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Fish schooling is a phenomenon of long-lasting interest in ethology and ecology, widely spread
across taxa and ecological contexts, and has attracted much interest from statistical physics
and theoretical biology as a case of self-organized behaviour. One topic of intense interest
is the search of specific behavioural mechanisms at stake at the individual level and from
which the school properties emerges. This is fundamental for understanding how selective
pressure acting at the individual level promotes adaptive properties of schools and in
trying to disambiguate functional properties from non-adaptive epiphenomena. Decades
of studies on collective motion by means of individual-based modelling have allowed a quali-
tative understanding of the self-organization processes leading to collective properties at
school level, and provided an insight into the behavioural mechanisms that result in coordi-
nated motion. Here, we emphasize a set of paradigmatic modelling assumptions whose
validity remains unclear, both from a behavioural point of view and in terms of quantitative
agreement between model outcome and empirical data. We advocate for a specific and
biologically oriented re-examination of these assumptions through experimental-based
behavioural analysis and modelling.

Keywords: fish schools; self-organization; collective behaviour; animal groups;
coordination; individual-based model
1. INTRODUCTION

Collective motion is a widespread phenomenon in bio-
logical systems, from the captivating beauty of
starlings performing aerial displays over their roost at
dusk, to the march of cells during wound healing.
Such phenomena span all ranges of size, scale and
number of constituent group members, spread among
almost all environments. The striking similarities in
observed patterns, and the finding that under certain
conditions very different microscopic mechanisms can
lead to the same behaviour at the collective level,
have paved the way for the theoretical modelling of col-
lective motion and its high-level properties [1,2]. These
studies have revealed the power of self-organization in
orrespondence (ugo.lopez@ups-tlse3.fr).
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creating new forms and facilitating functions as a
result of individual interactions. Yet, despite this endea-
vour and a growing interest in collective behaviour,
very little is known about the actual mechanisms at
work in many biological systems, making previous
research, which has largely been based on general a
priori modelling hypotheses, often inconclusive regard-
ing the mechanisms and the nature (epiphenomenal [3]
or functional) of natural collective processes. Advocat-
ing for an experiment-based modelling of individual
behaviour leading to collective motion, we will focus
here on fish schooling. After reviewing the extensive
literature addressing the question of the functions and
behavioural mechanisms involved in the formation
and maintenance of fish schools, we examine the dif-
ferent types of fish school models that have been
introduced, and we discuss aspects of these works that
give rise to their experimental flaws and success. We
then discuss some key behavioural unknowns that one
This journal is q 2012 The Royal Society
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Figure 1. Collective motion patterns in fish schools. Individuals’ interactions give rise to a variety of dynamical structures that can be
(a) poorly or (b) highly (Copyright q agasfer, www.flickr.com, with permission) polarized (Copyright q breic, www.flickr.com, with
permission). Other configurations of fish schooling include milling (c) (Copyright q Tammy Peluso) and bait ball (d) structures
(Copyright q Barry Fackler with permission).
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is facing when trying to construct realistic models,
advocating for specific data collection and experimental
analysis aimed at their resolution.
2. MULTI-SCALE APPROACHES OF
SCHOOLING BEHAVIOUR

We must first make clear what the term ‘schooling’ refers
to. Following Radakov [4], we consider that social aggre-
gations of fish are fundamentally polyfunctional and
adaptive, highly integrated and conditioned by an
ecological context and its necessities [5]. It follows that
the repertoire of collective behaviours exhibited in vitro
may not fully reflect the complexity and diversity
of this dynamical behaviour in the full context of
environmental contingencies. Owing to the constant
transitions of global behaviour occurring in nature for
a given population [5], we must clearly separate the
broad social phenomenon from its most obvious manifes-
tations (figure 1). In a modelling and/or experimental
context, schooling typically refers to the coordinated
swimming of fish, independently of the factors that
trigger the synchronicity. This phenomenological defi-
nition is oriented by our aim of an accurate and
experiment-based understanding of individual behav-
ioural mechanisms involved in synchronized swimming.

Schooling is widely spread among fish living in oceans
and freshwaters. It has been estimated that 50 per cent
of fish species school as juveniles, and that approxima-
tely 25 per cent of species school throughout their
life [6]. Understanding schooling also has important prac-
tical implications; a large component of commercially
exploited species school, and improvements of fisheries
stock assessment accuracy and fishing techniques rely
on understanding schooling behaviour. As a matter of
fact schooling is relevant to many research fields in
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biology, including ecology, ethology, ichthyology,
evolutionary biology and neurosciences, but also in
statistical physics and computational sciences.

Since the observations of Parr [7], a large number of
studies have been carried out to characterize schooling
phenomena, addressing the question of which school-
ing patterns are exhibited in natural or experimental
conditions, and why. Species that exhibit schooling
tendencies are found and studied over a wide range
of natural environments, for example pelagic fish of
the Baltic Sea and Atlantic Ocean [4], coral-reef fish
in the Californian Gulf [5] and many freshwater fish.
Field observations have primarily been conducted by
means of aerial observations [4, ch. 2]. These have
been supplemented by increasingly accurate sonar tech-
niques allowing to access the size, form and density of
actual schools: for instance, the multi-beam sonar of
Fréon et al. [8] and the emergent ocean acoustic wave-
guide remote-sensing technique allows instantaneous
sampling of fish density over huge areas, revealing
large-scale collective behaviour, i.e. diurnal aggregation
and migration of herrings during spawning season (see
Makris et al. [9] and Jagannathan [10] for a review).
A recent work by Handegard et al. [11] used a high-
frequency sonar imaging technique with a 2 cm spatial
resolution and 24 m2 span to track the motion of both
schooling prey and group-hunting predators in a natural
marine environment, demonstrating the importance of
collective behaviour to the strategies used by both pre-
dators and prey. In large clupeid schools, for example,
acoustic imaging suggests groups to be highly hetero-
geneous with vacuoles and nuclei, and irregular
frontiers [8,12]. The degree to which such density vari-
ations can be explained by individual behavioural rules
as opposed to environmental factors such as the influ-
ence of the recording vessel, oxygen consumption
within such large groups [13] and flow features of the
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aquatic environment are not yet understood. The amoe-
boid shape, along with elongated form of the school and
limited vertical extension, seems to be shared character-
istics of pelagic fish, but the measured mean density
greatly varies between species [14].

