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We discuss the collective dynamics of self-propelled particles with selective attraction and
repulsion interactions. Each particle, or individual, may respond differently to its neighbours
depending on the sign of their relative velocity. Thus, it is able to distinguish approaching
(coming closer) and retreating (moving away) individuals. This differentiation of the social
response is motivated by the response to looming visual stimuli and may be seen as a gener-
alization of the previously proposed escape and pursuit interactions motivated by empirical
evidence for cannibalism as a driving force of collective migration in locusts and Mormon
crickets. The model can account for different types of behaviour such as pure attraction,
pure repulsion or escape and pursuit, depending on the values (signs) of the different response
strengths. It provides, in the light of recent experimental results, an interesting alternative to
previously proposed models of collective motion with an explicit velocity–alignment inter-
action. We discuss the derivation of a coarse-grained description of the system dynamics,
which allows us to derive analytically the necessary condition for emergence of collective
motion. Furthermore, we analyse systematically the onset of collective motion and clustering
in numerical simulations of the model for varying interaction strengths. We show that collec-
tive motion arises only in a subregion of the parameter space, which is consistent with the
analytical prediction and corresponds to an effective escape and/or pursuit response.
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1. INTRODUCTION

Collective motion in biology—as observed, for example,
in flocks of birds, schools of fish or within bacterial
colonies—is a fascinating display of natural self-
organization. Over the years, it has been the topic of
numerous scientific publications addressing it from
very different angles and with different questions in
mind, both experimentally and theoretically. From a
more biological perspective, the interesting questions
are the evolutionary advantages and the biological
and ecological function of collective behaviour in
various species [1–5], whereas physicist focus rather
on universal laws and phase-transition behaviour by
studying minimal models of collective motion [6–13].
The design, control and stability of collective dyna-
mics in multi-agent systems is also a major research
topic in engineering [14–17], and the general proper-
ties of related mathematical models are under active
investigation in mathematics [18,19].
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Most of the mathematical models for collective
motion proposed in the literature contain some sort of
explicit velocity-alignment mechanisms, which tends
to align the velocity of a focal individual with the vel-
ocity of its neighbours [2,6,20–23]. However, recent
experimental studies of collective behaviour in fish do
not find any clear evidence for the existence of explicit
velocity–alignment interactions [24,25]. Models with
only attractive and repulsive interactions have long
been studied in biology in the context of group for-
mation and swarming [26–28]. Still, only relatively
few models have focused on the onset of collective
motion without alignment based on purely repulsive
and attractive interactions [29–34]. This is most prob-
ably because velocity alignment provides a simple and
robust mechanism for the onset of polarized swarms,
where individuals are able to agree on a common direc-
tion of motion. For pure attraction and repulsion
interactions, polarized motion is more difficult to
obtain. In general, it requires an effective dampen-
ing out of velocity components associated with the
relative motion of individuals. This might be achieved,
for example, directly via dissipative interactions
(inelastic collisions) [31,32] or an interaction-induced,
nonlinear coupling of different velocity components of
This journal is q 2012 The Royal Society
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self-propelled agents [30,33,35]. Although this ‘physical’
mechanisms yield very interesting results and can lead
to coordinated motion of individual units, they are
most probably not suited to explain the dynamics of
many biological systems. In particular, they assume
direct pairwise interaction forces, where the response
of focal agent is accompanied by a ‘mirror’ response
of its interaction partner, either directly as a result of
the ‘action ¼ reaction’ principle for (social) forces
defined by gradients of pair-wise interaction potentials,
or because of dissipative interactions simultaneously
acting on both agents.

Interestingly, the possibilities and potential restric-
tions on social response based on visual information
have received only little attention in the context of col-
lective motion (see recent studies [36,37] for notable
exceptions). For example, growing or shrinking retinal
images allow individuals to respond to their neighbour
not only based on their spatial position (e.g. distance)
but also based on their (relative) state of motion
(e.g. approach versus movement away). This immedi-
ately implies the possibility of strongly asymmetric
social interactions, which cannot be accounted for by
gradients of pair-wise potentials.

