTION

One of the prominent features of collective animal be-
haviour is the way animal groups manage to stay
together in spite of predatory attacks and environ-
mental perturbations [1]. During aerial display of
starlings, for example, flocks fly for almost an hour
above the roost, in the presence of falcons and seagulls
exerting continuous disturbances. In this respect, flocks
exhibit a very efficient response, with a large degree of
coordination and very robust cohesion. Flocks are an
emblematic case of self-organized collective behaviour,
where global patterns emerge from local interaction
between individuals [2,3]. In this respect, a crucial ques-
tion is: what kind of interactions are able to grant the
group the robustness to perturbations that we observe?

Experimental results on flocks of starlings (Sturnus
vulgaris) [4,5] gave some insight into the nature of the
interaction between birds. In the study of Ballerini
et al. [4], it was discovered that interactions are topolo-
gical, each individual coordinating with a fixed number
(approx. 7) of closest neighbours, irrespective of their
distances. This result contrasted to what assumed by
orrespondence (andrea.cavagna@gmail.com).
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most models of self-organized collective motion, where
metric interactions were used [6–12].

In the study of Ballerini et al. [4], it was argued that
topological interactions grant more robust cohesion than
metric ones, and are therefore more effective from an
anti-predatory point of view. In the present work, we
test this hypothesis. To this end, we resort to numerical
models of self-propelled particles (SPPs) [9] which have
been extensively used in the last 20 years to study
the emergence of order in polarized systems. Most of the
past literature on flocking models was devoted either to
characterize the onset of ordering [9,13–18], or to describe
the features of the ordered phase [6–8,10,19–23]. Less
attention was given to response and robustness to external
perturbations, and to understand what determines at a
microscopic level specific traits of the global behaviour.
Besides, the greatest part of numerical analysis has been
performed in two dimensions, dealing either with small
finite groups or with fluids of SPPs.

However, to really understand what happens in real
aggregations, we need to consider three-dimensional
models and look at large finite groups of individuals.
A few very recent works [24–28] implemented topologi-
cal rules both in two- and three-dimensional models,
but did not consider the question we want to address
in this paper: what are the features of the microscopic
interactions that grant robust cohesion to the group?
This journal is q 2012 The Royal Society
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Figure 1. Topological nature of the interaction. Topological range of interaction (left) and metric range of interaction (right) versus
sparseness for several flocking events. (a) The topological (metric) interaction range was computed as the order of the neighbours (dis-
tance) above which the angular distribution of neighbours becomes isotropic (from Ballerini et al. [4]). (b) Topological and metric
interaction rangeswere computed starting from the empirical correlation functions of the velocity fluctuations and using the maximum
entropy approach to infer interaction parameters from such correlations (from Bialek et al. [5]). (Online version in colour.)
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In the following, we focus on this issue. We consider a
class of numerical models of SPPs in three-dimensions
with different kinds of interactions, both metric and
topological. We compare robustness of cohesions of
the group under the effect of the noise and of external
perturbations. Our analysis suggests that topological
interactions perform better than metric ones, and that
to achieve maximal stability, the topological interactions
must be spatially balanced, distributing interacting
neighbours evenly around each individual.
2. SUMMARY OF EXPERIMENTAL
RESULTS

The first empirically based results on the nature of the
inter-individual interactions in flocks of birds were
obtained in the last couple of years thanks to novel
experimental and algorithmic techniques [29,30].
Stereoscopic experiments were performed in the field
on flocks of starlings during aerial display above the
roost. Three-dimensional positions and velocities of
individual birds were reconstructed for flocks of up to
a few thousands of individuals.

