
Interface Focus (2012) 2, 774–785
*Author for c
†These author

Electronic sup
10.1098/rsfs.2

One contribu
biological sys
continuum m

doi:10.1098/rsfs.2012.0034
Published online 3 October 2012

Received 4 Ju
Accepted 10 S
Pattern-formation mechanisms
in motility mutants of
Myxococcus xanthus

Jörn Starruß1,†, Fernando Peruani2,*,†, Vladimir Jakovljevic3,
Lotte Søgaard-Andersen3, Andreas Deutsch1 and Markus Bär4

1Center for Information Services and High Performance Computing (ZIH), Technische
Universität Dresden, Zellescher Weg 12, 01069 Dresden, Germany
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Formation of spatial patterns of cells is a recurring theme in biology and often depends on
regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus
depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding
motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional rever-
sals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting
bodies, depending on their nutritional status. To ultimately understand these two pattern-
formation processes and the contributions by the two motility machineries, as well as the
cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains:
(i) a mutant that moves unidirectionally without reversing by the A-motility system only,
(ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the
wild-type that, in addition to the two motility systems, occasionally reverses its direction
of movement. The mutant moving by means of the A-engine illustrates that collective
motion in the form of large moving clusters can arise in gliding bacteria owing to steric inter-
actions of the rod-shaped cells, without the need of invoking any biochemical signal
regulation. The two-engine strain mutant reveals that the same phenomenon emerges
when both motility systems are present, and as long as cells exhibit unidirectional motion
only. From the study of these two strains, we conclude that unidirectional cell motion induces
the formation of large moving clusters at low and intermediate densities, while it results in
vortex formation at very high densities. These findings are consistent with what is known
from self-propelled rod models, which strongly suggests that the combined effect of self-
propulsion and volume exclusion interactions is the pattern-formation mechanism leading
to the observed phenomena. On the other hand, we learn that when cells occasionally reverse
their moving direction, as observed in the wild-type, cells form small but strongly elongated
clusters and self-organize into a mesh-like structure at high enough densities. These results
have been obtained from a careful analysis of the cluster statistics of ensembles of cells,
and analysed in the light of a coagulation Smoluchowski equation with fragmentation.
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self-organization
1. INTRODUCTION

Formation of patterns of spatially organized cells is a
recurring theme in biology. These processes often
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depend on regulation of cell motility. For instance, in
metazoans, it provides the basis for organ formation
during embryogenesis, and in single-celled eukaryotes
such as Dictyostelium discoideum, it is essential for
the formation of fruiting bodies. In bacteria, regulated
cell motility is essential for the colonization of diverse
habitats as well as for the formation of multicellular
structures such as biofilms and fruiting bodies. These
pattern-formation processes can be self-organized. For
example, D. discoideum [1,2] regulates cell aggregation
and multicellular organization by secreting and sensing
This journal is q 2012 The Royal Society
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the diffusive signal cAMP. In Myxococcus xanthus, on
the other hand, rippling patterns and the highly com-
plex cellular reorganization leading to fruiting body
formation are controlled by a non-diffusing signal, the
C-signal [3]. Interestingly, collective effects and self-
organization can also occur, to a certain extent, in the
absence of an explicit signalling mechanism. For
instance, hydrodynamic interactions can induce large-
scale coherent motion of swimming cells, as recently
observed in Bacillus subtilis [4,5], and a density-
dependent diffusivity can lead to aggregation patterns
as recently suggested to occur in Escherichia coli and
Salmonella typhimurium [6].

Myxococcus xanthus is a gliding bacterium that
has been used as a model system to study pattern
formation [7], bacterial social behaviour [8] and moti-
lity [9]. The rod-shaped cells of the bacterium
M. xanthus move on surfaces in the direction of their
long axis using two motility machineries, type IV pili,
which requires cell-to-cell contact for its activity
because it is stimulated by exopolysaccharides on neigh-
bouring cells [10] (giving rise to S-motility), and the
gliding motility apparatus that allows cells to move in
isolation [11] (giving rise to A-motility). Force gener-
ation by the A-motility system has been suggested to
rely either on slime secretion from the lagging
pole [12], or on focal adhesion complexes distributed
along the cell [13]. Cells occasionally reverse their glid-
ing direction with an average frequency of about once
per 10 min and the reversal frequency is controlled by
the Frz chemosensory system [14]. In the presence of
nutrients, M. xanthus cells form coordinately spreading
colonies. Upon depletion of nutrients, M. xanthus cells
initiate a complex developmental programme that cul-
minates in the formation of spore-filled fruiting
bodies. Both motility systems as well as reversals are
required for the two cellular patterns to form, i.e.
spreading colonies and fruiting bodies. It is currently
not known how the reversal frequency is regulated
except that cell–cell contacts may induce C-signal
exchange, which is supposed to stimulate reversals
during rippling and to inhibit reversals during aggrega-
tion. During fruiting body formation the reversal
frequency decreases up to a point where cell movements
become nearly unidirectional [15] and cells start to dis-
play collective motion with the formation of large
clusters in which cells are aligned in parallel, making
side-to-side as well as head-to-tail contacts and move
in the same direction [16]. Eventually, cells start to
aggregate. Aggregation centres often resemble a cell
vortex, at their initial phase.

