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Abstract

Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During
mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male’s position and
executes copulatory spicule thrusts at his mate’s vulva. However, distinct signaling mechanisms that delimit these behaviors
to their proper context are unclear. We found that dopamine (DA) signaling directs copulatory spicule insertion attempts to
the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and
genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gao/i proteins,
GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide
with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates
the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or
inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity
threshold of repetitive motor programs, thus confining the behavior to the proper situational context.
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Introduction

Context-dependent motor patterns are the outcome of unique

interplay amongst neuromodulators in the central nervous system

(CNS). The neurotransmitter dopamine (DA) modulates gamma-

aminobutyric acid (GABA), glutamate and acetylcholine (ACh)

activity in cognitive and motor behaviors [1–6]. In vertebrates, DA

adjusts motor outputs by selective synergy/antagonism of tiered

neuronal population’s activities [2,7]. In the brain this regulation is

initiated by DA secretion from the substantia nigra, which

antagonizes post-synaptic cholinergic striatal interneurons [8].

The result is a context-dependent voluntary motion modulated by

DA [9–11]. Disturbing the DA-ACh balance causes impulsive

motor disorders as described in Parkinson’s disease and choreas

[12–15]. However, vertebrate and invertebrate models that fully

encompass the in vivo cellular and molecular components of the

DA-ACh interaction, which refine motor outputs, remain elusive.

With 383 neurons in males, the genetically tractable nematode

Caenorhabditis elegans is a model for dissecting the cellular and

molecular machinery involved in motor programs. DA secretion

from sensory neurons mediates transitions between locomotor

patterns to directly or indirectly regulate muscle contractile events

[16]. Activation of D1-like Gaq-coupled receptors has been shown

to regulate forward-to-backward locomotor switches and swim-

ming-to-crawling gaits [17–20]. The opposing signaling cascade,

activating Gao-coupled D2-like receptors, reduces locomotion

velocity upon finding novel food sources [21–23]. While these

studies provide insight into general principles underlying DA

neurotransmission, a more complex, goal-oriented and decision-

based behavior such as male mating could better model subtle DA-

ACh motor circuit regulation.

The C. elegans male mating circuit integrates sensory-motor cues

that result in successful insertion of the copulatory spicules into the

hermaphrodite vulva (Figure S1A) [24,25]. The positioning of the

male tail over the vulva is a stepwise process, redundantly executed

by a bilateral set of nine sensory rays located at the male tail

[26,27]. When the male contacts a mate, putative mechano- and

chemosensory neurons within each ray projection initiate back-

ward scanning locomotion. Scanning behavior facilitates addition-

al male-specific sensilla, located anteriorly and posteriorly of the

cloacal region, to sense the hermaphrodite’s vulva. Upon vulval

contact, scanning behavior ceases and a subset of post-cloacal

sensilla sensory-motor neurons, PCB and PCC, release ACh to

promote spicule insertion attempts. Ionotropic and metabotropic

ACh receptors located on multiple genital muscles induce the male

to press his tail against the vulva and stimulate rhythmic

movements of the attached copulatory spicules, so that they

repetitively thrust against the vulval slit. Full insertion is achieved

by additional ACh secretions from the putative proprioceptive

SPC motor neurons. Simultaneous stimulation from the post-

cloacal sensilla and SPC neurons mediates tonic muscle contrac-

tion, resulting in complete spicule protrusion from the tail
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[24,25,28]. Intrinsic and extrinsic factors likely modify the

cholinergic circuit’s activity prior to and during mating [29–33].

Male-specific dopaminergic motor-sensory neurons suggest that

DA might modulate aspects of mating behavior. In this study, we

use pharmacology, genetics, behavioral observation, calcium

imaging and optogenetics to determine that DA signaling, partly

through D2-like receptors down-modulates ACh signaling to

restrict mating attempts to the vulva and from inappropriate

mates.

Results

DA is required for efficient spicule insertion during
mating

Male copulation requires monitoring mechanisms to initiate

and terminate multiple sub-steps under the proper context. Mating

begins when the male presses his tail against the hermaphrodite

and moves backwards, scanning for the vulva [25,34]. After he

locates the vulva, he initiates repetitive 7-11 Hz spicule thrusts to

breach the vulval slit. During this sub-behavior, the male

progressively adopts an arched body posture, which persists

throughout spicule insertion and sperm transfer (Figure S1A). In

rare events, this arched posture is adopted during scanning.

Successful ejaculation occurs after repeated attempts of these

motor sub-behaviors [27,28]. Molecules that promote mating

execution have been identified, but few modulators that regulate

and refine the behavior have been described [24,26,30,35–41].