2.1. Topological interaction

A first statistical analysis focused on positions, quanti-
fying how individuals in a flock are mutually
positioned in space [4]. It was discovered that the distri-
bution of neighbours of a given bird is strongly
anisotropic, closest neighbours being located signifi-
cantly more on the sides than along the direction of
motion. Using the degree of this anisotropy as a proxy
of the interaction between individuals, it was discovered
that interactions have a topological nature (figure 1):
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when considering flocks of different densities, the
number of interacting neighbours does not display any
dependence on the density. On the contrary, their
metric distance depends strongly on the density; more
precisely, the metric radius of interaction increases line-
arly with the mean nearest neighbour distance (called
‘sparseness’ in previous works; figure 1). This behaviour
indicates that birds in a flock always interact with the
same number of neighbours, independently of their dis-
tances. Further analysis of individual velocities using
methods of statistical inference based on the maximum
entropy approach [5], fully confirmed this conclusion
(same figure). An estimate of the topological interaction
range based on 22 flocking events [4,31] indicates that
each bird interacts approximately with the 7+1.5
closest neighbours.

Despite the fact that interactions are local, flocks
are able to achieve strong coherence on a large scale. Cor-
relations both in orientations and in speed are scale-
free [32], implying that the range of influence of each
individual is much larger than the interaction range,
and it extends over the whole flock. In other terms,
even if each bird only interacts with the seven closest
neighbours, its change of behaviour can influence even
the furthest individuals. The mechanism through
which this information propagation occurs, from inter-
action link to interaction link through the whole
network, has been elucidated in Bialek et al. [5]. Here,
it was shown that mutual local alignment interactions
between neighbours are sufficient to produce the velocity
correlations that have been measured in natural flocks.

Local interactions with few neighbours are economic,
and at the same time grant coherence at large scale. But
why are interactions topological? What is the benefit of
coordinating with the same number of individuals
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Figure 2. Cohesion in a two-dimensional numerical model: (a) metric versus (b) topological interactions. A numerical model of
SPPs in two dimensions either with topological or with metric interactions was simulated to check for stability against pertur-
bations. The histogram displays the probability that an initially cohesive and polarized flock fragments into a certain number of
connected components (CCs) after a predatory attach (from Ballerini et al. [4]). (Online version in colour.)

Balanced topological flocking model M. Camperi et al. 717
independently of their distance? And why is the number
of interacting neighbours close to seven? First of all, we
may note that estimating metric distances may be too
costly for birds, especially during real time interaction.
On the other hand, even topological interaction involves
measuring distances, as the first nc neighbours are ranked
in distance. Some discussion of these issues was provided
in Ballerini et al. [4], where it was shown that topological
interactions appear to be more robust than metric inter-
actions in terms of cohesion of the group. Using some
simple two-dimensional models of collective motion,
two flocks, one with metric and the other with topologi-
cal interactions, were prepared with the same initial
conditions and then exposed to a predatory attack (mod-
elled as a repulsive central force; see Ballerini et al. [4]).
The topological flock exhibited a much stronger cohesion,
giving rise to a lower number of subgroups and stragglers
after the attack (figure 2).

These results suggest that topological interactions
enhance robustness in cohesion, a crucial feature in
the anti-predatory response of animal aggregations.
To investigate this point further, however, a more
systematic analysis is required. The numerical simu-
lations described in Ballerini et al. [4] were performed in
two dimensions and with a given set of parameters
(in particular the number of interacting neighbours and
the noise strength). Morever, the model used in the
study of Ballerini et al. [4] did not have an attraction
term in the equation, so that cohesion was somewhat dif-
ficult to assess. Natural flocks live in three dimensions,
where cohesion is much more difficult to maintain
owing to the larger number of degrees of freedom. Even
if one expects topological interactions to outperform
metric ones also in three dimensions, it is not a priori evi-
dent how strong in general this advantage in terms of
robustness is. Moreover, it is not clear what is the role
of the number of interacting neighbours and whether
robust cohesive groups can be produced even with very
small numbers of interacting neighbours. The remaining
part of this paper is dedicated to investigate these
questions. We will generalize the numerical analysis
performed in Ballerini et al. [4] to a three-dimensional
model with attraction, and systematically check for
robustness in cohesion in both metric and topological
models of self-organized collective motion.
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2.2. Pair radial correlation function