Here, we aim at understanding myxobacterial
pattern-formation processes, particularly the contribu-
tions by the two motility machineries as well as the
cell reversal machinery to the spatial organization of
the cells. We study the role of steric interactions,
cell adhesion and reversal frequency in the collec-
tive dynamics. The question for us is not ‘why’ cells
exhibit a given collective behaviour but ‘how’ they do
it. In order to identify the role of the two motility
machineries and cell reversal machinery, we follow
a bottom-up strategy by looking at the collective
dynamics of different mutants of increasing complexity.
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We analyse three M. xanthus strains: (i) a mutant
that moves unidirectionally without reversing by the
A-motility system only—a mutant that has been pre-
viously studied by us [17], (ii) a unidirectional mutant
that is also equipped with the S-motility system, and
(iii) the wild-type that, in addition to the two moti-
lity systems, occasionally reverses its direction of
movement. We characterize the macroscopic patterns
mainly through the cluster statistics, in particular in
terms of cluster size and shape. We observe that the
mutant moving by means of the A-engine displays
only collective motion in the form of large moving clus-
ters. The study of its cluster size distribution (CSD)
reveals that above a given density, clusters can be arbi-
trarily large [17]. Here, we show in addition that there is
a non-trivial scaling of cluster perimeter with cluster
size that indicates that the clustering process is neither
(fully) random nor as in (equilibrium) liquid–vapour
drops [18]. We also find that at high densities the collec-
tive dynamics changes and cells organize into vortices.
The study of the two-engine strain mutant reveals the
same phenomenology for these bacteria: collective
motion in the form of large moving clusters, a critical
density above which clusters can be arbitrarily large,
a non-trivial scaling of cluster perimeter with cluster
size and vortex formation at high densities. By compar-
ing these two strains, we conclude that unidirectional
cell motion induces the formation of large moving
clusters at low and intermediate densities, while it
results in vortex formation at very high densities
(see figure 1a,b). Interestingly, similar collective
dynamics has been observed in self-propelled rod
models [19], a fact that strongly suggests that the
combined effect of self-propulsion and volume exclusion
interactions is the pattern formation mechanism leading
to the observed phenomena.

The study of wild-type cells indicates that cell
reversal weakens clustering. Wild-type cells exhibit
exponential CSDs at low and intermediate densities,
while the scaling of the cluster perimeter with cluster
size indicates that clusters are strongly elongated. At
high densities, we find that reversing wild-type cells
self-organize into a mesh-like structure (see figure 1c).

Wild-type cells, as commented already, exhibit a
large variety of self-organized patterns depending on
the environmental condition. Our results suggest that
only by switching on and off the reversal can cells
modify dramatically their collective behaviour, with
the suppression of cell reversal leading to collective
motion in the form of moving clusters and vortex for-
mation at high densities. This observation is consistent
with the observed decrease in reversal frequency in the
wild-type upon nutrient depletion, which is followed by
the formation of large moving clusters and aggregation
of cells. Our findings indicate that these two processes
can result from simple steric interactions of the (non-
reversing) rod-shaped cells, without the need of invoking
any biochemical signal regulation.

The paper is organized as follows. In §2.1, we focus
on the spatial self-organization of purely A-motile
cells in the absence of cell reversals. The effects induced
by the S-motility engine, which include increased cell
adhesion, are studied in §2.2, while those due to
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Figure 1. Pattern formation at various packing fractions h, 6 h after spotting a drop of bacterial suspension on an agar surface.
(a) Corresponds to the non-reversing AþS2Frz2 mutant that moves only by means of the A-motility system (these three panels
have been taken from [17]). (b) Corresponds to the non-reversing AþSþFrz2 mutant that moves with both the A- and S-motility
systems. At high cell densities, the mutants AþS2Frz2 and AþSþFrz2 form large moving clusters that turn into vortices at suffi-
ciently high packing fractions. (c) Corresponds to the wild-type AþSþFrzþ strain that moves with both the A- and S-motility
systems and cells are able to reverse their moving direction. The AþSþFrzþ mutant self-organizes into a mesh-like structure
at a high density.
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cell reversals in §2.3. In §3, we discuss which collective
effects are expected in self-propelled rod models, and
interpret the cluster statistics results observed in the
experiments in the light of a simple cluster formation
theory. We summarize all the results in §4, where we
also discuss the implications of the reported findings.
2. CLUSTER STATISTICS

2.1. A-motile non-reversing cells

We start out with the simple mutant AþS2Frz2 that
only moves by means of the A-motility system and
which is unable to reverse due to an insertion in the
frz gene cluster (see §5 for more details about how the
strain was generated). This mutant is unable to assem-
ble type IV pili due to deletion of the pilA gene, which
encodes the type IV pili subunit, and therefore the
S-motility system is non-functional in this mutant.
This mutant exhibits relatively weak cell–cell adhesion
owing to the lack of type IV pili and the reduced
accumulation of exopolysaccharides. This mutant is
labelled AþS2Frz2 to indicate that the A-motility
engine is on, the S-motility engine is off and the Frz
system, i.e. cell reversal, is dramatically reduced.
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Control experiments showed that these mutants have
a reversal period� 100 min, whereas the isogenic
Frzþ strain reversed with a mean reversal period of �
10 min. In Peruani et al. [17], we showed that this
mutant exhibits a transition to a collective motion
phase at high enough densities by analysing the depen-
dency of CSD with the packing fraction. Here, we
characterize in addition the cluster shape, and show
that at densities higher than the one studied in Peruani
et al. [17], giant clusters turn into vortices.