Quantitative experimental approaches of fish school-
ing have been conducted prior to such technological
advancements. The seminal works of Breder [15],
Shaw & Sachs [16] and Radakov [4] have emphasized
the mechanisms of information transfer among individ-
uals within schools, suggesting this is a general, and
likely valuable, adaptation arising from social aggrega-
tion. Radakov [4] described the coordinated movement
of fish in a school of Atherinomorus as ‘waves of agita-
tion’ that could reflect against obstacles and attenuate
and ‘streams of agitation’ where the directional infor-
mation of one frightened fish is either amplified by
social interactions to propagate to the whole school,
or dies out. Another series of experiments on various
fish species swimming in school in a flow channel
(Pitcher and colleagues on cods, pollocks, herrings
and minnows [17–19], following the method of Cullen
et al. [20]) unveiled the structural properties, in a stat-
istical sense, of the school by means of video-recording
and analysis of the extracted three-dimensional pos-
itions, opening the way to modelling studies. The fact
that most of these authors focused on structural simi-
larities across taxa and situations should not occlude
the fact that the mechanisms at work in creating such
structures are deeply linked to an adaptive specific
behaviour and an ecological context.

When trying to get functional (‘ultimate’) explana-
tions for schooling behaviour, schooling appears to be
intrinsically adaptive and polyfunctional (see Krause &
Ruxton [21], for a review). In some cases, it can improve
foraging activity (mechanisms reviewed in Pitcher [22,
ch. 12]) such as when information can be obtained from
the foraging behaviour of others to improve an individ-
ual’s own exploitation of a patchy resource (when the
benefits of increased acquisition outweigh the costs of
increased competition among group members) [23], or
as a consequence of an evolved coordinated hunting tech-
nique (e.g. in tunas and spotted seatrout [11]). It can as
well be a cost for the member, e.g. under the assumption
of homogeneous food distribution leading to competition
among the school, in balance with passive or active anti-
predator benefits [22]. In relation to anti-predator
benefits, increasing group size has been shown exper-
imentally to lower predator per capita encounter rate,
and thus risk [24–27], at least until a certain group size
beyond which per capita risk can be constant [11]. Fur-
thermore, upon encounter, active predator avoidance
can be achieved in a prey school via a palette of synchro-
nized escape manoeuvres (fountain effect, herd, vacuole;
see Pitcher & Wyche [28] and Handegard et al. [11]).
The efficiency of these collective responses may lie in
the inability for a predator to focus its attack on a
single fish (see Krakauer [29] for a neural network
model supporting this confusion effect). We note that
such escape manoeuvres can all result from collectives
that use the same, simple, behavioural interactions, as
opposed to relying on grouping individuals that change
interaction types [30]. Predator vigilance at the school
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level is also thought to result from an increased chance
of one or some group members to detect cryptic predators
(the so-called many eyes effect [31]) and mechanisms
allowing fast information transfer across the school (the
so-called Trafalgar effect [25]). Counterbalancing these
benefits, predators may also prefer attacking large
groups of fish or detect them more easily, as evidenced
in recent experimental work [32,33].

Schooling has also been thought to confer hydrodyn-
amic benefits if individuals adopt positions such that
they exploit the shedding of vortex sheets from those
ahead [34]. An elongated diamond-shape pattern and a
phase opposition of neighbours’ tail movements in a
column are the school features theoretically found to opti-
mize energy recovery from vortices produced by other
group members, and fish trying to increase their efficiency
would thus behave so as to adopt this configuration. This
hypothesis can be tested by measuring the energy con-
sumption when swimming. Tail beat frequency, which
has been demonstrated to be positively correlated with
oxygen consumption for solitary fish [35], is used as a
proxy of the effort of the fish. Recent experiments on
schools of roach [36] and seabass [35] found a significant
reduction in tail beat frequency of the trailing fish
compared with those of the front. However, because of
the indirect nature of the measurement, there is still
no conclusive proof of an energetic saving when swimm-
ing in school, and it is worth mentioning that many
previous studies were confounded by the fact that fish in
large groups tended to be less stressed, and thus may be
expected to use less oxygen. Furthermore, if gaining
a hydrodynamic advantage on large fast-cruising
clupeids schools that need to migrate between their
spawning and feeding sites is obvious, it may not stand
for smaller river fish that also exhibit schooling, a
view supported by experimental studies by Hanke &
Lauder [37]. All these examples illustrate more broadly
how difficult it is to establish a direct link between
function and behaviour.

The proximate causes of fish schooling, i.e. the actual
behavioural rules followed by individuals of a given
species, are still poorly understood, although they could
be crucial in understanding the evolution of collective
motion and the associated functional benefits described
earlier. A lack of quantitative data on fish schooling,
and the fact that multiple sets of behavioural rules may
yield practically identical global behaviour [38], raises a
serious obstacle for the identification of such rules.
With the growing interest in methodologies to infer inter-
action rules, and in experiment-based modelling, paths
are being paved to allow deeper investigations of the
rules that underlie schooling behaviour in a variety of
contexts, such as in open, or more complex, environments
[39–42]. While they cannot capture the full diversity of
behaviours likely seen under natural conditions, labora-
tory experiments on schooling have the advantage of
being highly controlled, allowing experimentalists to iso-
late key features of the social behaviour in schools [43].
Thus, they may be used effectively to determine specific
behaviours, and they will bring us closer to an under-
standing of the mechanisms of the evolutionary
convergence among organisms that exhibit apparently
similar collective motion.
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3. INSIGHTS FROM FISH SCHOOL MODELS