DA signaling is known to modulate general C. elegans locomotor

behaviors. Since 3 pairs of sex-specific sensory ray neurons secrete

the neurotransmitter, DA is a candidate for modulating mating

[16,22]. Tyrosine hydroxylase is a key enzyme in the biosynthesis

of DA. We first asked how well tyrosine hydroxylase deficient cat-

2(lf) males mate [16,22]. Initially we noticed that in cat-2 male

populations, a higher percentage displayed spontaneously pro-

tracted spicules (44%; n = 67) relative to wild type (10%; n = 62)

(p = 0.0018, Fisher’s exact test). This suggested that DA might

down-modulate the spicule protraction circuit. When we paired a

non-protracted virgin mutant or wild-type 1-day-old adult male

with a 1-day-old moving hermaphrodite for 24 hrs, we found that

56% of cat-2 males could sire progeny compared to the 88% of

wild type (Figure 1A). To confirm that cat-2 mating deficits were

caused by DA depletion and not due to unknown background

mutations, we attempted to phenocopy the cat-2 behavioral defect

in a different manner. Dopaminergic neurons were artificially

hyperpolarized by expressing a hyperpolarizing UNC-103 ERG-

like K+ channel (unc-103(g f)) [42] from the dat-1 dopamine

transporter promoter [43]. The dat-1 promoter drives expression

of this potassium channel exclusively in all DA neurons: CEP,

ADE, PDE and rays 5,7,9A [26,43]. Similar to cat-2 mutants,

males containing the unc-103(g f) transgene had increased number

of spontaneously protracted spicules (28%; n = 46 vs. 4%; n = 27)

(p-value = 0.04, Fisher’s exact test), and had decreased ability to

sire progeny (40%; n = 49 vs. 69%; n = 50) when compared to the

transgenic control strain (Figure 1A). Since the behavior of unc-

103(g f) transgenic males mimics the cat-2 mating phenotype, this

suggest that secretions from dat-1 and cat-2 expressing cells, likely

DA, is necessary for efficient mating.

To ask how the cat-2 mutation compromised mating, for 2 min

we observed copulations between cat-2 males and 2-day-old

paralyzed hermaphrodites. We assayed mating initiation time,

vulva contact duration and the number of vulva contacts (Figure

S2), and found no difference between wild type and cat-2 males.

However, when we measured the average duration a male spent

between vulval insertions attempts, we found that cat-2 males had

longer intervals than wild type (Figure 1B). This was because cat-2

males displayed abnormal arched postures and precocious spicule

thrusts at random areas on the hermaphrodite (Figure 1C). This

defect also accounted for the mutant’s reduced spicule penetration

ability compared to wild type (36% vs. 73%, respectively). To

quantify the variability of spicule insertion behavior, we calculated

the efficiency of spicule insertion (ESI) in both groups. This metric

combines how fast males initiate, sustain, re-attempt and complete

spicule insertion. We found that cat-2 males had a lower ESI than

wild type (0.19 vs. 0.075, Figure 1D). Thus, DA signaling promotes

spicule insertion by lowering the probability of displaying non-

productive ectopic spicule thrusts.

Exposure to DA inhibits ACh-induced spicule protraction
We used pharmacology to address whether DA modulates the

cholinergic spicule circuit by pre- or co-regulating the ACh

response. ACh agonists artificially stimulate receptors on the

spicule neurons and muscles to induce spicule protraction. These

agonists include levamisole (LEV) and nicotine (NIC), which

activate ionotropic ACh receptors (AChR), and oxotremorine-M

(OXOM), which activates Gaq -coupled muscarinic AChRs

(mAChR) [25,28]. Arecoline (ARE) has been reported to stimulate

mAChRs in the pharynx [44]; however, we found that in the

spicule circuit, ARE is a non-selective agonist. For the spicule

protraction circuit to be ARE-insensitive, a male must contain

mutations in the NIC receptor (acr-16 (ok789)), LEV receptor (unc-

29(e193)) and the OXOM receptor (gar-3(gk305)) (Table S1).

To test whether DA can attenuate the spicule protraction

circuit, we exposed males to DA and ACh agonists simultaneously

for 5 min and assayed males with protracted spicules. The

effective concentrations inducing spicule protraction for 90% of

the males (EC90) were 5 mM for LEV, 1 mM for both NIC and

ARE and 50 mM for OXOM. The EC90 concentration for DA,

inducing paralysis in 90% of the animals, was previously reported

to be between 20–30 mM [21]. Therefore, we exposed one-day-

old virgin males to 30 mM of DA combined with individual AChR

Author Summary

An animal’s behavior is a complex output displayed in
response to diverse external cues, which are sensed and
processed by the nervous system. Nerve cells translate
sensory information into chemical secretions (neurotrans-
mitters). These chemical signals allow neurons and
muscles to communicate and coordinate motor responses.
However, it is complicated how these signals are
interpreted in neuronal circuits to start, continue, modify,
and end specific behaviors, under the appropriate condi-
tions. The neurotransmitter dopamine (DA) is involved in
adjusting animal movements, thus DA neurotransmission
is a candidate for coupling behaviors to the proper
situational context. Here, we used C. elegans copulation
to understand the DA-regulated neuronal mechanisms
that promote when and where motor responses should be
executed. During mating, DA is used as a feedback
mechanism to adjust the activity of multiple sensory-
motor neurons and muscles that promote the rhythmic
thrusting of the male copulatory organs against his
partner’s vulval genitalia. If vulval signals are withdrawn
when the male loses contact with his mate’s genitalia, the
DA-adjusted motor neurons’ activities dampen to cease
cue-independent genital penetration attempts. Therefore,
DA secretions fine-tune these motor outputs to be
exclusively displayed at the vulva and thus confine a
behavior to its corresponding context.