Experiments were performed by spotting a drop of cell
suspension of the desired density on an agar surface to
subsequently monitor the evolution of cell arrangements
by taking snapshots of the bacterial colony every 30 min
for a total of 8 h. Experiments with cells gliding in
isolation indicate an average velocity of v ¼ 3.10+
0.35 mm min21, an average width of about W ¼ 0.7 mm
and an average length of L ¼ 6.3 mm. This results in a
mean aspect ratio of k ¼ L/W ¼ 8.9+1.95 and a cell
covering an average area a ¼ 4.4mm2.

We found that under these conditions, cells orga-
nized over time into moving clusters. Time-lapse
recordings showed that collisions of cells lead to effec-
tive alignment (figure 2a). When the interaction is
such that cells end up parallel to each other and move
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Figure 2. (a) Collisions among M. xanthus lead to an effective (local) alignment. (b,c) A local alignment leads to the formation of
moving clusters; arrows indicate the cluster moving direction. Time interval between (b) and (c) is 15 min, snapshots correspond
to AþS2Frz2 cells at packing fraction h ¼ 0.11. Panels taken from [17].
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in the same direction, they migrate together for a long
time (typically .15 min). Eventually, successive col-
lisions allow a small initial cluster to grow in size
(figure 2). In the individual clusters, cells are aligned
in parallel to each other and arranged in a head-to-
tail manner, as previously described [20]. In a cluster,
cells move in the same direction. Cluster–cluster col-
lision typically leads to cluster fusion, whereas
splitting and break-up of clusters rarely occur. On the
other hand, individual cells on the border of a cluster
often spontaneously escape from the cluster. These
two effects, cluster growth due to cluster–cluster col-
lision and cluster shrinkage, mainly due to cells
escaping from the cluster boundary, compete and give
rise to a characteristic CSD.

The CSD—p(m,t)—indicates the probability of a
bacterium to be in a cluster of size m at time t. Note
that throughout the text, the term CSD always refers
to this definition. Often, the CSD is alternatively deter-
mined as the number nm(t) of clusters of size m at time
t. There is a simple relation between these two defi-
nitions: pmðtÞ/m nmðtÞ. In experiments, we have
observed that the CSD mainly depends on the packing
fraction h, where h ¼ ra, with r the (two-dimensional)
cell density and a the average covering area of a bacter-
ium given above. Hence, for all snapshots, first the
packing fraction was determined. Then, images with
similar packing fraction h were compared and the
CSD was reconstructed by determining the CSD for
all images within a finite interval of the packing frac-
tion. Very importantly, we find that the CSD p(m,t)
reaches a steady state p(m) after some transient time,
as shown in figure 3. We conclude that the clustering
process evolves towards a dynamic equilibrium, where
the process of formation of cell clusters of a given size
is balanced by events in which clusters of this size dis-
appear either by fusing with other clusters or by
losing individual cells from their boundary.

The steady-state CSD p(m) strongly depends on the
packing fraction h, with more and more cells moving in
larger clusters for increasing packing fraction h. This is
evident in figure 4, where we observe that at small
values of h, p(m) exhibits a monotonic sharp decay
with m, while at large h values, p(m) is non-monotonic,
with an additional peak at large cluster sizes. The solid
curves in figure 4 are fitted to the raw data by using
phenomenological functional forms described in the
next section. The CSD here was determined at a fixed
time (450 min) after the beginning of each experiment;
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control experiments at other times (360 and 480 min)
revealed practically identical behaviour. We interpret
the presence of a peak at large values of m at bigger
values of the packing fractions as the emergence of
collective motion resulting in formation of large
clusters of bacteria moving in a coordinated fashion.
The clustering transition is evident by the functional
change displayed by p(m) monotonically decreasing
with m for small values of h, while exhibiting a local
maximum at large h values. At a critical value hc ¼

0.17+ 0.02 that separates different regimes of behav-
iour, the CSD can be approximated by pðmÞ/m�g0 ,
with g0 ¼ 0.88+ 0.07. Control experiments with non-
motile cells do not exhibit a power-law behaviour in
the CSD. For more details, we refer the reader to [17].
Hence, we conclude that without active motion of
cells, no comparable transition to clustering occurs. In
other words, active motion is required for the dynamical
self-assembly of cells.