3.1. From individual to collective behaviour

As the description of schooling has progressed in terms of
its functions and interplay with ecological constraints,
and in terms of experimental characterization of
emerging patterns, the interest in developing a frame-
work to bridge the gap between individual and
collective behaviour becomes clear. A major improve-
ment of our understanding of collective motion in fish
has thus been reached through the effort on modelling
fish school behaviour using agent-based models, which
has permitted researchers to set hypothetical individual
rules and test through numerical simulations the result-
ing behaviour at the school level. The first successful
attempts of such models [44–48], sometimes coming
from unexpected fields such as computer animation
[49], demonstrated that despite some methodological
flaws (few fishes leading to a dominant border effect
[43]; poor exploration of initial conditions, as pointed
out later [50]), simple individual behavioural rules often
referred to as ‘traffic rules’, with appropriately tuned
parameters, were able to reproduce the collective behav-
iour of a fish school with its main features (cohesion,
polarity, shape and structure).

Schooling was thus classified among the growing col-
lection of self-organized biological phenomena [1]. An
intensification of the modelling and simulation effort
over the last decades yield an important collection of
models and studies, shedding some light on the complex
interplay between the individual and school levels, and
subsequent methodological and conceptual issues [51].

We will first present the most common ingredients
implemented in individual-based models of collective
motion and then categorize the existing models by the
mean of their mathematical proximity. Through this
categorization, the diversity of problems tackled by
modelling studies is evoked.
3.2. A typology of individual based models for
fish schooling

An agent-based model of collective motion starts with
the mathematical definition at the individual level
of the swimming abilities of the fish, at least implici-
tly, and the behavioural algorithms that define its
interactions with the other individuals. Although they
vary much in mathematical complexity and formalism,
most are composed of three behavioural rules based on
the main properties observed at the school level: col-
lision avoidance, directional orientation (and thus
synchronization of direction of travel) and finally cohe-
sion. The repulsion rule facilitates collision avoidance
and typically is given the highest priority, as inspired
by observation on animal groups [41] as well as model-
ling [52]. The tendency to match behaviour of nearby
neighbours, which is also termed allelomimetic behav-
iour [53], is typically expressed in an explicit rule of
alignment for an individual trying to match the speed
and direction of its neighbours. Recent experimental
evidence has suggested that it might not be an explicit
behavioural rule [41,42], but rather that coordinated
motion might be achieved using social repulsion and
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attraction only (as supported by theoretical models
[54–56]). Finally, an attraction rule mimics a tendency to
group with conspecifics in order to produce aggregation,
a prerequisite of school existence.

Moreover, these rules are often completed by a
stochastic component to account for the individual intrin-
sic behavioural stochasticity (as Kuhlia mugil [40]). This
noise corresponds to the intrinsic errors made when
acquiring information on neighbours, changes in the moti-
vational state of the fish or local (uncorrelated among
individuals) sources of environmental noise. In the same
spirit, swimming rules have to be supplemented by a sto-
chastic component accounting for the variations in
swimming abilities of the individuals as well as the fine
scale or complex interactions with the water we will not
take into account (wake turbulence [34], induced flows
[57]) as long as the retroaction between medium and
individual is estimated negligible [58].
3.3. Synchronous self-propelled particles models

We arbitrarily put together under this designation
all modelling efforts oriented towards the understanding
of fish schooling where the individuals’ speed is kept
constant or drawn into a probability distribution
[44,45] reproducing experimental data [59] and does not
change as a consequence of interactions with neighbours.
An individual fish therefore moves in straight line
between successive time steps, with speed c0 and bearing
di(t) (directional unit vector). At each time step, a pre-
ferred direction di(t þ 1) for the individual is computed
according to the direction dj(t) and relative position
rij(t) ¼ rj(t)–ri(t) of the other fish in a defined neigh-
bourhood Ni(t) with n(t) neighbours. This update can
be expressed by the following general equations:

diðt þ 1Þ ¼ 1
nðtÞ

X

i[NiðtÞ
wðjrijðtÞjÞdjðtÞ

þ 1
nðtÞ

X

i[NiðtÞ
f ðjrijðtÞjÞ

rijðtÞ
jrijðtÞj

þ hiðtÞ:

The preferred direction di(t þ 1) is then normalized
to a unit vector. The new position of the particle is
updated as follows:

riðt þ 1Þ ¼ riðtÞ þ c0dt � diðt þ 1Þ:

The first right-hand term of the preferred direction
equation corresponds to the alignment rule, with a
fish tending to match the average (simple or weighted)
direction of its neighbours. The second right-hand term
ensures repulsion and attraction, and it takes respect-
ively negative or positive values when the neighbours
are too close or too far away. The last term hi(t) is a
stochastic component (for the origins and consequences
of stochasticity in this context, see [60,61]). The coeffi-
cients w(r) and f(r) are used to define the relative range
and weight of attraction and repulsion/alignment (A/
R/A). Some models include behavioural zones of some
extent where a specific rule is applied ([44,47,60,62],
on boı̈ds [49]); some adopt functional forms for the
attraction/repulsion coefficient [63,64]. Other biologi-
cally relevant ingredients are usually added such as a
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blind sensory zone [65], body size and form [66], or fish
individual characteristics drawn from field-observed dis-
tribution [44,45], so that the behaviour of particles is
closer to that of real fish.