Given the non-trivial mutual arrangements of individuals,
with a strong anisotropy in the angular distribution of
neighbours, one might wonder whether mutual distances
also obey some specific non-trivial distributions. There
are many example of birds that fly in formation,with regu-
lar distances between neighbours. This is not the case for
starlings. In this respect, in contrast, flocks are rather
structureless systems, with individuals continuously
exchanging positions [33] and with a distribution of
mutual distances lacking any structure. A good quantitat-
ive observable to pinpoint this behaviour is the so-called
radial pair correlation function g(r), defined as the density
of particles at distance r from a focal particle. More pre-
cisely, this function is defined in the following way,

gðrÞ ¼ 1
4pr2N

XN
i¼1

dðr � rijÞ; ð2:1Þ

where d(x) is Dirac’s delta function. From the practical
point of view, in order to compute the numerator in g(r),
one counts howmanypairs of points existwithmutual dis-
tance rij between r and r þ dr, where dr is an arbitrary
binning interval (see [34] for the details of the definition,
and in particular for the crucial point of how to deal
with the border).

The radial correlation function g(r) is a very useful tool
for distinguishing different phases of matter, be it stan-
dard physical matter or active matter. In a crystal, g(r)
has very sharp and pronounced peaks; in the liquid
phase, g(r) has many smoother, but well-defined peaks,
corresponding to the shells around each particle. On
the other hand, in a gas the g(r) is rather structureless,
only showing a drop at small r corresponding to the
hard core of the particles that cannot get too close to
each other.

The form of g(r) in real flocks of starlings is shown in
figure 3 [34]. We clearly see that there is not much struc-
ture, very much like what one finds in a gas. This lack of
structure may seem a rather unexciting result, but in
fact it is important. As we shall see, we will use g(r)
to fix the parameters of our simulations. This exper-
imental constraint is not an easy one to match: it is
very easy to get the radial correlation function wrong.
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Indeed, a possible way to enforce cohesion in a system of
interacting particles is to introduce strong attraction
between them. However, this leads to strong struc-
tures with crystalline or liquid-like g(r). This is not
what real flocks do. Therefore, it seems that a ‘boring’
radial correlation function is a very non-trivial biologi-
cal requirement that models have to match. Our aim
in the present work was to investigate those features
in the interaction that enhance cohesion and at the
same time produce flocks with as featureless a radial
correlation function as the natural ones.
1In fact, when using Voronoi cells, one could introduce an ‘interaction
rate’, in which each particle interacts with a Voronoi neighbour with a
certain probability. One could then use this probability as a tuning
parameter, in place of the number of interacting neighbours nc.
3. NUMERICAL MODELS OF SELF-
ORGANIZED COLLECTIVE BEHAVIOUR

Many models of collective motion have been investi-
gated in the last 10 years, by biologists [6–8, 10,19,],
physicists [9,11,13,14,16–18,20,22,] and control theor-
ists [35,36]. Here, we focus on a class of such models,
known as SPP models [9,22,24]. The first and most
renowned among them is the Vicsek model [9], where
point particles with constant speed move based on
mutual alignment with neighbours and subject to
noise. If we characterize each particle by its position
xi and velocity vi, then the dynamical equations of
motion read as

viðt þ 1Þ ¼ v0Q Q
1
Ni

X
j[SðiÞ v

t
j

� �
þ hjt

i

� �
and xtþ1

i ¼ xt
i þ vt

i :

9=
; ð3:1Þ

Here Q is the normalization function QðxÞ ¼ x=x, v0

is the (constant) speed of the particles and ji is a
random vector delta correlated in particle index and
time and uniformly distributed in the unit spherical sur-
face [37]. The parameter h tunes the amount of noise
the particles are subject to. Finally, S(i) indicates the
ensemble of the Ni interacting neighbours of particle i.
In the original Vicsek model, S(i) is chosen following
a metric rule: particle i interacts with all particles
closer than a given metric interaction range rc.
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Despite its minimal architecture, the Vicsek model
exhibits non-trivial collective properties and gives rise,
for low enough noise, to a polarized flow of moving par-
ticles. Still, when the volume available to the flockers
increases (at fixed number of particles), even very
small fluctuations can lead to flock dispersion and an
initially ordered group soon dissolves in open space. In
other terms, the Vicsek model is not able to produce
finite polarized and cohesive aggregations of particles.