Recently, motivated by empirical evidence for canni-
balism as the driving force of collective migration in
certain insect species [38,39], we have proposed a
model of collective motion based on escape and pursuit
responses [5,12]. In this escape–pursuit model, individ-
uals react to their neighbours by moving away from
others approaching them from behind (escape), and/
or increasing their velocity towards those who are
moving away in front of them (pursuit). This kind of
social response requires individuals to distinguish
between approaching and moving away (retreating)
neighbours as well as between individuals in front and
behind them. This previous model can be considered
to belong to a broader class of selective attraction–
repulsion models, which we believe are very promising
for theoretical modelling of collective motion in biology.
Please note that here we assume each individual being
able to exhibit different responses to its neighbours
based on their relative state of motion, which should
be distinguished from the case of individuals with
fixed behavioural roles such as predator and prey
[40,41]. In this work, we discuss and analyse a general-
ization of the original escape–pursuit model to the case
where self-propelled agents selectively respond to
approach and movement away without differentiating
between neighbours based on their relative position.
Thus, we show that spatial anisotropy in social inter-
actions is not essential for collective motion owing to
selective attraction and repulsion. Furthermore, we do
not put any restrictions on the sign (direction) of the
effective social forces generating the selective response.
This allows us to account for different social behaviour
types, such as pure attraction, pure repulsion, and
escape and pursuit, in a single model, by the same set
of social forces, only by changing the values of the
response strengths.

The model discussed here was first introduced in the
context of collective motion and the evolution of
density-dependent phenotypic plasticity in locusts
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[42]. However, on the basis of the above considerations,
we believe it may be of relevance for various swarming
phenomena mediated through visual information.

We will start with the definition of the individual-
based model in terms of stochastic differential
equations. Further on, we will briefly discuss the deri-
vation of coarse-grained theory, which allows the
formulations of evolution equations for the popu-
lation-level variables such as spatial density and
velocity fields. Finally, we will discuss simulation results
with a particular focus on the emergence of large-scale
collective motion.
2. INDIVIDUAL-BASED MODEL

We consider a system of N self-propelled agents (par-
ticles) in two spatial dimensions, which move with a
constant speed s0 in a spatial domain of size L � L
with periodic boundary conditions. The interaction
between particles is modelled as an effective social
force Fi. The evolution of the system is determined by
equations of motion for the positions ri and the polar
orientation angles wi, which determine the direction of
the heading unit vector eh;iðtÞ:

ṙi ¼ s0ehiðtÞ ¼ s0
coswiðtÞ
sinwiðtÞ

� �
; ð2:1Þ

and

_wi ¼
1
s0
ðFi;w þ

ffiffiffiffiffiffiffiffiffi
2Dw

p
jwðtÞÞ: ð2:2Þ

The temporal evolution of wi is determined by the
turning of the individual i as a result of social inter-
actions Fi;w and random (angular) fluctuations with
the intensity Dw. The (angular) social force is given
by the projection of the total social force vector
Fi;w ¼ Fiewi

on the angular degree of freedom with
ewi
¼ ð�sinwi; coswiÞ. The angular noise jwðtÞ is

Gaussian white noise with zero mean and vanishing
temporal correlations.

The total social force is given by a sum of three com-
ponents:

Fi ¼ f c þ fm þ fa: ð2:3Þ

The first term represents a short-range repulsion
responsible for collision avoidance. It reads

f c ¼ �
1
Nc

XN
j¼1

mc r̂ ji Hðlc � r jiÞ; ð2:4Þ

with mc � 0 being a constant repulsive turning
rate. The Heaviside function H ðlc � r jiÞ ensures that
collision avoidance takes place only if the distance
r ji ¼ jrj � rij between the focal individual i and the
respective neighbour j is below the distance lc. The
total short-ranged, repulsive response is normalized
by the number of individuals within the collision
avoidance distance

Nc ¼ NcðtÞ ¼
XN
i¼1

H ðlc � r jiÞ: ð2:5Þ



vi

vjrji

ls

x

y

Figure 1. Schematic of social interactions: the focal individual
i can interact with individuals within its sensory range ls.
Hereby, it distinguishes between ‘approaching’ (red/stripes)
and ‘moving away’ (blue) individuals. The decisive factor in
the distinction is the sign of relative velocity ~v ji defined
by the projection of the velocity difference of neighbour j
and the focal individual (v ji ¼ vj � vi) on the relative
position unit vector r̂ ji ¼ r ji=jr jij.
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The other two forces read

fa ¼
1

NaðtÞ
XN
j¼1

maj ~v ji j r̂ ji

� H ðls � r jiÞH ðr ji � lcÞHð� ~v jiÞ;

ð2:6Þ

and

fm ¼
1

NmðtÞ
XN
j¼1

mmj ~v ji j r̂ ji

� H ðls � r jiÞH ðr ji � lcÞHðþ ~v jiÞ:

ð2:7Þ

Both forces represent averaged interactions with neigh-
bouring agents, which act always along the unit vector
pointing towards the centre of mass of the neighbour
r̂ ji ¼ ðrj � riÞ=jrj � rij. The first one, fa, represents
the response to approaching individuals characterized
by a negative relative velocity ~v ji ¼ ðvj � viÞ r̂ ji , 0.
The second, fm, is the corresponding response to
moving away (retreating) individuals characterized by
positive relative velocity ~v ji . 0. Please note that the
relative velocity depends on the velocity (direction of
motion) of the focal individual as well as its neighbour.
Based only on relative velocity, corresponding to the
change of size of the retinal image, the focal individual
may not distinguish who is moving away from whom.
For example, if the focal individual itself moves away
from a neighbour, the corresponding neighbour may
be identified as ‘retreating’ even if it moves approxi-
mately in the direction of the focal individual
(figure 1). In order to account also for this case and pre-
vent any misunderstandings, we will mainly use the
term ‘moving away’ instead of ‘retreating’, which is
perhaps more appealing, while referring to the corre-
sponding interaction. The differentiation based on the
relative velocity is reflected by the last Heaviside func-
tions Hð+ ~v jiÞ. The two other step functions are
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identical for both interactions and restrict these social
responses to neighbours within a sensory range ls but out-
side the repulsion zone. The parameters mm;a determine
the turning rates owing to the respective interaction.

Both force terms are proportional to the relative
velocity, which lead to a stronger response to faster
approaching or receding individuals. Furthermore,
they are normalized by the respective number of
individuals for the corresponding interaction type:

NmðtÞ ¼
XN
i¼1

H ðr ji � lcÞH ðls � r jiÞH ðþ ~v jiÞ

and NaðtÞ ¼
XN
i¼1

H ðr ji � lcÞH ðls � r jiÞH ð� ~v jiÞ:

9>>>>>=
>>>>>;
ð2:8Þ

Here, we used for simplicity step-like functions
for the spatial dependence of the different interac-
tions. The general results will not be altered by other
smooth functions of the distance as long as they decay
sufficiently fast in order to ensure local interac-
tions. Please note that the definition of the step-like
interaction zones resembles the two-zone model intro-
duced by Couzin and co-workers [21,43]. However, the
model discussed here does not contain an explicit
velocity alignment.

Although variations in the relative strength and
range of the collision-avoidance force ðf c) may affect
quantitatively the onset of collective motion, the quali-
tative behaviour of the model will not be affected by the
short-ranged repulsion as long as lc � ls. Nevertheless,
we keep it as it reflects the well-known tendency of indi-
viduals to keep a minimal distance to their neighbours
and in addition prevents a population collapse for arbi-
trary choice of the other two—possibly attractive—
social forces. However, in the following analysis, we
will focus exclusively on the selective responses to
approaching and moving away individuals.

Schematic of the interaction scheme with the differ-
entiation between approach and movement away is
given in figure 1.

The social forces fa=m can lead independently to a
repulsive (attractive) response to approaching individuals
for ma , 0 (ma . 0) and a repulsion (attraction) to those
moving away mm , 0 (mm . 0). In the mamm-parameter
space, we distinguish the four quadrants corresponding
to different behaviour types (see also figure 2).

— Pure repulsion. Repulsion from approaching and
moving away individuals: ma , 0 and mm , 0.

— Escape and pursuit. Repulsion from approaching
individuals ma , 0, attraction to moving away indi-
viduals mm . 0.

— ‘Head on head’. Attraction to approaching indivi-
duals ma . 0, repulsion from moving away
individuals mm , 0.

— Pure attraction. Attraction to approaching and
moving away individuals: ma . 0 and mm . 0.

There exist also the special cases where there is no
interaction with either approaching or moving away
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Figure 2. Examples of spatial configurations for different regimes: (a) ‘escape and pursuit’ (ma ¼ �3:0, mm ¼ 3:0); (b) ‘pure attrac-
tion’ (ma ¼ 3:0, mm ¼ 3:0); (c) ‘pure repulsion’ (ma ¼ �3:0, mm ¼ �3:0) and (d) ‘head on head’ (ma ¼ þ3:0, mm ¼ �3:0Þ: The
arrows and their colour indicate the direction of motion of individual particles. The mapping of the colour to the directions
is shown as an inset in panel (a). The different panels are arranged according to the location of the corresponding regime in the
interaction parameter space, with the origin (mm ¼ ma ¼ 0) being in the centre.