It is important to notice that the definition of neigh-
bourhood on which each term is calculated is a crucial
point to consider because of its consequences on the be-
havioural output. Three main definitions can be found
in the literature that lead to very different behaviours
at large scale: first, the metric neighbourhood [64,67],
where all individuals are taken into account within
a surrounding area of a defined range. Second, the
topological neighbourhood that remains invariant
with respect to density changes, as first discussed by
Ballerini et al. [68] in connection to data gathered on
starling flocks. This topological neighbourhood has
proved to lead to robust cohesion of the school under
predation [68], and it may be achieved either by consi-
dering a fixed number of neighbours according to
their proximity (K nearest neighbours) [68,69] or by
using the first shell of a Voronoi tessellation [40,70].
This geometrical tessellation defines a zone of danger
[71] for each member of the school, i.e. a zone where a
hypothetical predator is closer to this member than
any of its neighbours. The selfish herd hypothesis
assumes that a predator would most likely attack the
closest fish, thus making the interest of any fish to
reduce the area of its zone of danger. The first shell of
a Voronoi tessellation contains the neighbours of a
focal fish with which their respective zones of danger
share a border. By monitoring these neighbours, an
individual could evaluate its vulnerability. From a
functional point of view, the behavioural mechanisms
should be selected so as to minimize the zone of
danger in the case of a predator attack [72]. The third
notable approach of neighbourhood is derived from
visual processing considerations. It corresponds to a
dynamical selection of the neighbourhood [73] based
on selective attention to motion.

To make a connection between individual behaviour
and schooling patterns, numerous synthetic studies
have been carried out, systematically varying individual
parameters and measuring their influence on observables
at the local level (nearest-neighbour distance, preferred
positions of neighbours), group level (polarity, group
momentum, shape, structure) and population levels
(group-size distribution) [74]. The outcome of various
hierarchies between the A/R/A rules has been studied
on the motion of small groups of fish [63,75] and on the
equilibrium structure (i.e. under no influence of random-
ness) at the collective level [76]. A crucial point is the
presence of sharp transitions in collective behaviour
that were observed for little parameter changes. For
example, a slight change in the radius of orientation (if
near the critical point) yielded drastic changes at the
school level in terms of polarization and structure, such
as transition between schooling, milling and swarming,
as shown in Couzin et al. [62].

This algorithmic simplicity at the individual level,
witnessed by a limited number of parameters, and yet,
the presence of a diversity of patterns at collective
levels (swarming, milling, synchronized swimming),
provides the opportunity to conceptualize general
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emergent properties through mathematical modelling
[77]. The complexity can be reduced to an explanatory
and predictive ideal mechanism, under logical or mathe-
matical form, referred as a self-organization principle
[1,78], bringing some amount of generality into collec-
tions of case studies. Nevertheless, the goal of such
models is not to capture the precise behaviour of an
individual fish but rather to identify the minimal
general components required for schooling.
3.4. Asynchronous self-propelled
particles models

A typical feature of models of collective motion is a
competition between a stochastic component and a ten-
dency to order, although it is important to note that
stochastic effects may also facilitate the instatement of col-
lective motion [79]. However, there is a different way to
implement stochasticity,which has been recently investiga-
ted by Bode et al. [80]. Instead of updating in synchronous
way thepositionandvelocityof all agents andadd to the set
of rules a random component, the agent updates are made
through a deterministic set of rules in a random order.
Interestingly, this asynchronous update yields a topologi-
cal-like behaviour [81], very similar to what has been
deduced from analyses on starling flocks [68].

Even though this behaviour is reminiscent of
the schools of Paracheirodon innesi (C. Becco &
N. Vandewalle 2009, Experimental study of collective
behaviours in fish swarms, unpublished data), where
the continuous motion of the school is composed of the
sum of individual bouts and pauses with no apparent syn-
chronicity (figure 2a), Bode et al. emphasize that there is
no direct link between the updating frequency and the
actual locomotors events. Yet, this new approach has
an interesting ability to match experimental data [80]:
a simple variation of update frequency can reproduce
the speed distributions observed in groups of three
spine sticklebacks under various level of agitation as
they are frightened, hungry or steady.
3.5. Social forces models

Besides their success in linking functional properties
at the school level to behavioural mechanisms at the
individual scale and some experimental success
[82,83], it is unlikely that the self-propelled particles
framework, as we defined it, has the ability to lead to
models accurately reproducing experimental data of
species, notably in explaining the experimental speed
distributions and consequently the mechanisms respon-
sible for speed synchronization. In particular, a series of
simulation studies have shown that the mean speed
of an individual could be considered as an emergent
property as well [51,69,74]. In self-propelled particles
models, fixed speed implies a direct proportionality
between polarization and mean speed of the school.
Viscido et al. [74] performed experiments on groups of
four and eight fish over periods of 10 min, exhibiting
large deviations to this property.

The social forces framework considers a school as
Newtonian particles submitted to ‘social forces’ (attrac-
tion and repulsion [63], orientation, random force
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Figure 2. Different species of fish use different modes of swimming, ranging from a nearly constant speed to bouts and pauses in
motion. (a) Time evolution of individual speeds jvij for 1 � i � N in a school of Paracheirodon Innesi. Each speed is displayed
with a vertical shift in order to show the activity of each fish in the school. Speed scale is given in the upper left corner. Most
of the time, fish have a nearly zero speed before suddenly exhibiting high accelerations followed by a speed decrease (legend
from (C. Becco & N. Vandewalle 2009, Experimental study of collective behaviours in fish swarms, unpublished data)). (b)
Time series of the speed of an individual in a group of four Kuhlia mugil. (c) The cumulative sum yields a linear relationship
over the experiment’s duration, opening the way for a constant speed modelling.
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accounting for intrinsic stochasticity and complexity of
animal behaviour [61,84]) and physical forces. The
inclusion of explicit physical forces into individual
rules of motion is one of the main motivations for
these models. Indeed, the introduction of drag is
found to have a drastic effect on collective behaviour
[74]. While it widens the modelling horizon and allows
some analytical work [61,84], this framework increases
the number of potentially arbitrary factors that have
to be implemented in the model.