Dopamine Signaling Regulates Copulation Behavior
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agonists at their respective EC90 concentration (Figure 2A–2C).

We found that DA reduced ACh-agonist induced protraction

(Figure 2A), supporting our hypothesis that DA antagonizes ACh

signaling.

To address if DA also preconditions the spicule protraction

circuit to be less responsive to ACh stimulation, we bathed males

in 30 mM of DA or water for 1 min, followed by (f.b) exposure to

the EC90 ACh-agonist concentration. Exposure to DA or water

did not induced spicule protraction in any male during a 2 min

observation (Figure S1B). We found that DA pre-application still

inhibited LEV- and NIC- and to a lesser extent OXOM-induced

protraction (Figure 2B). Interestingly, DA pre-exposure didn’t

inhibit ARE-induced spicule protraction. To rule out the

possibility that after DA exposure, ARE induces protraction

independently of AChR stimulation, males were exposed to DA

followed by an ACh-agonists mixture (MIX). This MIX contained

LEV, NIC and OXOM at the EC90 concentrations. Similar to

the ARE responses, we found that pre-exposure to DA did not

inhibit the MIX-induced protraction, and when treating males

with the MIX and DA simultaneously, spicule protraction was

down-regulated (Figure 2A and 2B). These results suggest that DA

down-modulation occurs simultaneously with ionotropic and

muscarinic ACh signaling.

Since 1 min DA pre-exposure didn’t antagonize ARE-induced

protraction, we tested if the inhibition, which occurred with

simultaneous exposure to both compounds, would also dissipate

rapidly. Instead, we found that antagonism of sex muscle

contractions dissipated by 30 min with DA+ARE treatment; for

other agonist combinations, the inhibition remained up to 1 hr

(Figure 2C). These results suggest that simultaneous DA and ACh

secretion down-regulates spicule circuit excitability for a limited

period.

Since ARE’s non- selectivity approximates more native ACh

signaling (Table S1), DA+ARE co-treatment was used to

characterize the mechanism of DA down-modulation. First, we

tested males containing the G-protein coupled receptor loss-of-

Figure 1. DA is required for spicule insertion during mating. The number of males tested and the percentage of potent males is listed at the
bottom and top of the bars, respectively. (A) Mating potency. (B–D) Males were mated with paralyzed mates. (B) Percent of males displaying spicule
related behaviors. (C) The duration in contact with a mate between insertion attempts. (D) The spicule efficiency index. Symbols represent an
individual male performance. Open symbols represent unsuccessful insertions. Line and error bars represent mean and SEM.
doi:10.1371/journal.pgen.1003015.g001
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function (lf) mutations dop-1(vs100), dop-2(vs105), dop-3(vs106) or

dop-4(tm1392) [17,21]. In the dop-1 and dop-4 mutants DA

suppressed ARE-induced protraction to wild type levels, in

accordance with previous studies where these receptors are found

to enhance cellular excitability via Gaq pathways [21,45].

However, in the dop-2(lf) or dop-3(lf) single mutants and dop-2;

dop-3 double mutants DA did not decrease ARE-induced

protraction to wild type levels (Table 1). An additional candidate

that could mediate DA signaling is the chloride ligand gated

channel LGC-53 [46]. We measured the DA+ARE response of a

loss-of-function mutant for this channel, lgc-53(n4330) and found

that these mutants had wild type DA+ARE sensitivity (Table 1).

Although our results indicate that the DOP-2 and DOP-3

receptors partially mediate the DA modulatory response, we

cannot rule out that DOP-1, DOP-4, LGC-53 and other yet-to-be

identified DA receptors might act in specific combinations and in

other cells to further attenuate ACh-induced spicule protraction.

Since these D2-like receptors signal via Gao/i –pathways, the

alleles goa-1(n363), gpa-7(pk610), gpa-14(pk347) and gpa-16(it143),

which impair Gao/i- like molecules were also tested [47]. In all the

single mutant males treated with DA and ARE, spicule protraction

was still inhibited. Thus suggesting that these molecules acted in a

redundant manner as published in other pathways [48]. We

therefore tested the DA/ARE sensitivity in different combinations

of loss-of-function mutations in these Gao/i- like molecules

(Table 2).We found that the double mutant goa-1(lf); gpa-7(lf)

males were insensitive to the DA inhibition (Table 2). This is

consistent with DOP-2, DOP-3, GOA-1 and GPA-7 expression in

the spicule associated muscles and the neurons that innervate them

(Figure S3) [47]. In contrast, DOP-1 and DOP-4 are not expressed

in these cells, but only in a few ray neurons (data not shown and in

[20]). Additionally, when DOP-2 and DOP-3 were transgenically

expressed pan-neuronally from the aex-3 promoter or in sex-

muscles from the unc-103E promoter, restored DA down-

modulation in dop-2 and dop-3 males was observed with DOP-2

and DOP-3 sex muscles expression (Table 1). These data suggest

that DA antagonizes ACh signaling via DOP-2 and DOP-3

coupled to GOA-1 and GPA-7.