To overcome this problem, Grégoire et al. [22] intro-
duced an extension of the Vicsek model, where an
attraction–repulsion term is added to fix the density of
the aggregation. The velocity updating is modified as

viðt þ 1Þ ¼ v0Q a
X

j[SðiÞ
vt

j þ b
X

j[SðiÞ
f t

ij þ Nihj
t
i

0
@

1
A;
ð3:2Þ

where the parameters a and b tune the mutual relevance
of alignment and attraction/repulsion, and the attrac-
tion–repulsion force is given by

fij ¼r̂ij

�1 if rij , r hc

1
4

rij � re

ra � r hc
if r hc , rij , ra

1 if ra , rij , rc:

8>><
>>: ð3:3Þ

Here, rhc corresponds to the hard-core distance, re to the
ideal equilibrium distance between particles, rc is
the maximum interaction range and ra defines the dis-
tance beyond which fij becomes constant. The set of
interacting neighbours S(i) is now defined as the set
of Voronoi neighbours of bird i that are found within
the range rc from bird i. In the study of Grégoire
et al. [22], the authors fixed v0 ¼ 0.05, r hc ¼ 0:2,
re ¼ 0:5, ra ¼ 0:8 (we will use the same values for these
parameters throughout this paper).

A systematic analysis of the collective behaviour gen-
erated by equation (3.2) in two dimensions, together
with a phase diagram, can be found in Grégoire et al.
[22]. Contrary to the original Vicsek model, this model
produces, for appropriate values of the parameters a, b
and h, cohesive groups also in open space (i.e. in the
zero density limit). It therefore seems a good candidate
to investigate stability and robustness in group cohesion.
There are however a few issues to be further considered.
We note that, according to the previous definition,
model (3.2) has a mixed metric–topological character.
Indeed, when the maximum interaction radius rc is big
enough with respect to the average distance between par-
ticles, the ensemble of interacting neighbours coincides
with the first Voronoi shell, which is defined indepen-
dently of mutual distances, i.e. topologically. When rc

decreases, however, actual distances start to be relevant
and interactions become truly metric. Besides, even
when rc is large, the number of interacting neighbours
is uniquely determined by the Voronoi tessellation
(approx. 15 in three dimensions) and cannot be
tuned.1 Since we want to investigate the link between
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microscopic interactions, and number and positions of
interacting neighbours and degree of cohesion, we would
like a model where we can switch in a neat way from
metric to topological interactions and we can tune the
number of interacting neighbours. Besides, keeping in
mind natural flocks, we want to focus on particles moving
in three dimensions, rather than in two dimensions.

For all these reasons, we have generalized the model
of equation (3.2). We have considered this model in
three dimensions and have introduced three variants,
where the ensemble of interacting neighbours S(i) is
chosen with a different set of rules.
Interfa
— Metric interactions: in this case, as in the original
Vicsek model, the set S(i) consists of all the neigh-
bours of bird i that are found within a given
metric range rc around i.

— Simple topological interactions: here the set S(i)
consists of the first nc nearest neighbours of bird
i, irrespective of their distances. The attraction–
repulsion force has the same form as in equation (3.3),
but we set rc ¼ 1 in equation (3.3) so that the force is
applied to all—topologically selected—neighbours
in S(i).

— Topological interactions with angular resolution: here
interacting neighbours are chosen irrespective of their
distances, but one requires that a minimal angular
resolution m exists between distinct neighbours in
S(i). Given the bird i, when two (or more) of his
neighbours fall within the same solid angle of width
m, only one of them is included in S(i) (figure 4).
Note that fixing m also fixes the average number of
interacting neighbours ncðmÞ: small values of nc corre-
spond to large values of m and vice versa. However,
compared with the simple topological case, neigh-
bours are now chosen in a balanced way. For
example, if m is very large (of order p), typically
only two neighbours are included in S(i). However,
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owing to the angular constraint, they are bound to
be in opposite sides with respect to bird i, while for
simple topological interactions they can be arbitrarily
close in angle.