Now, we turn our attention to the cluster shape, in
particular to the scaling of the cluster perimeter P(m)
with the cluster size m. This kind of information can
help us to realize how adhesive cells are and which
role adhesion plays in the clustering process. If there
is surface tension, then clusters should tend to minimize
their surface, and they should be round, as observed in
liquid–vapour drops [18]. On the other hand, if surface
tension is negligible, a cluster can be a very elongated
object, with most of the cells on the cluster boundary,
and the cluster perimeter is proportional to cluster
size. We assume that PðmÞ/mv, where m denotes
the area of the cluster. Thus, it is clear that perimeter
exponent v should be 0.5 for round clusters. This
would be the case for very adhesive cells exhibiting
random movements. If clusters are extremely elongated,
then v ¼ 1. We notice that v ¼ 1 would correspond also
to a fully random process as observed in percolation
theory [18]. In short, the exponent v is then such that
0:5 � v � 1. Figure 5 shows that for AþS2Frz2 cells
v ¼ 0.60+ 0.03, which indicates that the clustering
process is non-trivial, that it is neither fully random
nor dominated by surface tension (see also figure 1).
The scaling of P(m) with m plays a central role in the
clustering theory we discuss below, where the relation
between cluster size statistics and cluster perimeter
statistics will be discussed in detail.

As the density increases, typically above h . 0.26,
cells do not organize into large moving clusters, and
giant clusters evolve into vortices. These vortices are
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Figure 3. Time convergence towards a steady state. The figure compares the cumulative cluster size distribution (CCSD), defined
as p(x � m), at various time points for (a) AþS2Frz2 and (b) AþSþFrz2 cells at two different packing fractions. The CCSD is less
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cells, indicate that the cluster statistics quickly converges to a steady state. The time convergence for AþSþFrz2 cells (b) also
occurs, though the phenomenon is less evident. Each panel shows, as reference, the CCSD obtained with control experiments
of non-motile cells. The comparison indicates that cell motility promotes undoubtedly the formation of large clusters.
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formed by one or several layers of rotating discs whose
radii diminish the higher the disc is located in the z-direc-
tion. Figure 6 shows a typical example of vortex
formation. See the electronic supplementary material
for a movie of a vortex of AþS2Frz2 cells at 20� magni-
fication. The real-time duration of the movie is 15 min.
Notice that these vortices are not disordered aggregates
of cells as suggested in Holmes et al. [21]. Given the fact
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that vortices are multi-layered structures, phase contrast
imaging can provide only limited information regarding
the actual cell arrangements inside vortices. A detailed
study of vortices requires more sophisticated experimen-
tal techniques.

Interestingly, vortex formation has also been obser-
ved in other experimental ‘self-propelled rod’ systems
as actin–myosin motility assays [22,23] as well as in
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0.26). The pattern consists of rotating stacked discs of
cells. These structure are observed in both AþS2Frz2 and
AþSþFrz2 strains.
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two-dimensional suspensions of sperms [24]. In the latter
example, hydrodynamical interactions are supposed to
induce the observed pattern, while in the former one
the role of hydrodynamic interactions is not well under-
stood; yet in both types of systems, the vortex patterns
correspond to vortex arrays. In myxobacteria, on the
other hand, hydrodynamical effects can be neglected
and vortices do not emerge in a lattice-like arrange-
ment, but rather in a disorganized fashion. At a
theoretical level, vortices have been found in active gel
theory [25,26]. Wether active gel vortices and those
observed in M. xanthus mutants have the same micro-
scopic origin is unclear, but certainly a possibility
worth exploring.

In summary, the finding of vortex formation in exper-
iments with AþS2Frz2 indicates that the S-motility
system, cell-to-cell signalling and cell reversals are not
required for the organization of cells into vortices.

2.2. A- and S-motile, non-reversing cells

We turn our attention to the next simplest mutant:
AþSþFrz2. These cells contain both motility engines
found in the wild-type, while cell reversals are absent.
The S-motility system depends on type IV pili [10]. It
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allows cells to move in a contact-dependent manner,
i.e. cells have to be in close proximity for S-motility to
become active. As previously reported [10], we find
that AþSþFrz2 cells are more adhesive. Our aim is to
understand whether the S-motility engine affects
the spatial self-organization of cells. We performed the
same analysis on AþSþFrz2 cells as described for
AþS2Frz2 cells and investigate cell densities close to
the obtained critical density. Figure 1 shows that at
least at first glance the cluster statistics resembles
that obtained with AþS2Frz2 cells. This suggests
that the additional motility including its adhesion
effect has no significant impact on the organization of
cells within a cluster. By looking in more detail at the
clustering data, some subtle differences can be revealed.
We observe that for all fixed packing fractions h,
the CSD seems to evolve towards a steady state
(figure 3). However, the temporal convergence is
slower than the one observed for AþS2Frz2 cells.
Assuming that CSD after 450 min from the beginning
of the experiment is representative of the steady-state
CSD, we show in figure 4 the asymptotic behaviour of
the CSD with packing fraction h. The CSDs of the
packing fractions h , 0.18 can be roughly approxi-
mated by a power law, pðmÞ/m�g0 , with a critical
exponent g0 consistent with the one obtained for
AþS2Frz2 cells, i.e. 0:81 � g0 � 0:95 (figure 4). On
the other hand, the data indicate that a local maxi-
mum, as the one described above for AþS2Frz2,
emerges for h � 0:18 (figure 4). On the other hand,
the cluster shape statistics shows that the scaling of
the perimeter P with the cluster mass m is again con-
sistent with the one obtained for AþSþFrz2 cells with
v ¼ 0.62+ 0.03 (figure 5). Finally, at sufficiently high
densities, these cells also self-organize into vortices.
2.3. Wild-type and the effect of cell reversal