Dynamic changes in DA ray neuron activities during
arched body postures during spicule insertion attempts

In the hermaphrodite, broad D2-like receptor expression

indicates that humoral DA secretions might activate these

receptors [20–22,49]. The 3 sex-specific sensory dopaminergic

Figure 2. DA inhibits ACh-agonist-induced spicule protraction. The number of males tested and the percentage of spicule protracted males
is listed at the bottom and top of the bars, respectively. (A&B) One-day-old virgin males were exposed to 30 mM DA and either LEV, NIC, OXOM or
ARE. (A) DA simultaneous exposure with or (B) followed by (fb) ACh agonists. (C) Males were bathed in each drug combination for increasing duration.
p-values determined with Fisher’s exact test comparing mutants to wild type. MIX = LEV,NIC, OXO.
doi:10.1371/journal.pgen.1003015.g002

Dopamine Signaling Regulates Copulation Behavior

PLOS Genetics | www.plosgenetics.org 4 November 2012 | Volume 8 | Issue 11 | e1003015



ray neurons (left/right Rn5A, Rn7A and Rn9A) located in the

male tail might provide humoral or synaptic DA necessary to

antagonize ACh signaling [26]. These ray neurons synapse to

other ray neurons, inter- and motor neurons, post-cloacal sensilla

neurons (p.c.s.) and sex muscles (Male Wiring Project, http://

worms.aecom.yu.edu/pages/male_wiring_project.htm, [50]).

To measure the Ca+2 transients in DA ray neurons during

mating, we compared the changes in fluorescence emissions of the

G-CaMP Ca+2 sensor to a mDSred internal standard, both co-

expressed from the DA reuptake transporter promoter (Pdat-1).

The G-CaMP transgene slightly reduces the mating potency of the

males, but not statistically significant from wild-type males

(Figure 1A). This indicates that the calcium binding property of

the sensor does not interfere too greatly with dopaminergic cell

function. To distinguish fluorescent changes caused by focusing

artifacts when the male is performing scanning behavior, from

fluorescent changes caused by neural activity, we imaged males in

which Rn5,7,9A were additionally hyper-polarized via a dat-1

promoter-expressing unc-103(gf) transgene. The mutant K+
channel should attenuate the ability of neurons to depolarize,

and thus allow one to determine the fluorescence ranges that can

confidently be attributed to cell activity. We found that throughout

matings of unc-103(gf)-containing males, measurements in

Rn5,7,9A fluorescence can range between 0 to a approximately

20% change (Figure 3D, Figure S4). These results suggest that

focusing/motion artifacts can affect G-CaMP fluorescence mea-

surements within this range.

In contrast, we sometimes observed 30–80% Ca+2 transient

changes in the DA neurons when the male located the vulva

(Figure 3A, Figure S4, Video S1). Occasionally, we also noticed up

to 30% Ca+2 transient changes in DA ray neurons during arch

scanning postures (Figure 3 and Figure S4). This observation led us

to hypothesize that posture was correlated with DA ray neuron

activity. To further correlate neuronal dynamics with copulatory

Table 1. Dopamine receptors DOP-2 and DOP-3 mediate DA inhibition of ARE-induced protraction.

Genotype % Males protracted (n)
P-value Fisher’s exact
test

ARE (1 mM) DA(30 mM) +ARE(1 mM) DA(20 mM) +ARE(1 mM)

Wild type 94 (61) 14 (117) ND

dop-1 (vs100) 75 (24) 20 (25) ND NS*

dop-2 (vs105) 92 (50) 58 (101) ND P,0.0001*

dop-3 (vs106) 90 (30) 59 (32) ND P = 0.0006*

dop-4 (tm1392) 93 (31) 26 (26) ND NS*

dop-2 ; dop-3 95 (76) 54 (85) 63 (40) P = 0.005*

lgc-53 (n4330) 72 (25) ND 16 (25) NS*

dop-2 ; pha-1 95 (20) ND 48 (52)

dop-3 ; pha-1 100 (19) ND 47 (40)

dop-2 rgEx462 [Paex-3:dop-2::CFP] 86 (30) ND 43 (48) NS**

dop-2 rgEx467 [Punc-103E:dop-2::CFP] 86 (30) ND 15 (51) P = 0.0002**

dop-3 rgEx490 [Paex-3:dop-3::YFP] 95 (20) ND 24 (37) NS**

dop-3 rgEx482 [Punc-103E:dop-3::YFP] 90 (20) ND 7 (39) P = 0.001**

*Compared with wild-type DA+ARE sensitivity.
**Compared with mutants DA+ARE sensitivity in a pha-1 background sensitivity.
All transgenic animals contain pha-1(lf).
doi:10.1371/journal.pgen.1003015.t001

Table 2. Effect of mutant Ga alleles on DA inhibition of ARE-induced protraction.