In the following, we will study numerically these
three variants of the model and investigate their resili-
ence to noise and perturbations. All numerical
simulations were performed on a graphics processing
unit using Compute Unified Device Architecture.
4. RESULTS

Our primary objective is to study the stability, or resili-
ence, of a flock against (i) noise and (ii) external
perturbations, and to compare the three models intro-
duced in the previous section according to such stability
analysis. In order to make a comparison, though, we
need to fix the parameters a, b and h. Moreover,
we need to fix the parameter defining the interac-
tion range, namely rc (metric), nc (topological) and m

(balanced). How can these parameters be fixed?
When comparing the resilience of different models

to noise, h, we must of course use the same value of h
in all three models, otherwise the comparison would
be unfair. In this case, thus, we must use the same
value also for all parameters other than noise. Concern-
ing the range, this means fixing rc and m such that the
effective number of interacting neighbours, nc, is the
same in all three models. This ‘equal parameters’ com-
parison is a neutral (and natural) path that we certainly
must investigate.

However, using equal parameters is not the right
thing to do when we test the stability against external
perturbations. The three models are different, and
therefore parameters with the same values may imply
different biological observables. Hence, the second cri-
terion we will adopt will be to use for each model a
different set of parameters (a sort of optimal set) that
ensures a realistic value of polarization and cohesion,
and as realistic as possible a radial correlation function,
g(r). Once this calibration to the biological observables
is done, we will proceed with the comparison of the
models’ performance against external perturbation.

4.1. Stability against noise

Let us start by studying stability against noise in the
equal parameters approach. We select the parameters
in such a way to have an initially cohesive and
moving flock (see figure 5 for the parameters’ values).
To assess stability, we let the system evolve following
equation (3.2) and check the degree of cohesion after
a given, large, number of simulation steps. Of course,
how large this time T is rather arbitrary. However,
given that we are adopting an equal parameters com-
parative approach, the important point is that this
time be the same for all three models.

As a measure of cohesion, we use the number of CCs
into which the initially cohesive flock spontaneously
splits after time T. A CC is defined as a coherent
group of particles that is found within a threshold of
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equal distance one from the other. A large number
of CC implies low stability, and vice versa. Each exper-
iment is repeated 400 times and averages are performed
over all these runs.

Results are summarized in figure 5, where the histo-
gram of the number of CC is displayed. As we can see
from this figure, both topological models are more
stable than the metric one, giving rise to a smaller
number of sub-groups. However, we note that the
simple topological model, despite performing better
than the metric one, exhibits limited stability in terms
of cohesion. Indeed, the mere presence of noise is by
itself sufficient to break an initially cohesive group
into independent components in the long run. On the
contrary, the balanced topological model appears
more robust, keeping cohesion and not breaking the
group even after a very long time.
4.2. Stability against external perturbation

One possible objection at this point is that comparing
the models at the same value of the parameters pena-
lizes some models too much with respect to others.
For example, it is well known that metric models can
produce cohesive unperturbed flocks [10]. Hence, the
result of figure 5, where the metric model loses cohesion
with no external perturbation, may seem odd, or may
be due to an unreasonable choice of the parameters.

It seems fairer to fix the parameters independently in
each model in such a way to obtain the optimal per-
formance and the most realistic phenomenology for
that particular model, and to make the comparison of
the three models only after such optimization. More
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specifically, we tune parameters in such a way to have
the same (strong) polarization and cohesion in all
models, and to match as better as possible other biologi-
cal features, such as the radial correlation function. This
is an ‘equal observables’ comparison.

We proceed as follows. First, for each model, we fix
a and h (actually, their ratio) in such a way to have
large polarization, F � 0:99, which is a reasonable bio-
logical value (polarization is very large in real flocks, see
Cavagna et al. [32]). Secondly, we fix the interaction
range (nc in the topological case, rc in the metric case,
and m in the balanced case) such that cohesion is
strong, that is the average number of (unperturbed)
CCs is approximately 1. Once polarization and cohesion
are granted, we finally try to optimize the last parameter,
namely the attraction strength b, in such a way to have a
biologically plausible radial correlation function, g(r),
characterized by a clear drop at the small r hard-core, a
weak bump in correspondence of the first shell of nearest
neighbours and no other structure for larger r. When all
parameters have been fixed in such a way to have bio-
logically consistent observables, we can make a fair
comparison of the stability under external perturbation.