Hopefully, it comes along with a number of tools
developed for particle physics: methods such as Force-
Matching [39] (also adaptable to self-propelled particles
models) or Force Mapping, further discussed in §3.6,
allowing to find best-fitted social forces relatively to a
set of data. A recent experimental work [82] brought
an evidence of frontal preference in the influential
neighbours of an assembly of Surf Scoters swimming
against the drift currents. A social force model with
A/R/A rules supplemented with weak frontal prefer-
ence (an early modelling hypothesis [48]) has shown a
good agreement between observed and predicted struc-
ture (radial distribution, angular preferred position).
However, even if the model was able to reproduce the
observation data quite well, it has been calibrated
with the best set of free parameters that optimized
the simulated patterns towards the observed collective
properties (namely the authors made their model
fit at the collective scale). In such a case, it is
well known that several models can be fitted to a data-
set at the collective scale, simply because the search for
the best match is unconstrained and can be perfor-
med for each model, so that the collective level
underdetermines the individual level.
3.6. Statistical physics of collective motion

An intense interdisciplinary work exists over individual-
based modelling, particularly with statistical physics,
following the seminal work of Vicsek [60]. The reader
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interested in the treatment of the problem by statistical
physicists is referred to the reviews of Giardina [85] and
Vicsek [86]. Tools initially developed for the study of
out of equilibrium physical or chemical systems are
adapted to the problem of living organisms. These
methods aim at investigating possibly universal features
of collective motion over diffusion, long-range order
or presence of high-order and high-density regions at
the onset of collective motion [87], named travelling
bands. They may be analytical, through translations
of agent-based models to Eulerian descriptions (in
terms of continuous velocity and density fields), either
phenomenologically [88] or analytically derived [89].
This approach aims at the understanding of the general
mechanisms by which local rules lead to large-scale
synchronization, those mechanisms being thought to
be rather independent of the detailed nature of the
systems’ components. This idea of independence of
the large-scale behaviour relative to fine behavioural
details is inspired by the existence and similarities of
collective motion phenomenon in very different species
and even in non-living systems. We think that for being
crucial in the understanding of the ubiquity of collective
motion phenomena in biological systems, this statistical
physics approach does not aim to address the behavioural
mechanisms that govern the dynamics of these phenom-
ena. Collective motion in biological systems is rather
seen in analogy with an out-of-equilibrium phase tran-
sition from a disordered phase where no global order is
found to an ordered phase in which the system (i.e. the
school) is highly polarized [60]. This critical change
in global behaviour is obtained by varying the value of
a behavioural parameter such as noise [60,90], blind
angle size [65], speed [91], alignment tendency [62] or a
‘strategy parameter’ [92], which weighs a behavioural
compromise between aligning with neighbours and
reacting to their direction changes. The validity of this
view finds some support in the experimental work of
Becco et al. [93] that showed that such transition from
disorder to order can be obtained by increasing
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the density of Tilapia fish in a shallow water arena.
Increasing density, in the Vicsek model, is equivalent
to decreasing the noise, as the directional information
transfer during fish ‘collisions’ is favoured by density.
Interestingly, in an equivalent experimental set-up on
another species, Gautrais et al. [40] found the inverse
effect of density on global order, the school being
unable to form beyond a certain density, underlining
that at the intermediate level of size and number of an
experimental set-up, the school can be dominated by
fine behavioural details and yield a much different
global behaviour than its large-scale statistically pre-
dicted one. Another rapid transition from disordered to
highly synchronized behaviour at a critical density has
been found in large population of spawning herrings by
Makris et al. [9].
3.7. Self-organization and functional properties

Nevertheless, modelling is crucial to understand how
does biological functions emerge from interactions
between individual components. Among biological
functions of long-lasting interest [4,94] is the trans-
mission of information among the school, studied and
heuristically defined with self-propelled particles and
social force systems [86]. In these modelling frameworks,
transmission of information can be defined, for example,
in the terms of time needed for a particle to propagate
its influence through a given fraction of the population
[92], and thus its optimality (i.e. the maximization of its
measured value) associated with a set of individual par-
ameters. These works also allow some insights on how
collective sensing [23] and decision-making [95] can be
achieved in the schooling phenomenon. Striking is the
demonstration of the possibility of a purely collective
memory, the school being able to encode in its structure
the memory of its previous state, a hysteresis being
observed when slowly going from disorder to order
and back acting on the behavioural parameters of the
individuals [62].

Also successfully explained by a modelling approach
is the mechanism of self-sorting of individuals in
a school [62]. Costs and benefits of being part of a
school vary as a function of the individual position
within the school, a hungry individual being more
likely to take a risk, but more successfully forage, on
the edge [22]. In a large school or when its horizon is
crowded, the fish cannot direct itself to its area of inter-
est, ignorant of their own position within the school.
Couzin et al. [62] demonstrated that by changing behav-
iour, with respect to neighbours, individuals can regulate
(probabilistically) their relative position within the
school. The anti-predator benefit of the confusion
effect is also optimized for an individual being locally
non-conspicuous, and this may be achieved by local inter-
actions in the school as shown in Kunz & Hemelrijk [66]
and Ioannou et al. [28]. To sum up, a change in an indivi-
dual strategy can lead, via self-organization, to a change
in its position within the group or in the local composition
of the group, even if no information about the shape of
the group is accessible to that fish, in particular if its
visual horizon is crowded or if the school is extending
beyond its visual range.
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4. OPEN ISSUES FOR THE
INVESTIGATION OF COGNITIVE AND
BEHAVIOURAL MECHANISMS
INVOLVED IN SCHOOLING

With several models exhibiting similar global-collective
patterns provided they are appropriately tuned (see the
discussion on this particular issue in Gautrais et al. [40]
and Weitz et al. [38]), conclusions on the specific mech-
anisms ensuring those different functions in various
species are still out of reach. A way to reconcile data
with models and ensure that one does not predetermine
the behavioural rules to get a desired schooling behav-
iour is to proceed with a bottom-up approach on each
species. This method is illustrated by a recent exper-
imental work that leads to a model reproducing
quantitatively the behaviour of fish both at individual
and collective levels, based on a fish kinematic with
interesting long-time diffusive properties [40,96]. The
idea is to build a model incrementally from scratch, vali-
dating at each step the modelling choices through a
specific experimental design. In the past, the very same
methodological framework has been successfully applied
to characterize and model individuals’ interactions that
govern collective behaviour in pre-social and social
insects [97–99].