Genotype % Males protracted (n) P -value Fisher’s exact test

ARE (1 mM) DA(20 mM)+ ARE(1 mM)

Wild type 94 (51) 21 (112)

goa-1(n363) 97 (20) 12 (41) NS*

gpa-7(pk610) 90 (20) 5 (20) NS*

gpa-16 (it143) 90 (30) 11 (30) NS*

gpa-14 (pk347) 90 (21) 10 (48) NS*

goa-1 (n363); gpa-7(pk610) 98 (20) 62 (50) P,0.001*

gpa-7 (pk610); gpa14(pk347) 93 (20) 25 (30) NS*

goa-1; gpa-7; (RNAi gpa-16) 91 (19) 60 (31) NS**

*Compared to wild-type DA+ARE sensitivity.
**Compared to goa-1; gpa-7 DA+ARE sensitivity.
doi:10.1371/journal.pgen.1003015.t002
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postures, we measured In Contact Length percent (%ICL)

between the male’s body and the hermaphrodite, as a proxy for

the adopted posture (arch vs. non-arch). The %ICL was higher

when a male was engaged in non-arched vs. arched postures either

during scanning or at the vulva (Figure 3). Lower %ICLs,

indicating progressive arched postures, coincided with higher Ca+2

transient dynamics in DA ray neurons occurring while the male

pressed his tail sternly against the vulva and with milder Ca+2

transient dynamics during scanning. However, if the male reached

the vulva in a non-arched posture and proceeded to attempt

spicule insertion in this posture, the observed Ca+2 changes were

within baseline levels (10–20%) (Figure 3B, Figure 3S). This

suggests that during arched postures, DA ray neurons might be

more active to down-modulate possible spicule circuit cholinergic

activity. To confirm that DA and ACh systems were active

simultaneously when the male’s cloacal region contacted the vulva,

we additionally measured Ca+2 transients in the male sex muscles:

the gubernacular erector, the protractor and the anal depressor

muscles (Figure S5). The contractile activities of these muscle cells

are responsive to the ACh secretions of the PCB/PCC post-cloacal

sensory neurons and the SPC motor neuron. In all of these

muscles, Ca+2 transients increased when the male contacted the

vulva (Figure S5) [24,25]. Thus DA ray neurons likely down-

modulate the simultaneously active cholinergic spicule protraction

circuit during insertion attempts.

Cholinergic spicule neuron stimulation causes Ca+2

transients in Rn7A
DA sensory ray neuron activity might be increased at the vulva

because of direct vulval chemosensory stimulation, mechanical

stimulation from pressing against the vulva or from humoral or

synaptic stimulation from other cells. Since the increased activities

of DA ray neurons and the spicule protraction neurons coincide

during the insertion step of mating, we asked if ray neuronal

activity could change as a direct or indirect response to PCB and

SPC stimulation (Figure 4A). Therefore, we photo-stimulated PCB

and SPC using channelrhodopsin-2 (ChR2), a light sensitive cation

channel expressed from the gar-3 mAChR promoter, while

simultaneously recording DA ray neurons G-CaMP fluorescence

(Figure 4B). The immobilized males were grown with or without

all-trans retinol (ATR), a cofactor for ChR2. A microscope fitted

with the mosaic imaging and illumination targeting system

localized the blue light to the area of the G-CaMP-expressing

ray neurons and then concurrently to the ChR2-expressing PCB,

SPC neurons. We noticed that in ATR-grown males, the Ca+2

transients in Rn7A exclusively increased after PCB, SPC

stimulation (n = 14 males) (Figure 4B and 4C, Figure S6, Video

S2). However, no obvious dynamic Ca+2 changes were observed in

Rn5A and Rn9A. These data suggest that Rn7A can respond,

directly or indirectly to spicule circuit activity, whereas Rn5A and

Rn9A likely respond to other signals.

Although the activity of the dopaminergic ray neurons is more

dynamic when the male contacts the vulva, and D2-like receptors

are expressed in the PCB neurons and sex-muscles (Figure S3),

these ray neurons might attenuate the excitability of the spicule

protraction circuits, not through endogenous DA and D2-like

receptors, but through circuitous electrical signaling or other

secreted neuropeptides. To address this, we photo-stimulated DA

neurons by expressing ChR2 from the Pdat-1 promoter, while

simultaneously exposing the males to agar pads soaked with a

concentration of ARE that causes ,80% of males to protract their

spicules within 5 minutes (Figure S1C). In a heterozygous dop-2;

dop-3/+; Pdat-1:ChR2 background, 32% of the males protracted

their spicules when photo-stimulated; however, in the homozygous

dop-2;dop-3(lf) background, 71% of the photo-stimulated males

protracted their spicules (Figure 4D). This suggests that endoge-

nously evoked DA can attenuate ACh signaling in the spicule

circuit via D2-like receptors.

D2-like receptors promote spicule muscle contractile
rhythmicity

To ask how DOP-2 and DOP-3 regulate mating, we

determined the mating potency of dop-2; dop-3 mutant males with

moving hermaphrodites. The mutant and wild type potencies were

similar, 92% (n = 38) vs. 88% (n = 40), respectively. Thus, the

functions of DOP-2 and DOP-3 are subtle. We then quantified

dop-2; dop-3 males’ mating performance with paralyzed hermaph-

rodites and found that wild type, the double and single mutants

behaved similarly during various mating steps (Figure S7).