We applied the same analysis to the reversing AþSþFrzþ

cells that move by means of both motility systems.
Figure 1 shows that the spatial organization of

wild-type cells is dramatically different from the
one observed in the two mutants. Undoubtedly, cell
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reversal has a strong impact on the macroscopic
behaviour of the colony. The CSD after 450 min is
exponential for all h , 0.20, as shown in figure 4. The
net distance of cell movement is reduced owing to cell
reversals, and cells can only form small clusters. On
the other hand, clusters exhibit a more elongated
shape than those found in experiments with
AþS2Frz2 and AþSþFrz2 cells, as confirmed by the
scaling of the perimeter P(m) which is characterized
by a very different exponent v ¼ 0.82+ 0.03
(figure 5). The initial monodisperse phase, charac-
terized by an exponential CSD and very elongated
clusters, undergoes a transition at packing fractions
larger than 0.26. The new arrangement of cells perco-
lates, and the cells organize into a mesh-like structure,
as shown in figure 1c.
3. KINETIC MODEL FOR THE
CLUSTER STATISTICS

In the following, we outline a generalized kinetic model
for the CSD and compare it with the above experimen-
tal results. In particular, we want to relate the CSD
data and the cluster shape statistics. The model
equations are built on the well-established coagulation
theory for colloidal particles originally suggested by
Smoluchowski [27]—for an early review, see also [28].
A similar phase transition (albeit with different expo-
nents for the CSD at criticality) was recently obtained
in a model for reversible polymerization representing a
different generalization of the Smoluchowski model [29].

The model studied consists of a system of kinetic
equations for the dynamics of the number nj(t) of clus-
ters of size j at time t. It was first proposed in Peruani
et al. [19] to describe clustering in simulations of self-
propelled rods. The individual cluster dynamics [30],
as well as the cluster–cluster interactions [19,30] are
strongly simplified in this kinetic theory where the
time evolution of the number nj(t) of clusters of size j
is simply given by

_n1 ¼ 2B2n2 þ
XN
k¼3

Bknk �
XN�1

k¼1

Ak;1nkn1;

_nj ¼ Bjþ1njþ1 �Bjnj �
XN�j

k¼1

Ak;jnknj

þ 1
2

Xj�1

k¼1

Ak;j�knknj�k for j ¼ 2; . . . ;N � 1

and _nN ¼ �BNnN þ
1
2

XN�1

k¼1

Ak;N�knknN�k ;

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð3:1Þ

where the dot denotes a time derivative, and N is the
total number of cells in the system. The CSD is then
simply obtained from

pðm; tÞ ¼ m nmðtÞ
N

: ð3:2Þ

We have assumed that aggregation of cells occurs
only as a result of cluster–cluster collisions. Following
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earlier work [19,30], the collision rate between clusters
of mass j and k is defined by

Aj;k ¼
v0s0

d
ð
ffiffi
j

p
þ

ffiffiffi
k
p
Þ; ð3:3Þ

where v0 represents the average speed of individual cells,s0

is the average scattering cross section of a single cell, which
is assumed to bes0 � LþW ¼

ffiffiffi
a
p
ð
ffiffiffi
k
p
þ 1=

ffiffiffi
k
p
Þ; and d is

the total area of the system. Equation (3.3) assumes that
clusters have a well-defined direction of motion, which
means that the equation is not adequate to describe clus-
ter–cluster coagulation in experiments with wild-type
cells. This process competes with cluster fragmentation
stemming from the escape of individual single cells from
the cluster boundary. The fragmentation rate is given by
the expression

Bj ¼
v0jv

R0L
¼ v0jv

R0
ffiffiffiffiffiffi
ak
p ; ð3:4Þ

where R0 is a proportionality constant that is the only free
parameter in the theory that is used to fix the critical value
hc / R�1

0 at the same values as in the experiment. The
exponent v in the fragmentation rate has an important
role: it represents the scaling between the cluster mass m
and the cluster perimeter P, i.e. P/mv. If one assumes
large clusters of approximately circular shape, then
v ¼ 1

2; this special case has been previously studied in
Peruani et al. [19]. If instead one considers that cells form
elongated narrow clusters, where practically all cells are
near the boundary, then a choice of v ¼ 1 is appropriate.
In practice, the value of v will depend on the number j of
particles in the respective cluster. For simplicity, we
studyonly the limiting casesv ¼ 1

2 andv ¼ 1 and compare
the resulting CSD to the experimental findings. According
to the model, the exponent g only depends on the scaling of
P(m), i.e. the exponent v, while the critical packing frac-
tion hc is a non-universal quantity. The analysis of
equations (3.1), performed by direct numerical integration
using a fourth-order Runge–Kutta method, reveals that
for h � hc, the scaling of p(m) takes the form

pðmÞ/m�g0exp � m
m0

� �
; ð3:5Þ

while above it, i.e. for h . hc, the scaling is

pðmÞ/m�g1exp � m
m1

� �
þ Cmg2exp � m

m2

� �
; ð3:6Þ

with g1, g2, m1, m2 and C being constants that depend
on h and system size. Equation (3.5) is the result of a
system size study of equation (3.1) at the critical point
(not shown), while equation (3.6) is just an educated
guess. Equations (3.5) and (3.6) have been used to fit the
experimental data for the CSDs in the different strains
of myxobacteria shown in figure 4. For h , hc, for
either AþS2Frz2 or AþSþFrz2 cells, we find using
equation (3.5) that g0 [ ½0:80; 0:95� and m0 [[20,1300]
(m0 � 20 for h ¼ 0:04 and m0 � 1300 for h=0.16). Never-
theless, the critical exponent g0 has been estimated by the
method explained in §5, where g0 is found to be g0 ¼