In this approach, we believe that there exist some key
behavioural components that have to be carefully eval-
uated. A first important component is the kinematic
that characterizes the motion of a single fish. Depending
on its intrinsic features, it may or may not facilitate the
inference of social interactions at stake in the school.
Then, the type of information (i.e. the stimuli) gathered
by an individual to control its movement is also crucial,
especially when the perception or the behavioural
reactions of a fish change in different environmental
conditions. Assuming that these stimuli can be some-
what decomposed into a sum of pair interactions, one
has then to consider which neighbours a fish is going
to interact with. If this assumption is wrong, one has
to identify the kind of information processing a fish
is doing, namely how the stimuli are combined and
what are the resulting consequences on the motion
of the fish. Finally, a last issue concerns the impact of
endogenous physiological and behavioural changes on
data collection and analysis.

4.1. Characterizing the spontaneous motion
of fish

Schooling phenomena occur in species that have evolved
widely different swimming abilities and behaviours.
Constrained by biomechanics, the elected swimming
mode (see Sfakiotakis et al. [57] for a review) can
lead to a continuous motion, as for most pelagic fish
(see fig. 2b,c from K. mugil [100] or cod, saith and
herring [19]), or to discontinuous burst-slide swim-
ming (fig. 2a, from C. Becco & N. Vandewalle 2009,
Experimental study of collective behaviours in fish
swarms, unpublished data): the fish propels itself inter-
mittently and then slides until viscosity stops the
motion. In the latter case, individual swimming speed
is highly variable, in particular for small river fish
such as zebrafish (Danio rerio) or firehead tetra (see
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fig. 2a Hemmigrammus bleheri from C. Becco &
N. Vandewalle 2009, Experimental study of collective
behaviours in fish swarms, unpublished data). Most
importantly, speed variability acts on the same time-
scales as the individual updates of its direction of
motion. In addition to the theoretical result that syn-
chronicity in ‘swimming bursts’ deeply influences the
global schooling behaviour [80], the integration of indi-
vidual swimming abilities in a model may be a crucial
point for its relevance at the intermediate-size.

Numerous agent-based modelling studies already
constrain the motion of individuals to realistic values,
tuning parameters such as the maximum speed, the
maximum turning speed, and the update frequency in
self-propelled particles models or introducing a maxi-
mum acceleration and a drag force in social forces
models. There exists some evidence in the literature
showing that manoeuvrability constraints are key
behavioural factors that determine the ability to per-
form schooling behaviour. The introduction of drag in
a social force model [74] yielding an asymptotical limit
speed for the fish, i.e. manoeuvrability constraints,
has a dramatic impact on individual trajectories, in par-
ticular the path curvature, and also on poupulation-
level properties, as it leads to increasing group sizes.
Similarly, in a self-propelled particles model [50], varying
themaximumturning rate is ameans of selecting theacces-
sible states of the system. The spontaneous motion, i.e. the
limit case of a non-interacting fish defined as a constant
speed random walk with correlated successive orientations
in Gautrais et al. [100] and as a Langevin process for the
social force model with drag in Viscido et al. [74], generates
different large-scale diffusive properties [96].

Furthermore, when trying to characterize from
experimental data the interactions between individuals
in a fish school, one must start with a ‘null-model’ that
adequately characterizes the motion of an isolated
individual (see Katz et al. [41] in which the analysis of
fish interactions is performed under an implicit social
force assumption).
4.2. Inferring interactions between individuals

Recently, several studies have explored ways to infer
social interactions directly from experimental data
rather than trying to test a priori rules with the satisfy-
ing properties at the collective level. The force-map
technique [41] and the non-parametric inference
technique [42] have been used to estimate from exper-
iments with two fish the effective turning and
speeding forces experienced by an individual, once the
relevant variables on which they may depend have
been chosen. In the force-map approach, the implicit
assumption considers that fish are particles on which
social and physical forces act. Those effective forces cap-
ture the ‘coarse grain’ regularities of actual interactions,
and thus constitute a powerful tool. But the explained
fraction of the variance is low, and its origin remains
largely unexplained—in particular, the intrinsic varia-
bility of individual behaviour, and the coupling
between arbitrarily chosen variables. To be more than
a powerful visualization tool, this approach has to
demonstrate its ability to lead to a model that would
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reproduce in turn the experimental data. A partial
answer is given by the work done by Lukeman et al.
[82], that quantitatively reproduces at the collective
level the behaviour of surf scoters, thanks to a self-
propelled particles model with an additional frontal
preference hypothesis. However, without an agreement
of the model at the individual level, it is difficult to
evaluate to which extent the extracted behavioural
algorithm corresponds to the actual behaviour—in
this case, the value of the frontal preference hypothesis.

A different approach is a bottom-up modelling intro-
duced by Gautrais et al., which has been applied to
investigate the schooling behaviour in groups of
barred flagtails (K. mugil) [40]. Once the spontaneous
motion of an isolated fish has been modelled and its par-
ameters quantified, a dynamical framework is defined
within which the interactions of that fish with the phys-
ical environment and neighbouring fish are included.
The influence of the tank wall is estimated directly
from experimental data. Series of two-fish experiments
are then used to suggest interactions and their func-
tional form, in that case attraction and alignment
only, and to quantify the parameters of these functions
with inversion techniques. The validation of the model
is based on the agreement of model predictions with
experiments on several observables and with different
group sizes. This step-by-step procedure ensures that
the model properly reproduces the observed data,
uncovering the behavioural rules at work in school
maintenance for the experimental situation. This
approach therefore needs to be extended to other exper-
imental conditions. It is important to increase the local
density of fish to investigate the short-range mechanism
of repulsion, which is found unnecessary to explain
school dynamics and collision avoidance in the exper-
imental set-up. Conversely, experiments intended to
investigate school formation, where inter-individual dis-
tance converges towards a statistical equilibrium that is
much smaller than the initial value, are much needed to
characterize and model the attraction among fish.
4.3. Acquiring and updating information
on neighbours

The main sensory channels involved in schooling are
vision [101] and the lateral line used to detect movement
and vibration in the surrounding water [102,103] (see von
der Emde et al. [104] for physiological and ecological con-
siderations). Both channels have different properties: they
act respectively at long and short range, vision operates in
both the near and far field, whereas the lateral lines are
limited to the near fields; and they also depend on the
physical context (light, opacity, water flows). And both
seem equally crucial [105], as a lateral line-disabled fish
will not be able to school [103] and a blind fish will not
be able to join its school if he loses its wake [102].