Table 1. Summary of the model parameters with typical values used in simulations and corresponding dimensions in terms of
arbitrary time t and space l units.

parameter description typical values used unit

mm response strength to moving away individuals �5 . . .þ 5 1/t
ma response strength to approaching individuals �5 . . .þ 5 1/t
mc collision-avoidance response strength 20 l/t2

ls sensory range (range of social interactions) 5 l
lc diameter of the collision avoidance zone (short-ranged repulsion) 1 l
s0 speed of individuals 1 l/t
Dw noise strength in the direction (angle) of motion of individuals 0:02 . . . 1:0 l=t2

L system size (rectangular domain L � L) 100 . . . 400 l
N number of individuals 2000
dt numerical time step 0.005 t
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individuals, i.e. ma ¼ 0 or mm ¼ 0. For example, for
mm . 0 (mm , 0) and ma ¼ 0; the focal individual will
be selectively attracted (repelled) by individuals moving
away, but will ignore all approaching individuals.

We refer to the situation ma , 0 and mm . 0 as
‘escape and pursuit’, to due similar behaviour as in
the original Brownian particle model [12]. For ma . 0
Interface Focus (2012)
and mm , 0; the social forces lead to a preference to
move towards other individuals that are already
coming closer and therefore favour (in particular at
low densities) frontal collisions between individuals.
We refer to this regime as ‘head on head’.

In table 1, we summarize the model parameters with
typical values considered in this work.
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3. COARSE-GRAINED DESCRIPTION

Starting from the microscopic, individual-based,
description in terms of stochastic differential equa-
tions, it is possible to derive (approximate) evolution
equations for coarse-grained observables, such as the
spatial density of individuals and the corresponding
average velocity field. Here, we can draw an analogy
to the hydrodynamical theory of fluids. Although the
behaviour of a fluid is determined by the dynamics
and interaction of many individual molecules, we
do need to ‘follow’ each of them in order to des-
cribe macroscopic flows. In fact, in most cases, this is
entirely impossible as already a small droplet of fluid
consists of an astronomically large number of molecules.
Here, a coarse-grained hydrodynamic theory for macro-
scopic variables allows nevertheless the theoretical
description of the system at time and length scales
of interest.

In the context of swarming, there exist a number of
works on the corresponding hydrodynamic theories of
collective motion. Here, we should emphasize the semi-
nal work by Toner & Tu [7,8], who first formulated a
general hydrodynamic theory of swarming based
purely on symmetry arguments.

In our case, the starting point for a derivation of a
coarse-grained description is the introduction of the
N-particle probability density function (PDF)

PN ðr1;w1; r2;w2; . . . ; rN ;wN ; tÞ;

which determines the probability to find a particle
(individual) at time t, at position ri, with velocity
pointing in direction wi (i ¼ 1; 2; . . . ;N ). It is normal-
ized with respect to integration over space and over
all angles.

For simplicity, one can assume that the N-particle
PDF factorizes into a product of N one-particle PDFs,
i.e. PN ¼ PN

i¼1Pðri;wi; tÞ. In agreement with (2.1) and
(2.2), we can write down the Fokker–Planck equation
(FPE) for the PDF of the ith particle

@

@t
Pðri;wi; tÞ ¼ �

@

@ri
ehiP �

1
s0

@

@wi
Fiewi

P

þ Dw

s2
0

@2

@w2
i
P; ð3:1Þ

with ehi ¼ ðcoswi; sinwiÞT being the unit vector in the
heading direction of individual i, and ewi

¼ ð�sinwi;
coswiÞT being the angular unit vector perpendicular
to ehi . The above FPE is nonlinear, because the inter-
action force Fi depends on the probability density for
the position and the velocity angle of the particles
within their sensory range.

The coarse-grained description can be now formally
derived by using equation (3.1) to obtain equation of
motion for the moments of the one-particle PDF,
which are the particle density

rðri; tÞ ¼
ð2p

0
drPðri;w; tÞ;

ð
V

drrðri; tÞ ¼ 1; ð3:2Þ

and the expectation values of the cosine and sine of the
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velocity angle defined as

sðri; tÞ ¼
ð2p

0
dw sinðwÞPðw; tjriÞ

and cðri; tÞ ¼
ð2p

0
dw cosðwÞPðw; tjriÞ:

9>>>=
>>>;

ð3:3Þ

where the conditional PDF of the velocity direction w is
defined through the relation Pðri;w; tÞ ¼ Pðw; tjriÞ
rðri; tÞ. The moments in equation (3.3) represent
space-dependent function that together fully determine
the average velocity field uðri; tÞ ¼ s0ðsðri; tÞ; cðri; tÞÞ of
individuals at the spatial position ri, at time t.