0.88+0.07.Forwild-type cells, thedistribution is strongly
dominated byan exponential tail. Using equation (3.5),we
find g0 [ ½0; 0:63� and m0 [ [10,120].
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Figure 7. Theoretical predictions for the CSD. The CSD from the kinetic model depends on the scaling of the fragmentation
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and d ¼ 699 � 522mm2. (see equations (3.3) and (3.4))
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Through equation (3.1), it can be shown that m0 is a
function of h that increases as hc is approached from
below as observed in figure 4. According to the kinetic
model, the critical packing fraction hc is defined by
pðmÞ/m�g0 at h ¼ hc as long as m is below the
total number of cells N in the system. In contrast, for
h , hc, the function p(m) clearly exhibits an expo-
nentially decaying tail at larger m, as observed in
the experiments with AþS2Frz2 and AþSþFrz2 cells
(figure 7). The theoretical CSD p(m,t) was obtained
by numerical integration from an initial condition
with n1 ¼ N and ni ¼ 0 for i � 2. The values of the
variables ni of equation (3.1) reached constant
steady values after sufficiently large integration times.
The steady-state p(m) was found to depend only on
the packing fraction h for a given perimeter scaling
characterized by v. For both values of v studied, we
find a transition from an exponentially decaying CSD,
described by equation (3.5) for low densities, to a
non-monotonic CSD, described by equation (3.6), con-
sisting of a power-law behaviour for small cluster sizes
and a peak, local maximum, at large cluster sizes
(figure 7). Upon closer inspection of the model results,
one recovers distinctly different exponents for the differ-
ent model assumptions regarding v: g0 ¼ 1.3 for v ¼ 1

2
and g0 ¼ 0.85 for v ¼ 1. Both choices of v give reason-
able qualitative agreement with the experimental data
shown in figure 4 (figure 7). Moreover, we find that
the exponent of the CSD is non-universal and depends
sensitively on the choice of the fragmentation rate in
equation (3.4). We expect that changes in the collision
rate for the cluster will have a similarly strong effect,
as discussed below.

The clustering model given by equation (3.1) allows
us to study the relationship between the perimeter scal-
ing (characterized by an exponent v) and the CSD
exponent g0. Equation (3.1) also predicts the existence
of two CSDs, depending on the packing fraction h, i.e.
equations (3.5) and (3.6). These two predicted distri-
butions are found in experiments with AþS2Frz2 and
AþSþFrz2 cells. For the wild-type cells, only the CSD
given by equation (3.5) is found. In this context, it is
interesting to note that the results shown in figure 7
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imply that for v ¼ 1, one needs to assume a much
lower fragmentation rate—indicated by a much larger
value of the parameter R0—than for v ¼ 0.5 to obtain
the same critical hc. Beyond the apparent agreement
between the CSD exhibited by equation (3.1) and the
experimentally obtained CSDs for AþS2Frz2 and
AþSþFrz2 cells, there are important differences. To
obtain a critical exponent g0 close to 0.88, v has to be
large—specifically, close to 1, while the experimental
measurements on P(m) revealed v � 0.6. There are sev-
eral possibilities that could explain this discrepancy.
For instance, the assumption that the cluster–cluster
coagulation is proportional to the square root of the
cluster mass has to be revised. An estimation of the scal-
ing of the effective scattering cross section of a cluster
with its mass, as well as an accurate measurement of
the functional dependency of cluster speed with cluster
mass would allow us to determine the correctness of
equation (3.1). Unfortunately, such measurements are
extremely difficult to obtain. Nevertheless, the appar-
ent discrepancy suggests that a possible generalization
of the presented clustering theory would include a
modification of equation (3.3).
4. DISCUSSION