More important than the physiological processes
involved in the acquisition of information is the kind
of information a fish acquires and how it maps these
estimates to motor control programmes. The assump-
tion that a fish acts on the basis of discrete and
absolute information such as the position and speed of
some neighbours may be reconsidered with regard to
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Figure 3. (a) Time series of the alignment between two fish (left) for each experiment and (b) corresponding model simulations
(right), ordered by increasing fish speed. Speed is expressed in fish body lengths per second. The speed and polarization
interrelation is captured through speed dependency of the model’s coefficient (text and figure from [40]).
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recent works. We can think of a more continuous and
global kind of information such as that driving the
motion of pedestrian crowds [106]. This is found to
direct a pedestrian towards the locally less crowded
area estimated with the angular density measure,
which is by itself a continuous and local variable.
Lemasson et al. [73] have introduced an A/R/A model
with neurobiological mechanisms of processing and
integrating the information. This model goes well
beyond the usual modelling hypothesis that mainly con-
sists of a direct calculation using the absolute positions
and velocities of neighbours. The angular position,
speed and direction of neighbours’ images on the
retina of focal fish are integrated to weigh and trigger
its behavioural reactions. The model implements selec-
tive information processing, using key properties of
image detection and motion forecasting to select the
set of neighbours eliciting each of the three behavioural
reactions: attraction, alignment and repulsion. How-
ever, we are far away from deriving behavioural
mechanisms from the present understanding of the
actual cognitive and sensorimotor processes at work in
each schooling species. Nonetheless, the insight gained
on what information is actually perceived by an individ-
ual should allow us to make more realistic hypotheses
even if the complexity is increased.

Together with the issue of which type of information
is used is the coupling between the motion of the
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individual and the perceptual capabilities of fish. In
the Lemasson’s model [73], the matching response is
defined proportional to the speed of individual fish,
the displacement of an object on the retina of the indi-
vidual being proportional to the speed of this object.
From an ecological point of view, half the species of
fish move intermittently [107], and among the benefits
gained from this type of locomotion may stand an
increased sensitivity to the surrounding while resting.
Pauses on the move allow a stabilization of the visual
field and an increase in the signal-to-noise ratio from
the lateral lines [108]. It is worth mentioning that the
dynamic correlation between cruising individual
speed and school structure, already noted by Aoki [59],
has been experimentally captured by the bottom-up
modelling approach of Gautrais et al. [40] through a
dependency on swimming speed of the main coefficients
controlling interactions between fish, namely the weights
of positional and directional information, that may have
a physiological origin. As shown in figure 3, increasing
swimming speed leads to an increase in group polarization.
4.4. Determining which neighbours a fish is
interacting with

From the STARFLAG project [109,110] that mapped
the three-dimensional structure of free-flying starling
flocks emerged strong experimental evidence for
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topological-like interactions [68]. Each bird seems to
pay attention to approximately seven nearest neigh-
bours [68], suggesting how cohesiveness can be
maintained in groups that exhibit such density variabil-
ity. The neighbourhoods defined a priori in a modelling
study can be justified by physical sensory arguments
(e.g. range of vision through diffusive medium, rapid
attenuation of pressure waves) or by neurobiological
arguments as in the selective attention model [73].
But considering the tremendous effects of the chosen
neighbourhood on the outputs of the simulations in
terms of cohesiveness, structure and dynamics of a
school, the ultimate test should be a confrontation
with experiments, i.e. with the behaviour of actual
species. In a bottom-up modelling approach, provided
that the interactions among fish have been correctly
described, it is theoretically possible to quantitatively
discriminate various neighbourhood choices through
simulation and data collection across various scales
(figure 4). But so far these effects are hard to observe
in experiments because of the geometrical constraints
due to the finite-sized arena [40].

The quantitative observation of a free-swimming
school being uneasily achieved, we might consider
designing experimental and analytical techniques,
allowing us to discriminate between competing hypoth-
eses. The necessity of an adequate experimental design
relative to an analysis tool is stressed by the recent
development of Bayesian inference methods [111]. In
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these conditions, a Bayesian methodology is shown to
have the ability to validate a model against experimen-
tal data that covers sufficiently different configurations,
i.e. experimentally sampling a transitory rather than
static evolution. Reproducible experiments have to be
designed in order to study such transitory phases.
One could think of provoking the dispersion of a
school with a device simulating an attack, allowing us
to record the transitory phase of grouping from an
initial dispersed condition. A recent work by Herbert-
Read et al. [42] using a classical experimental set-up
has shown that the social force most representative
of the data was essentially acting on a single nearest
neighbour, constituting evidence for a single nearest-
neighbour interaction for this species. In their
methodology, the inferred social force is fitted into an
artificial neural network using the maximum-likelihood
method, and thus not explicitly parametrized. As such,
it does not provide a straightforward way to formulate
a model.
4.5. Determining which ways are used by the
individual to integrate information

An individual may take into account information from
various neighbours to control its next move. It may be
expressed in a modelling framework as a combination
of pair interactions, e.g. by summing [69] or averaging
[50]. The limited cognitive abilities at work nonetheless
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make suspect some utterly complex calculations over a
large number of influential individuals. Recent exper-
imental work by Katz et al. [41] suggests that
integration of information cannot be seen as additive
social forces, and rather points towards synergetic or
averaging combination of respectively speeding and
turning forces. While modelling the motion of another
species, school motion was best fitted when averaging
the influences, the overall intensity roughly equalling
the intensity of random influences.