A similar approach was previously used in the con-
text of swarming of active Brownian particles in
recent studies [44–46].

By combining the FPE (3.1) with the moment defi-
nitions (3.2)–(3.3) and integrating over the direction
angle, we can derive after some analysis the evolu-
tion equation for these moments. In particular, one
can obtain the equation for the so-called, coarse-grained
order parameter Fðri; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðri; tÞ þ c2ðri; tÞ

p
. The

order parameter corresponds to the average velocity
normalized by the speed of individuals s0. It is 1 if all
particles in the considered spatial region are perfectly
aligned (ordered state) and tends to 0 if all particles
move in different directions (disordered state).

The corresponding equation for the square of the
order parameter reads

1
2

@

@t
þ cðri; tÞ

@

@xi
þ sðri; tÞ

@

@yi

� �
F2ðri; tÞ

¼ �Dw

s2
0
F2ðri; tÞ �

1
s0
ðcðri; tÞksinðwiÞFiewi

l

� sðri; tÞkcosðwiÞFiewi
lÞ

� s0cðri; tÞ
rðri; tÞ

�
@

@xi
Txi ;xiðri; tÞrðri; tÞ

þ @

@yi
Txi ;yiðri; tÞrðri; tÞ

�

� s0sðri; tÞ
rðri; tÞ

�
@

@xi
Txi ;yiðri; tÞrðri; tÞ

þ @

@yi
Tyi ;yiðri; tÞrðri; tÞ

�
;

ð3:4Þ

where we used the following abbreviations:

Txi ;xiðri; tÞ ¼ kcos2ðwiÞl� c2ðri; tÞ;
Txi ;yiðri; tÞ ¼ kcosðwiÞsinðwiÞl� cðri; tÞsðri; tÞ

and Tyi ;yiðri; tÞ ¼ ksin2ðwiÞl� s2ðri; tÞ:

9>>=
>>;
ð3:5Þ

The only term, which can induce an instability
of the homogeneous disordered solution in equation (3.4),
contains the interaction force. The remaining terms,
which contain only the zeroth up to second moments
of the orientation, are present also in the case of non-
interacting particles. They describe the relaxation
dynamics of FðtÞ towards a steady state, but are not the
source of an eventual instability of the disordered solutions.
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We note that, in order to obtain closed equations
for the order parameter equation (3.4), one needs
expressions for the expectation values containing the
social force, as well as equations or expressions for
the variances Tui :vi .

In general, the treatment of the corresponding
equations and integrals can be very tedious. Analytical
solutions are often only possible by making a number of
simplifying assumptions, which may strongly restrict
the validity of the results. The corresponding calcu-
lations become quite technical and go far beyond the
scope of this work. We will discuss them in detail in a
forthcoming publication. Here, we state only a result
for the terms containing the selective attraction–repul-
sion interaction in the order parameter equation. By
using several approximations, such as homogeneous
distribution of neighbours within the sensory range
and small local order-parameter (close to the onset of
collective motion), we obtain

� 1
s0
ðcðri; tÞksinðwiÞFiewi

l� sðri; tÞkcosðwiÞFiewi
lÞ

� mm � ma

2
F2ðri; tÞ: ð3:6Þ

Inserting this result into the order parameter
equation (3.4) yields a necessary condition for a grow-
ing order parameter, i.e. onset of collective motion,
which reads

mm � ma . 2
Dw

s2
0
: ð3:7Þ

Thus, collective motion in the mamm-space can
emerge only above the line mm ¼ ma þ 2Dw=s2

0 (see
also figures 3 and 4). This implies that the region of col-
lective motion includes the escape and pursuit regime
ðmm . 0 and ma , 0). With increasing noise strength
Dw; the regime of collective motion is predicted to
recede further into the escape–pursuit regime. In gen-
eral, the above condition will not be sufficient for the
emergence of collective motion, and we expect that
the actual region of the parameter space exhibiting
collective motion will be smaller than predicted by
equation (3.7). In order to locate it more precisely, a
more detailed analysis of the coarse-grained equations
is required, which is beyond the scope of this work.
4. SIMULATION RESULTS

In this section, we proceed with the discussion of sys-
tematic numerical simulations of the model for
varying interactions strengths (�5 � ma;m � 5), differ-
ent densities r and noise strengths Dw. They allow the
characterization of the system behaviour in different
regimes with respect to the onset of collective motion
and the strength of density inhomogeneities. The
coupled stochastic differential equations (2.1) and
(2.2) describing the system were numerically integrated
using the standard Euler scheme [47].