In figure 6, we report the radial correlation function
g(r) in all three models, for those parameters that
make this function as close as possible to the biological
ones, figure 3. Even though no model is too far from a
biologically plausible g(r), we also see that in the
metric case, the radial correlation function is not fully
satisfying, as we cannot avoid getting excessive struc-
ture, in the form of a regular modulations, beyond the
first shell of neighbours. Although this difference is not
enormous, it is interesting to note that we were unable
to eliminate such excessive structure and make the
metric g(r) as biologically plausible as the topologically
balanced one. If we try to do that by moving one of
the parameters, we significantly decrease either cohesion
or polarization, or both (we recall that F ¼ 0.99 and
kCC l ¼ 1 in all three models, for the parameters
in figure 6).

Now that we have calibrated the models on the real
biological observables, we can make a meaningful com-
parison of their resilience to an external perturbation.
We perturb the flock by placing an obstacle along
its initial direction of motion. As before, we take as a
cohesion indicator the number of CCs in which the
originally cohesive flock splits after encountering
the obstacle. The results are presented in figure 7. We
find that the stability of the topologically balanced
model against external perturbation is significantly
larger than the purely topological and metric model.
The latter has quite a poor stability, compared with
the two topological models. We remark that now we
can no longer tune the parameters to enhance the stab-
ility of the models, as all parameters have been fixed by
imposing the constraint on polarization, unperturbed
cohesion and radial correlation function.

We finally note that the values of the parameters at
this optimal—‘equal observables’—point have some
interest per se. In particular, let us make a comparison
between the parameters of the metric and the topologi-
cally balanced case. In order to achieve unperturbed
cohesion and high polarization, we need a number of
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version in colour.)

(a)

A B

(b)

BA

(c)

BA

Figure 8. Instabilities in the metric and topological model.
(a) In the metric model, if a flock is split into two groups
whose distance is larger than the interaction range rc (red
circle), then cohesion is definitively lost. (b) The simple topolo-
gical model is stable against fluctuations in mutual distances;
however, if the ncth nearest neighbour of each individual is in
its own group (nc ¼ 5 in the figure), then there cannot be inter-
action between the two groups, and cohesion is again lost. (c)
The balanced topological model does not have this instability,
because all particles (e.g. A and B in the figure) must have
neighbours on the two sides. (Online version in colour.)
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interacting neighbours in the metric case that is twice
as much than in the balanced case (nc ¼ 21.2 versus
nc ¼ 8.8), and an attraction parameter which is larger
by a factor 10 (b ¼ 0.5 versus b ¼ 0.06). Unsurpris-
ingly, then, the metric g(r) is more structured than
the topologically balanced one. This seems a key feature
of topological interaction: it grants a good (unper-
turbed) cohesion even with a low strength attraction
force, thus yielding a positionally structureless flock,
similar to the real biological case. The second key
advantage, as we have seen, is quite a good stability
under external perturbation.
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4.3. Geometric instabilities in the metric and
purely topological model

The lower resilience of the metric and of the purely
topological model described above are due to the pres-
ence of geometric instabilities. Such instabilities are
different in nature in the two models, but both make
the flock susceptible of fragmentation, although to a
different quantitative degree, as we have seen. We can
qualitatively understand the origin of these instabilities
by looking at the sketch in figure 8. In the metric case
(figure 8a), fluctuations caused by the noise term or
by external perturbations may push one particle (or a
few of them) beyond the metric range rc from its neigh-
bours, making it lose interaction with the rest of the
group; in this way, disconnected components may be
created. We also note that in the metric case, the ‘evap-
oration’ of individual particles from the border is one of
the main paths to losing stability, giving rise to the kind
of histogram we have seen in figures 5 and 7.