However, the double mutants can insert their spicules faster, into

the paralyzed and easy-to-penetrate hermaphrodites, than wild

type (Figure 5A). This paradoxical result suggests that having a

wild-type version of D2-like receptors reduces reproductive fitness.

However, males that lack D2-like receptors might not be at a

behavioral advantage when paired with a more challenging mate.

Therefore, we coupled dop-2; dop-3 or a wild-type male with a

moving hermaphrodite and directly measured the first vulval

contact duration. We found that dop-2; dop-3 males are displaced

from the vulva faster than wild type (Figure 5B). Unlike wild type

mating events, most hermaphrodites coupled with mutant males

would abruptly move during spicule insertion attempts, causing

the males to move off the vulva and thrust their spicules at areas

adjacent to the vulva.

We previously showed that a K+ channel mutation disrupts the

frequency and amplitude of sex muscle contractions during spicule

insertion attempts; the arrhythmic spicule thrusts will startle the

hermaphrodite and increase the probability of the male losing

contact [29]. We reasoned that a similar phenomenon is occurring

with dop-2; dop-3 males. Thus, we measured spicule movement

frequency when a male attempted insertion at a paralyzed

hermaphrodite vulval slit. We found that relative to wild type,

dop-2;dop-3 spicule insertion attempts were less rhythmic. Among

the assayed dop-2; dop-3 males, the variability of durations between

spicule thrusts was greater than compared to wild-type males,

indicating that the mutants displayed more random sustained

thrusts in runs of rapid shallow thrusts (Figure 5C, Figure S8).

Restriction of non-productive mating behaviors requires
D2-like signaling

Since dop-2; dop-3 and wild-type males behave differently during

copulation with moving mates, we identified conditions where that

difference would result in reduced mating fitness for the mutants.

We paired either one wild type or one mutant male for 4 hrs with

increasing numbers of moving fog-2(lf) virgin females (which

Figure 3. Ca+2 transients in DA ray neurons increase during arched postures. % DF/F0 trace for 5 seconds. Representative recordings for
individual wild-type males with (A) an arched posture during spicule insertion attempts (left), (B) with non-arched posture during spicule insertion
attempts (left), and (C) arched scanning posture (left). Non-arched scanning recordings for each male are displayed on the right (A–C). A Pdat-1:unc-
103(gf) transgenic male displaying an arched posture at the vulva (left) and during scanning (right) (D). The In-Contact Length % (ICL%) are the
numbers located at the top of each bar taken from a representative frame for each 1 sec intervals.
doi:10.1371/journal.pgen.1003015.g003
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contain a mutation disrupting self-sperm generation), and counted

the number of impregnated females. Since mates with variable

mating receptiveness exist in a population, the subtle defects of dop-

2; dop-3 males might be more evident in a competition to

impregnate the most partners. Although wild type and mutant

males’ refractory periods between ejaculations are similar (Figure

S9A), we found that when the female numbers increased, wild type

impregnated more females than dop-2; dop-3 males (Figure 6A).

This difference was obvious when dop-2; dop-3 males were exposed

to 20 females. The lower serial mating potency is likely attributed

to behavioral differences; however it could also be due to subtle

germ line variations between the wild type and mutant males.

To address if behavioral differences caused the double mutants

to impregnate fewer females, we simultaneously paired a mutant

and a wild-type male with a single 1-day-old fog-2 female and

asked which male mated first. We found that dop-2; dop-3 and wild

type males impregnated a similar percentage of females (56% vs.