In the following, we will discuss our results in term
of the dimensionless density rs ¼ Nl2s =L

2, rescaled
by the sensory range, which is proportional to the
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average number of individuals per interaction zone for
a homogeneous (random) spatial distribution.

We focus in particular on the question what combi-
nations of ma, mm lead to large-scale collective motion.
The degree of collective motion after the system
reaches a steady state is measured by the well-known
order parameter used in the analysis of Vicsek-type
models, which corresponds to the centre of mass speed
normalized by the preferred speed of individuals:

kFlt ¼
1
s0

kjkvilN jlt : ð4:1Þ

Here k � lt denotes the temporal average and k � lN the
ensemble average. In addition, we measure the spatial
inhomogeneity (clustering) by the time-averaged
scaled neighbour number

kN lt ¼ k kNcðtÞ þ NmðtÞ þ NaðtÞlN
Nmax

l
t
; ð4:2Þ

with kNcðtÞ þ NmðtÞ þ NaðtÞlN being the average
number of neighbours within the metric distance given
by the sensory range ls of an individual at a given
time t. The density-dependent scaling number Nmax

defines the maximal expectation values for the measured
number of neighbours corresponding to the closest pack-
ing of individuals by assuming an impenetrable collision
avoidance zone with a diameter lc:

Nmax ¼ h2d
4l2s
l2c
� 1: ð4:3Þ

Here, h2d ¼ p=ð2
ffiffiffi
3
p
Þ � 0:907 is the packing fraction

for the closest packing of discs in two spatial dimen-
sions. The term 21 in the definition of Nmax takes
into account that the focal particle is not being counted
as its own neighbour. Please note that as we are consid-
ering a soft core interaction, the clustering number kN lt
can, in principle, be larger than one, in particular for
high densities and strong attraction.

Throughout this work, we set s0 ¼ 1, lc ¼ 1 and
ls ¼ 5. Furthermore, we use mc ¼ 20, which ensures
that for binary interactions the short-ranged collision
avoidance is always larger than the sum of the other
possibly attracting forces. The particle number is set
constant to N ¼ 2000 and the density is varied by chan-
ging the system size L. The parameter-space diagrams
in figures 3 and 4 were obtained from interpolating
the results for kFlt and kN lt for 441 (21 � 21) individ-
ual, evenly spaced, grid points in the interaction
parameter space with �5:0 � mm;ma � þ5:0. Each
such point corresponds to an average over the results
of six independent simulation runs, whereby for each
run a temporal average was taken after the system
reached a steady-state.

At sufficiently high densities and sufficiently low
(angular) noise, we can observe the onset of collective
motion for a range of interaction parameters, which
coincides approximately with the escape and pursuit
quadrant of the interaction parameter space with
mm . 0 and ma , 0 (figures 3 and 4). It contains the
special cases of only attraction to moving away (repul-
sion from approaching) individuals with mm . 0 and
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Figure 3. Steady-state order parameter kFlt (left) and clustering number kN lt (right) versus mm and ma for different densities
rs ¼ 0:56 (top), 1.25, 5.00 and Dw ¼ 0:1. The vertical and horizontal dashed lines indicate the zero axes. Equation (3.7) predicts
the emergence of collective motion only above the solid diagonal line. The (diagonal) dashed lines in the escape and pursuit quad-
rant indicates the border between escape-dominated (below) and pursuit-dominated behaviour (above). Please note the different
kN lt-scale used for clarity for r ¼ 5.00.
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ma ¼ 0 (ma , 0 and mm . 0), and extends also into the
pure repulsion region (ma;mm , 0) and to a much lesser
extent into the pure attraction region (ma;mm . 0 with
ma � mm). This is in agreement with the predictions of
the necessary condition derived from the coarse-grained
theory (equation (3.7)). However, the region of collective
motion is significantly smaller in simulations. This can be
explained by the impact of spatial inhomogeneities, finite
short-range repulsion and/or higher-order effects, which
have been neglected in the derivation of the necessary
condition for collective motion.