In the simple topological case, the evaporation of
one single particle cannot occur, since each particle
interacts by definition with its first nc neighbours, inde-
pendently of their distance. However, what may happen
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in this case (figure 8b) is that a fluctuation instan-
taneously separates a sub-group of at least nc þ 1
individuals from the rest of the flock: these individuals
will interact among themselves but not with others, so
that again the aggregation may split. Therefore, even
though the simple topological model is not suscepti-
ble to the creation of isolated individuals, it may still
lead to fragmentation of the flock into subgroups of
size larger than nc. Such group separation is more rare
a phenomenon than the single particle evaporation,
though; for this reason, the topological stability is
higher that the metric one.

It was exactly to solve this shortcoming of the purely
topological interaction that we introduced a topological
model with spatially balanced angular resolution
(figure 8c). In such models, sub-groups are not allowed,
owing to the angular threshold in the interactions that
forces each particle to select interacting neighbours
with evenly distributed angles. The simple topological
rule, in contrast, does not take into account the spatial
distribution of neighbours: if all the first nc neighbours
of a given individual are on the same side, that individual
will ignore completely individuals on the other side.
In this way, as we have seen, sub-groups of size nc

become stable and independent whenever they form
owing to noise or external perturbations. All this is
avoided in the spatially balanced model.

Note, finally, that when using the Voronoi rule to
select neighbours [14,22,24], one is effectively running a
topologically balanced interaction. The reason for this
is that in the Voronoi construction, the ranking in dis-
tance of the neighbours is overruled by the topological
requirement to have cells all around the focal point.
Therefore, Voronoi neighbours are naturally distributed
evenly in space around each point. As we discussed ear-
lier, though, here we do not use a Voronoi rule because
we want to be able to tune the number of interacting
neighbours nc, while in Voronoi this number is fixed.
4.4. Filaments in the topologically
balanced model

Even the balanced topological model exhibits, for low
values of nc, a geometric instability, although of a
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weaker nature than the other models. Such insta-
bility consists of the formation of linear structures
of particles (filaments) connecting sub-flocks moving
in different directions. An example of such structures
is shown in figure 9, where we present a snapshot
from a simulation with a large value of m (i.e. a small
number of interacting neighbours). We note that
filaments were also observed in the study of Grégoire &
Chaté [14]. A possible mechanism for the formation
of these filaments is displayed in the same figure.
Even if the flock is, strictly speaking, connected,
the sub-groups separated by the filaments have differ-
ent polarizations and do not move coherently. It is
therefore necessary to give a definition of stability
that takes into account the formation of these structu-
res. What is (if any) the minimal value of interacting
neighbours nc such that filaments do not form and
there is a unique, fully three-dimensional, coherently
moving flock?

The minimum value of nc for which full stability (no
filaments) is attained surely will depend on the value of
the parameters. When the noise is low, cohesion can be
achieved with a smaller number of interacting neigh-
bours. Increasing the strength of the attraction force
has the same effect. When exploring the parameter
space, we must proceed as in the previous sections,
namely enforce the constraint that simulated flocks
must reproduce the same behaviour as that observed
in natural groups (polarization and radial correlation
function), so that not all combinations of parameters
are equally sensible. Too strong an attraction term, or
too low a noise, lead to crystalline flocks [14], where
individuals occupy fixed mutual positions, while an
important feature of real flocks is that individuals dif-
fuse one with respect to the other [33] and that, as
we have seen, the radial correlation function g(r) is
definitely non-crystalline.

To investigate the minimal number of interacting
neighbours, we calculate the fraction of particles
belonging to filaments as a function of nc, for different
values of the parameters and for two different sizes
(figure 10).