44%) (Figure 6B). Similar to Figure 6A data, this indicates that

with a single mate, mutant males are similar to wild type in

copulation. However, when we challenged the double mutant and

a wild type male with a single fog-2 female and 10 paralyzed males,

as unproductive mating distractions, we found that wild type

impregnated 80% of the females (Figure 6B). We observed that

wild type and the mutant males contacted both sexes with

equivalent frequency in this assay, and in a male-female mate

choice assay, we did not find any indication that the mutant males

had a greater chemotaxic preference to males (Figure S9B, S9C,

and S9D). However wild-type males immediately terminated

mating attempts with paralyzed males, whereas mutant males

would abnormally scan and attempt spicule insertion into these

Figure 4. Activation of cloacal neurons increase Ca+2 transients in Rn7A, and activation of DA neurons attenuate ARE-induced
muscle contraction via D2-like receptors. (A) Abridged schema of synapses between Rn5A, 7A, 9A and spicule circuit components. Arrows
embedded in bars indicate reciprocal electrical and chemical synapses. Connections relevant to this work are depicted. For the complete wiring, refer
to the male wiring project (S.W. Emmons, D.H. Hall, M. Xu, Y. Wang and T. Jerrel, Male Wiring Project, Albert Einstein College of Medicine, http://
worms.aecom.yu.edu/pages/male_wiring_project.htm, [50]). Gubernacular erector (GER), gubernacular retractor (GRT), anterior oblique (AOB),
posterior oblique (POB), dorsal spicule protractor (DSP), ventral spicule protractor (VSP) and anal depressor (ADP). (B) Video montage depicting
changes in G-CaMP fluorescence in Rn7A. (C) The average %DF/F0 determined from all tested males used in both samples (top) with (n = 14) or
(bottom) without (n = 11) ATR treatment representing Rn7A neuron Ca+2 transients before, during and after PCB, SPC stimulation. The dark and light
blue lines represent the average and standard deviation values, respectively. (D) Males that protracted their spicules during simultaneous blue light
stimulation of DA neurons and ARE exposure. The genotypes are written below each bar. The number of males tested and the percentage of spicule
protracted males are listed at the bottom and top of the bars, respectively.
doi:10.1371/journal.pgen.1003015.g004
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inappropriate mates (Figure S9C). To rule out the possibility that

dop-2; dop-3 males displayed general locomotor hyper-exploratory

behaviors, which could lead the mutant males to contact another

animal before wild-type males, we compared the velocity and

distance travelled of mutant and wild-type males during crawling.

We found that there were no gross differences in these parameters

between wild type and mutant males (Figure S10). Therefore, this

indicates that during mating, D2-like signaling dampens ACh-

induced behaviors with uncooperative/inappropriate mates.

Next, we addressed, in a more natural scenario, the importance

of D2-like receptors in decreasing fruitless mating attempts with

nematodes of other species. We paired one fog-2 female and 10 C.

briggsae hermaphrodites or 10 C. remanei females, with one wild type

or a dop-2; dop-3 male and counted how efficiently the fog-2 female

became impregnated. We found that after 4 hrs, wild type

impregnated 65% more females than mutant males, when

challenged with 10 C. briggsae hermaphrodites (Figure 6B and

Figure S9E). In contrast, we found both wild type and mutant

males’ ability to impregnate a C. elegans mate is severely reduced

when challenged with C. remanei females (Figure S9E), consistent

with the published report that C. remanei females are more

attractive than C. elegans hermaphrodites [51].This indicates that

D2-like signaling might limit unproductive mating attempts with

other hermaphroditic nematode species.

Finally we addressed whether D2-like signals specifically

dampened spicule circuit excitability and/or other mating circuits,

to restrict aberrant mating attempts. The male’s response to

contacting a mate is primarily facilitated by the ray sensilla.

However, published reports have demonstrated that other male

sensilla, such as the post-cloacal sensilla (p.c.s), spicule tips and

possibly the hook sensillum can feebly substitute for ray function;

therefore the activity of these sensilla might be increased in the dop-

2; dop-3 males [26,27]. Since driving expression of DOP-2/DOP-3

exclusively in cells of the spicule circuit is not technically possible,

we opted for an alternative approach of laser ablating the dop-2-

expressing PCB neuron or all of the p.c.s neurons (PCA, PCB and

PCC), and asking if mating with a non-hermaphrodite is reduced.

First we quantified in wild-type males lacking PCB or all 3 p.c.s.

neurons, the cumulative and average duration in contact with

another male during a 10 min assay period, when surrounded by

Figure 5. D2-like signaling promotes spicule insertion attempts. (A) Duration of vulval contact until spicule insertion or 120 sec. Symbols
represent individual male performance. Open symbols represent unsuccessful insertions. (B) Duration over the vulval slit during the 1st spicule
insertion attempt. For A&B, line and error bars represent mean and SEM. (C) Spicule movement frequency calculated for 6 sec during spicule thrust
against vulval slit. Symbols represent an individual frequency interval. Line and error bars represent mean and SD.
doi:10.1371/journal.pgen.1003015.g005
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40–50 paralyzed males. We found that the cumulative time that

operated males spent with other males was reduced (Figure 6C). This

result is consistent with the idea that the post-cloacal sensilla play a

minor role in contact response and scanning behavior. However if an

operated male does initiate scanning with another male, the average

time was not significantly different amongst these groups (Figure S9F).

We then tested if PCB or p.c.s ablations in dop-2; dop-3 males would

reduce abnormal mating attempts. We found that dop-2; dop-3 males

on average spent longer amount of times scanning other males than

wild type (Figure S9F); however, neither PCB nor p.c.s ablations

reduced this phenotype. In addition, the cumulative time in contact

with another male was similar between operated and intact males

(Figure 6C). This indicates that D2-like signaling must be modulating

other circuits in addition to the post-cloacal sensilla to attenuate

contact response and scanning behavior.

Discussion

Although dopamine (DA) modulation in vertebrate models is known

to regulate motor patterns [2,7], there are few in-depth analysis for how

DA fine-tunes context-dependent behaviors. To address this, we

analyzed how DA signaling constrains specific neuromuscular outputs

during C. elegans mating. As the male positions his tail over the vulva, he

repetitively thrusts his spicules against the vulval slit while adopting an

arched posture. This behavior is terminated after spicule penetration or

loss of vulval contact. In contrast, in DA-deficient cat-2 males arched

postures and rhythmic spicule insertion attempts were no longer

confined to the vulval region, and sometimes even initiated randomly

on the hermaphrodite. Thus, spicule motor behaviors coupled with

appropriate postures and vulva sensing are partially coordinated by DA

down-modulatory pathways.