In pedestrians, it has been shown that simple heuris-
tics applied by an individual to the whole sensorial
environment may match both requirements of low cog-
nitive complexity and high efficiency at the collective
level [106]. In that case, individuals are found to
direct their motion towards the less-crowded angular
direction. This rule is equivalent to finding the mini-
mum of a local density landscape; a pedestrian,
through visual information processing, may easily find
an approximate solution but the rule is intrinsically
hard to describe as a combination of pair interaction.
We may remain aware that the reaction behaviour can
be based upon a global stimulus that cannot be decom-
posed further, thus making the leap from pair
interactions to whole-school interactions reciprocally
hard to achieve formally. A similar heuristic rule lead-
ing to a global herding has also been used in a model
[72] illustrating how the selfish herd hypothesis [71]
could work efficiently. In this so-called local crowded
horizon mechanism, each individual evaluates the den-
sity of the herd along all directions and direct its
motion towards the angular direction in which the
crowd density is the highest. Doing so, each individual
considers the presence of all neighbours weighted by a
‘visual function’ that decreases according to the dis-
tance. This approach could be refined by taking into
account only the influence of visible neighbours,
through integrating the shape characteristics of school
members, thus making the definition of the local
crowded horizon compatible with what the fish can
actually perceive.
4.6. Determining group size effects and their
influence on the reactional state of fish

Adaptive properties at the collective level emerge from
the behaviours of the interacting individuals that react
to biological cues such as predators, food resources or to
physical cues (such as light intensity, temperature) that
can be controlled in a laboratory experiment. These
stimuli may elicit punctually a stereotyped response
(such as C-start elicited by water flows similar to a pred-
ator suction [108]) but may also affect the internal state
of the individual, leading to mid-term changes in behav-
iour. Several studies tried to capture this behavioural
switch, with some success either with data analysis only
[112] or in a self-propelled particles framework. Tien
et al. [113] evidenced a neutral zone and a fall in near-
est-neighbour distance when frightening schools of fish
swimming in a pond. Another study by Hoare et al. [83]
exhibited the link between group size selection and
internal state eliciting an anti-predator response,
hunger, and compared it with a control steady state.
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In these examples, the effect on behaviour of a change
in the internal state of fish is captured through the modi-
fication of the behavioural parameters of the model. As a
matter of fact, the accurate modelling of fish behaviour
allows measuring behavioural switches as variations of
the behavioural parameter of the model. This has been
shown for instance by Gautrais et al. [40], who detected
a change in behavioural parameters with increasing den-
sity, leading to a disordered swimming once a critical
density has been reached. It is worth noting that in
that particular case, the individuals may change their be-
haviour relative to the density [91]. This additional
coupling, namely the influence of the school as a whole
on the behaviour of its constituent individuals, is a topic
that we may carefully consider in future investigations.

To limit the impact of the behavioural variations due
to non-physical factors such as habituation or any vari-
ation in the internal state of fish, it is prudent to get an
estimation of the behavioural variability in the long
term. A series of experiments led by Miller & Gerlai
[114] on zebrafish explored quantitatively the effect of
habituation on fish behaviour with the experimental
arenas (no effect) as well as the effect of food presence
(lowered density) and exposure to aerial model predator
(no habituation, punctual effect).
5. CONCLUSIONS

In trying to understand why fish school evolutionary
biologists have identified several emergent functional
‘supra-organismic’ properties that may benefit the
individuals that belong to a school. But an accurate
knowledge of behavioural mechanisms and interac-
tions involved in schooling is also important to
understand how these properties emerge. Decades of
modelling studies and an increasing data collection
aimed to understand the connection between individual
interactions and school properties. Numerous modelling
frameworks have been developed, and shed light on the
potential mechanisms driving school formation, main-
tenance and patterns of motion. Most of these models
represent idealized a priori behavioural algorithms
that make their theoretical study easier. In searching
for the actual behavioural mechanisms at work in fish,
one could make a simple comparison of large-scale
data with simulation output. However, it is hard to
find biologically relevant individual mechanisms with
such a top-down approach because of the strong coup-
ling between individual behaviour and external cues,
be they ecological or physical, the internal state of fish
and finally the output of the school itself.

We have emphasized a set of major and unknown be-
havioural components that are likely to play a crucial
role in schooling. As all these elements are coupled
with each other, we suggest long-term incremental mod-
elling work in direct confrontation with experimental
data that may result into their characterization. The
first component is the motion of a single fish, poorly
considered up to now because of its lack of generality.
It has to be carefully characterized and modelled so as
to uncouple its consequences on school behaviour from
those that result from interactions among fish. These
interactions are a second important component already
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investigated through new methods of data analysis that
prove their ability in questioning the validity of a priori
model assumptions for specific fish behaviour. Third,
the nature of the stimuli used by an individual to control
its trajectory is also crucial, as their perception may also
depend on the fish motion and the environmental con-
ditions. Fourth, the neighbours considered by a fish and
from which stimuli are integrated into a behavioural
response. Several hypotheses, namely metric, topologic
or dynamic neighbourhood, have emerged from simu-
lation studies that now require some experimental
validation. Then, there is the question of the integration
of the influence of a discrete number of neighbours. This
is a rather complex cognitive hypothesis that is in com-
petition with much simpler heuristics based on visual
processing. Finally, a last issue concerns the impact
of endogenous factors such as physiological and behav-
ioural changes that may strongly impact data collection
and analysis.

The knowledge gained on such behavioural com-
ponents is relative to a species. But we may hope
that, after deciphering several behavioural mechanisms
across different taxa, we will be able to identify several
classes of fish school models.
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