In order to identify the role of the two motility machi-
neries as well as cell reversal machinery in the spacial
collective dynamics of M. xanthus, we have analysed
three bacterial strains: (i) a mutant that moves unidir-
ectionally without reversing by the A-motility system
only, (ii) a unidirectional mutant that is also equipped
with the S-motility system, and (iii) the wild-type
that is equipped with the two motility systems and
occasionally reverses its direction of movement. The
study of the two non-reversing mutants revealed the
same phenomenology. At low and intermediate den-
sities, non-reversing cells display collective motion in
the form of large moving clusters, with a critical density
above which clusters can be arbitrarily large. At the
critical density, the two non-reversing strains exhibit
a CSD characterized by roughly the same critical
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exponent g0 � 0.88. Even though the two-engine strain
is supposed to be more adhesive than the single
A-engine strain, we found a similar non-trivial scaling
of cluster perimeter with cluster size characterized by
an exponent v � 0.6. This finding indirectly shows
that the clustering process is, for both stains, neither
fully random nor an equilibrium one as in liquid–
vapour drops [18]. In order to connect the statistics
on cluster size and cluster shape, we derived a
Smoluchowski coagulation theory with fragmentation,
where we related the scaling of cluster perimeter
with cluster size with the fragmentation kernel. The
proposed theory allows us to understand the cluster
formation process as a dynamic self-assembly process
in the absence of adhesion. It predicts the existence of
a steady-state CSD which is a function of the cell
density and perimeter exponent v, and a functional
change of the CSD above a critical density. In addition,
the proposed theory predicts that the critical exponent
g0 depends on the perimeter exponent v only. In sum-
mary, the theoretical clustering model provides a
qualitative description consistent with the experimental
measurements, and explains why if the value of v is
similar for both strains, the value of g0 has to be also
similar. We observe that similar spatial organization
has been observed in self-propelled rod simulations
using either rigid [19] or elastic [31] elongated particles.
We found that at high densities the collective dynamics
changes and cells organize into vortices. This finding
cannot be accounted for by the proposed clustering
theory, but it is reminiscent of what is observed in
self-propelled rod simulations at high densities, though
in experiments vortices seem to be stable structures
while in simulations, vortices are unstable. By compar-
ing these two non-reversing strains, we conclude that
unidirectional cell motion induces the formation of
large moving clusters at low and intermediate densities,
while it results in vortex formation at very high den-
sities. In the light of the clustering theory and given
the remarkable similarity with self-propelled rod simu-
lations, we suggest that the spatial self-organization in
these two strains occurs in the absence of biochemical
signal regulations and as a result of the combined
effect of self-propulsion and volume exclusion inter-
actions. All these results strongly suggest that the
combination of self-propulsion and steric interaction is
a valid pattern-formation mechanism that could be
also at play in recent experiments with Escherichia
coli [32] and driven actin filaments [22], which makes
us wonder about the connection between this mechan-
ism and the large body of work on simple models of
self-propelled particles where spontaneous segregation
and long-range orientational has been reported [33–41].

The study of wild-type cells has revealed that cell
reversal affects dramatically the collective dynamics.
We found that wild-type cells exhibit CSDs exponen-
tially distributed at low and intermediate densities.
On the other hand, we measured the scaling of the clus-
ter perimeter with cluster size characterized by a large
exponent v � 0.8, which indicates that clusters are
strongly elongated in comparison with those found in
experiments with the two non-reversing mutants.
Finally, we observed that at high densities, cells
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self-organize into a mesh-like structure. A qualitative
understanding of this macroscopic behaviour is still
missing. A comparison of the two non-reversing strains
and wild-type cells suggests that only by switching on
and off the reversal can cells modify dramatically their
collective behaviour, with the suppression of reversal
leading to collective motion in the form of moving clus-
ters and vortex formation at high densities. We note
that this observation is consistent with the observed
decrease in reversal frequency in the wild-type upon
nutrient depletion, which is followed by the formation
of large moving clusters and aggregation of cells.

At a more speculative level, our results suggest that
the cell density and the rod shape of the cells may
play an essential role for bacteria to achieve collective
motion [42,43]. According to self-propelled rod simu-
lations, an elongated cell shape strongly facilitates
collective motion by promoting the formation of larger
clusters. Another hint that the rod shape of the moving
bacteria is important for collective motion is provided by
the empirical observation that many bacteria undergo a
dramatic elongation of their cell shape before assembling
into larger groups, e.g. in Vibrio parahaemolyticus [44] or
B. subtilis [45]. Finally, the reported results increase the
plausibility of earlier biological hypotheses [42], that mul-
ticellular organization may be achieved by regulating the
cell density via proliferation and cell length by direct
developmental control.
5. MATERIAL AND METHODS

5.1. Bacterial strains

The fully motile strain DK1622 (AþSþFrzþ) was used
as a wild-type [46] and all other strains used are deriva-
tives of DK1622. The non-reversing strain DK8505 [47]
is referred to as AþSþFrz2. To generate SA2407 cells,
here referred to as AþS2Frz2, the frz loss-of-function
allele frzCD::Tn5 lac V536 from DK8505 [47] was intro-
duced into the DpilA strain DK10410 [48], which is
unable to assemble type IV pili, using standard
procedures [49]. To generate SA2082 (DpilA, romR::np-
tII), the non-motile M. xanthus mutant referred to as
A2S2Frz2, the romR::nptII loss-of-function allele
from SA1128 [50] was introduced into DK10410. All
strains used had a doubling time of approximately 5 h
in CTT liquid medium at 328C. Notice that the relax-
ation time of spatial patterns is below 120 min, which
implies that the doubling time has a weak effect on
the spatial patterns.
5.2. Cluster formation experiments