Within the escape and pursuit regime, where the
repulsion to approaching individuals (escape) domi-
nates over the attraction to moving away individuals
Interface Focus (2012)
(pursuit), the clustering number is low. This corre-
sponds to a rather homogeneous spatial distribution of
particles throughout the system. The clustering number
kN l increases strongly in the pursuit-dominated regime
(jmmj . jmaj with mm . 0, ma , 0), indicating strong
density inhomogeneities corresponding to dense collec-
tively moving bands and clusters. This resembles the
behaviour observed in the original Brownian particle
escape and pursuit model.

The neighbour number is also high in the pure
attraction regime (ma;mm . 0) without collective
motion, where clusters with vanishing centre of mass
velocity (F � 0) can be observed. Interestingly, at mod-
erate densities (rs ¼ 0:56, 1.25 in figures 3 and 4), the
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maximum of the clustering number is located in the
pursuit-dominated regime with collective motion, and
not, as one might expect, in the regime of (strong) over-
all attraction (mm;ma 	 0). In the ordered state,
particles move approximately in the same direction
and the relative speed j ~v ji j will be close to zero. For
low repulsion from approaching individuals, the
escape response is negligible, whereas the attraction to
moving away individual suffices to maintain cohesion,
in particular at low noise strengths. Effectively, the
density of such collectively moving cluster is only
limited by short-range repulsion, leading to the emer-
gence of dense structures (figure 5b). In the pure
attraction regime, particles on the boundaries of a clus-
ter will be attracted towards the local centre of mass.
However, owing to the self-propelled motion with iner-
tia and scattering with other individuals within the
disordered cluster, they will eventually move outwards
again. As a result, we observe disordered aggregates,
which resemble mosquito swarms (figure 2b), and are
more dilute in comparison with the coherently moving
clusters in the pursuit-dominated case.

As might be expected, increased stochasticity in the
motion of individuals inhibits the onset of collective
motion. The region of parameter space with kFlt signifi-
cantly larger than 0 reduces strongly with increasing Dw

by receding towards the regime of strong escape and
pursuit response (figure 4), in agreement with the
kinetic theory.

For the head-on-head regime as well as for pure
repulsion (with mm 	 0), a quasi-homogeneous
Interface Focus (2012)
distribution of particles can be observed with no collec-
tive motion (figures 2c,d, 3 and 4).
5. DISCUSSION

In this work, we have analysed a model for collective
dynamics based on selective attraction and repulsion
interactions, which was recently used to model the evol-
ution of phenotypic phase change in locusts [42]. The
modelling of individual dynamics in terms of stochastic
differential equation (Langevin equations) allows a
straight forward derivation of a coarse-grained descrip-
tion on the population level, which may be used for
further theoretical analysis based on mean-field consi-
derations and moment expansion of the corresponding
PDF [45,46].

The model is able to account for three types of social
responses relevant in the biological context: escape and
pursuit, pure avoidance and pure attraction behaviour.
Pure attraction may be associated with the selfish-herd
effect [1], where individuals aggregate in order to reduce
their individual risk from predation. Pure repulsion be-
haviour, on the other hand, represents a reasonable
social response if close proximity to conspecifics is dis-
advantageous, for example, owing to the risk of
cannibalism [39,42] or in the presence of strong compe-
tition for resources. Finally, we have shown that in the
escape and pursuit regime, large-scale collective motion
emerges without any explicit velocity-alignment
mechanism. This parameter regime can be seen as a
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Figure 5. Examples of spatial configurations for (a) the pure escape case with ma ¼ �3 and mm ¼ 0; and (b) the pure pursuit case
with ma ¼ 0 and mm ¼ þ3.
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generalization of the original escape and pursuit model
motivated by empirical observations in locusts and
Mormon crickets. We believe that the relevance of
escape and pursuit is not restricted to the collec-
tive migration in insects, but that such a selective
attraction–repulsion response represents an effective
mechanism for onset of collective motion in various
species, where the individual response relies on visual
information. This conjecture has recently received
further support from inference of social interactions
from experimental data in fish [24,25].