At the value of nc where this fraction is zero, the
flock becomes fully cohesive and no linear structures
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Figure 10. Topological balanced model. (a) Fraction of par-
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(b) The pair distribution function g(r) for the same data,
approximatively reproducing what was found for real flocks
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arise, and so this is the minimal nc we are looking for.
We varied the parameters and the size in such a way
to have the maximal spread in the minimal nc. From
figure 10a, we can see that cohesive and stable flocks
can be obtained with a number of interacting neigh-
bours between 5 and 10, not far from the value of nc

estimated from experimental data [4]. As a consistency
check, we calculated the radial correlation function at
these values of the parameters: we see from figure 10b
that we get a g(r) very similar to the biological one.
5. DISCUSSION

Empirical data on large, natural flocks of starlings in
the field revealed that interactions between birds in a
flock are topological, each individual interacting with
a fixed number of neighbours, independently of their
metric distances. It is also possible that other animals
performing collective motion, such as some fish species,
and even pedestrians [39], use a topological interaction.
We can therefore ask what are the advantages, in terms
of collective behaviour, of a topological interaction. The
Interface Focus (2012)
idea put forward in Ballerini et al. [4] is that topological
interaction grants a more robust cohesion of the group.
In this paper, we have tested this hypothesis by comparing
metric and topological interactions in a three-dimensional
model of self-organized collective behaviour.

Our analysis confirms that topological interactions
perform better than metric ones. The problem with
metric interaction is that individuals can easily drop
out of the interaction range, hence losing contact
with the rest of the group. However, even the purely
topological model is unstable with respect to frag-
mentation into sub-groups of size nc. The only way to
respond to such instabilities, for both metric and
purely topological models, is to increase the number of
interacting neighbours, which may lead to flocks that
are cohesive but with too strong a structure compared
with the real ones. The radial correlation function,
which has been measured in real flocks, is the main
tool we used to check particles’ positional structure
within the flock.

On the other hand, we found that using a topological
rule that is balanced in space, where neighbours are
selected topologically, but at the same time they
are evenly distributed in angle, it is possible to achieve
robust cohesion also with a small number of interacting
neighbours, still preserving a realistic structure for the
flock, namely a realistic g(r). When we fix parameters
independently in each model in such a way that all
three models have realistic polarization and structure,
and high unperturbed cohesion, it turns out that the
topologically balanced mode has the highest stability
against external perturbation.

When interacting neighbours are selected by using
Voronoi tessellation (as done in Grégoire et al. [14] and
Chaté et al. [15]), one is enforcing a topological rule that
is automatically balanced in space. Indeed, in the Voronoi
case, the angular resolution between neighbours is deter-
mined by the Delaunay triangulation, whose net effect in
terms of spatial balancing of the neighbours is not dissim-
ilar from what we have done here. The number of Voronoi
neighbours in three dimensions is nc � 15. Hence, accord-
ing to our results here, the Voronoi rule must produce full
cohesive flocks (figure 10), which is indeed what has been
found in numerical simulations [14,27]. We checked expli-
citly that selecting Voronoi neighbours is equivalent to
choosing an angular threshold m such that ncðmÞ � 15.

In order to produce cohesive groups in open space,
models need an attraction term in the equation of
motion [6,8,10,11,22]. Clearly, the stronger this force,
the more robust the cohesion is. However, there is a
downside to this: when attraction becomes too strong,
the pair correlation function g(r) becomes too struc-
tured, developing several peaks, similar to a normal
liquid, or, worse, to a crystal, whereas it has been
shown that flocks have a nearly structureless, almost
gas-like, g(r). Hence, attraction cannot be increased
indefinitely to grant better cohesion. Our results show
that if neighbours are chosen according to a topologi-
cally balanced rule, cohesion can be enhanced without
the need of an overly strong attraction force, which intro-
duces spurious structure in the flock, and with a number
of interacting neighbours, nc [ ½5; 10�, consistent with
previous experimental estimates.
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Understanding under what conditions a finite
aggregation of interacting individuals retains a polar-
ized cohesive structure is a fundamental issue both
for biological groups and for artificial systems. In this
work, we focused on one aspect of the problem,
namely cohesion, and investigated how selection of
neighbours determines robustness and stability of cohe-
sion against noise and perturbations. Another issue
concerns polarization: one can ask whether some
specific values of nc might grant optimal robustness to
global ordering of the group. Work in this direction
indicates that this is indeed the case (G. Young,
L. Scardovi, A. Cavagna, I. Giardina & N. Leonard
2012, unpublished data).
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