Cultures of M. xanthus were grown in CTT liquid
medium [51] at 328C with shaking to an estimated
density of 7 � 109 cells ml21. Subsequently, cells were
diluted to densities of 0.5 � 108 ml21, 1.0 � 108 ml21,
1.5 � 108 ml21, 1.75 � 108 ml21 and 2 � 108 ml21,
respectively. Cell densities were confirmed by counting
the colonies manually on CTT agar plates and by
counting the number of cells using a counting chamber.
Thirty microlitres of aliquots of cells were transferred to
a microscope slide covered with a 1.0 per cent agar pad
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in 0.5 per cent CTT medium. The time point at which
the cell drop was completely absorbed in the agar
was set as t ¼ 0. For each cell density, 16 slides were
prepared and every 30 min (starting at 30 min) up to
480 min, a sample was analysed by microscopy using a
Leica DM6000B microscope with a Leica 20� phase-
contrast objective and imaged with a Leica DFC
350FX camera. Twenty phase-contrast images were
taken at 20� magnification across a spot. After 480
min, a short time-lapse movie was taken to verify that
cells and clusters were migrating.
5.3. Image analysis

Clustering images were taken at 20� magnification.
Images contain cell clusters as dark regions, often sur-
rounded by a light halo. Cluster boundaries were
detected in a multi-step processing queue. After initial
image normalization, edge detection via the Canny–
Deriche algorithm was applied for two different levels
of spatial detail. Both edge images were superimposed
subsequently. Next, edges were filtered out that sur-
round halos and other non-cluster objects. Finally, all
incomplete detections were revised/corrected manually
in a post-processing step. The areas of the clusters in
pixels were extracted using an implementation of the
processing queue in the image processing tool IMAGEJ
(http://rsbweb.nih.gov/ij/). The number of cells
inside a cluster, i.e. the cluster size, was estimated as
the area of a cluster divided by the mean area covered
by a single cell, which was found to be 150 pixels at
20-fold magnification. According to this definition, a
cluster is a connected group of cells, regardless of
their orientation. Packing fraction estimates per image
were obtained as the ratio of area covered by cells
and the whole area of the image (1392 � 1040 pixels
corresponding to 699 � 522 mm).
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5.4. Statistical analysis

After applying the image analysis procedure described
above to a given image I, corresponding to a given pack-
ing fraction, a large array of various cluster sizes is
obtained, and nI(m,t) can be computed. We represent
by nI(m,t) the number of clusters of size m in the
image I. To build the CSD, we make use of all the avail-
able images corresponding to the given packing fraction
h. Let the auxiliary function gI(m,t) be gI(m,t) ¼
m nI(m,t). The average of this function reads

gðm; tÞ ¼ 1
M

� �X
I

gI ðm; tÞ; ð5:1Þ

where M is the number of available images. To cope
with the sparseness of the data for large cluster sizes,
we implemented several binning procedures, in particu-
lar, linear and exponential binning. In the following, we
explain the exponential binning procedure. The cluster
size space is divided into bins, the first bin contains
all clusters of size s, 0 , s � 1, the second bin all clus-
ters of size 1 , s � 2, the third bin, 2 , s � 4, etc.
The nth bin contains cluster sizes 2n�1 , s � 2n. It is
useful to define the function

gbinðn; tÞ ¼
Xeðnþ1Þ

eðnÞ

X
I

gI ðm; tÞ; ð5:2Þ

where e(n) ¼ 2n. The binned CSD is defined as

pbinðeðnÞ; tÞ ¼
gbinðn; tÞ

Cðeðn � 1Þ � eðnÞÞ : ð5:3Þ

Thus,
P

m pbinðm ¼ eðnÞ; tÞðeðn � 1Þ � eðnÞÞ ¼ 1. It is
worth noticing that if the underlying CSD p(m) is a
power law characterized by an exponent g, i.e. p(m) �
m2g, the exponential binning procedure given by
equation (5.3) results in pbinðmÞ � m�g. On the other
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hand, if the underlying CSD p(m) is an exponential, i.e.
pðmÞ � expðm=m0Þ, the exponential binning leads to
pbinðmÞ � m�1expðm=m0Þ. In the text, for simplicity
we referred to pbinðm; tÞ just as p(m,t).

In what follows, we explain how the critical exponent
has been measured. At the critical packing fraction hc,
the CSD is a power law (with an exponential cut-off due
to the finite number of cells). The problem consists of
identifying the critical packing fraction hc and the criti-
cal exponent g0. Assuming that we know g0 at hc, the
following transformation yields a constant:

yðmÞ ¼ pðm;hcÞmg0 ¼W ; ð5:4Þ

where W is a constant and the equality holds true for
1, x , xcut-off, where xcut-off denotes the beginning of
the cut-off. The value of W is the average value of
y(m) in the interval 1 , x , xcut-off. This means that
if we plot y(m) versus m, we observe a horizontal line
at the critical packing fraction hc. We can measure
how close we are to the horizontal line by computing

s2ðh; gÞ ¼
X
ðyðmÞ �W Þ2: ð5:5Þ

By minimizing equation (5.5) with respect to h and g,
the critical packing fraction and critical exponent can
be obtained. Figure 8 illustrates the procedure. In the
figure the cut-off was taken to xcut-off ¼ 220 (various
other values were also studied). We found that the criti-
cal packing fraction lies between 0.16 and 0.18 for either
AþS2Frz2 or AþSþFrz2 cells and the critical exponent
is g0 ¼ 0.88+ 0.07 and g0 ¼ 0.85+ 0.07 for AþS2Frz2

or AþSþFrz2 cells, respectively.
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