Our results show that collective motion of self-
propelled agents may emerge without the spatial
anisotropy in the social interaction present in the orig-
inal escape and pursuit model [12]. However, we would
like to emphasize that in the original escape–pursuit
model with Brownian agents, this spatial anisotropy is
essential for the emergence of large-scale collective
motion. This is related to the absence of an explicit
self-propulsion in the dynamics of individuals in
Romanczuk et al. [12], and the corresponding low
persistence length in individual motion.

In general, the spatial distribution of individuals
during collective motion depends strongly on the relative
strength of the different social forces. If escape dominates,
we observe a rather homogeneous spatial distribution
(figure 5a), whereas in the pursuit-dominated case,
compact, coherently moving structures, as for example
snake-like clusters, can be observed (figure 5b). In
between, for comparable escape and pursuit strengths,
the band-like structures perpendicular to the average
direction of motion emerge, which appear also in systems
with velocity alignment (figure 2a) [9,13].

The region of collective motion decreases with increas-
ing noise as well as with decreasing density. However, at
low densities, the region of collective motion shows a clear
shift towards the pursuit-dominated regime (figure 3,
top), where, in a finite system, a non-vanishing order is
maintained by relatively few moving clusters containing
most of the individuals.

The emergence of polarized collective motion with
non-vanishing order parameter in the escape–pursuit
regime agrees with the qualitative prediction, drawn
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from the kinetic theory in §3. Furthermore, the general
spatial patterns resemble the qualitative behaviour of
the original escape–pursuit model [12]. Interestingly,
at intermediate densities and within the interaction
range studied, the strongest clustering in the system
appears in the pursuit-dominated regime and not for
pure attraction. This can be understood from the fact
that local order decreases the effective ‘temperature’
associated with absolute deviations of the velocities of
single particles from the average velocity of their neigh-
bours [44–46]. As a result, we observe a decrease in
the active pressure resulting from the stochastic self-
propelled nature of individual motion, which counteracts
the concentration of individuals due to attractive forces.

In conclusion, the modelling of collective motion in
biology via selective attraction–repulsion interactions
appears very promising. The model accounts for various
individual behaviours and displays different spatial pat-
terns of collective motion. The response based only on
the distinction between approaching and moving away
individuals can be directly linked to the response to loom-
ing visual stimuli, which has been shown to play an
important role in various species [48,49,50]. Finally, in
this context, we emphasize again the recent work by
Lemasson & co-workers [36], where the authors introduce
amodel for collectivemotionbased on selective interaction
of individuals, using explicitly a simplified description of
visual information available to each individual.
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during a stay of L.S.G. at IFISC in Palma de Mallorca.
L.S.G. thanks for the great hospitality and the fruitful
cooperation. Furthermore, L.S.G. acknowledges the support
by the DFG via the IRTG 1740.
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20 Niwa, H. 1994 Self-organizing dynamic model of fish
schooling. J. Theor. Biol. 171, 123–126. (doi:10.1006/
jtbi.1994.1218)

21 Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A.
2005 Effective leadership and decision making in animal
groups on the move. Nature 433, 513–516. (doi:10.1038/
nature03236)

22 Romanczuk, P., Erdmann, U., Engel, H. & Schimansky-
Geier, L. 2008 Beyond the Keller–Segel model microscopic
modelling of bacterial colonies. Eur. Phys. J. Spec. Top.
157, 61–77. (doi:10.1140/epjst/e2008-00631-1)

23 Bode, N. W. F., Franks, D. W. & Wood, J. A. 2010 Making
noise. Emergent stochastic noise in a self propelled particle
model. J. Theor. Biol. 267, 292–299. (doi:10.1016/j.jtbi.
2010.08.034)

24 Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M.,
Sumpter, D. J. T. & Ward, A. J. W. 2011 Inferring the rules
of interaction of shoaling fish. Proc. Natl Acad. Sci. USA
108, 18 726–18 731.(doi:10.1073/pnas.1109355108).

25 Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C. &
Couzin, I. D. 2011 Inferring the structure and dynamics
of interactions in schooling fish. Proc. Natl Acad. Sci.
USA 108, 18 720–18 725.(doi:10.1073/pnas.1107583108)

26 Breder, C. M. 1954 Equations descriptive of fish schools
and other animal aggregations. Ecology 35, 361–370.
(doi:10.2307/1930099)

27 Romey, W. L. 1996 Individual differences make a differ-
ence in the trajectories of simulated schools of fish. Ecol.
Model. 92, 65–77. (doi:10.1016/0304-3800(95)00202-2)

28 Viscido, S. V., Parrish, J. K. & Grünbaum, D. 2005 The
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