Figure 6. D2-like signaling promotes mating fitness. (A) Y-axis depicts the number of pregnant females amongst 1, 5 or 20 potential mates.
Symbols represent individual male’s sexual prowess. (B) Mating competition test pairing a wild type and a mutant male with one fog-2 female +/210
paralyzed males (first 4 columns), and number of fog-2 females impregnated when wild type and dop-2; dop-3 males were paired individually with 10
C. briggsae hermaphrodites ( last 2 columns). The top and bottom of each column indicates the % of pregnant females and the number of males that
copulated or number of males assayed (last 2 columns). (C) The cumulative time in contact with males that a wild type and dop-2; dop-3 male,
represented by each symbol, spent when surrounded by 40–50 paralyzed males. Each data subset represents non-ablated animals (mock), PCB or PCS
ablated animals. p-values calculated using the Mann-Whitney test. For A&C, line and error bars represent mean and SEM. (D) Top shows coincident
D2-like and ACh signaling during spicule insertion attempts. Bottom depicts residual DA signaling when a male moves off the vulva. Blue and green
color represents DA and ACh signaling components, respectively.
doi:10.1371/journal.pgen.1003015.g006
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Consistent with the cat-2 male’s ectopic display of motor

behaviors, simultaneous application of exogenous DA with

receptor-selective or nonselective acetylcholine (ACh) agonists

constrains cholinergic-mediated sex-muscle contraction. Interest-

ingly, the inhibitory effect of exogenous DA is less potent with a

muscarinic (G-protein coupled receptor) agonist or a muscarinic

and ionotropic (ACh-gated ion channel) nonselective ACh agonist,

if DA is applied first. This suggests that during mating, context-

relevant DA signaling occur coincidently with ACh-mediated

signaling; additionally, mAChR signaling might make the spicule

circuit refractory to non-coincident humoral DA secretions that

occur elsewhere in the male.

DA-dependent negative signals are partly transduced through

the D2-like G-protein-coupled receptors DOP-2 and DOP-3.

Even though dop-2; dop-3 double mutant phenotypes are less severe

than cat-2 animals, likely because every DA receptor is affected by

the cat-2 mutation, we found that these receptors mediate

restriction of spicule protraction behavior to the precise vulval

slit area, and maintain rhythmic spicule thrusts during penetration

attempts. Although previous reports demonstrate DOP-3 and

GOA-1 signaling for hermaphrodite locomotion [21,23] and in

vitro DOP-2 and GPA-14 interactions [52], we provide genetic

evidence that Gao/i proteins, GOA-1 and GPA-7, redundantly

transduce DA inhibitory signals during vulva sensing/spicule

insertion behavior (Figure 6C). These Gao/i proteins, and their bc
partners might regulate molecules such as adenylyl cyclase, L-type-

voltage-gated Ca++ channels and K+ channels to decrease

neuromuscular excitability [53–55].

ACh secreted from the cloacal ganglia sustains vulval contact

[24], while concurrently, the 9 pairs of sensory rays likely provide

feedback to adjust the male’s movement and posture according to

the hermaphrodite’s position and locomotion. Three of the 9 ray

pairs contain DA sensory neurons; when optogenetically stimu-

lated, they induce a shallow ventral tail flexure [26], and when

stimulated in the presence of non-selective ACh agonists

endogenous DA secretion antagonizes spicule protraction. The 3

pairs of RnA neurons gap junction to their RnB counterparts,

which express neuropeptides flp-5, flp,-6, and flp -17 [56], raising

the possibility that stimulation of RnA neurons indirectly leads to

neuropeptide-dependent modulation of the spicule circuit. How-

ever in the dop-2; dop-3 double mutants, ChR2-stimulation of dat-1

expressing cells, and possibly including the RnB neurons via gap

junctions, failed to reduce simultaneous ACh agonist-evoked

contractions. This suggests that DA secretions, possibly from

Rn5A, Rn7A and Rn9A, can attenuate the output of cholinergic

signaling. Of these neurons, Rn7A and 9A make chemical

synapses to cloacal-associated components (Figure 4A), suggesting

that DA-ACh signals might be involved during the vulva location/

spicule insertion steps.

In fact, the DA ray neurons and the spicule circuit components

are more dynamic during vulval contact. However, heightened ray

neuronal activity is sometimes detected when the male is at non-

vulval regions, suggesting that DA secretion is not tightly coupled

to an explicit sensory signal. Our optogenetic experiments indicate

that cholinergic cloacal neuron activation stimulated Rn7A

activity This DA-secreting cell is not post synaptic to the

cholinergic cloacal neurons, indicating that DA secretion might

be an indirect response to cholinergic circuit activity via humoral

signaling or interneurons. Additionally, the Rn5A and Rn9A did

not responded to PCB and SPC stimulation, further suggesting

implications of additional internal signals from the locomotor

circuit or other ray neurons.

Throughout mating, ray neurons respond with an array of

different dynamics correlated with the gradual arched body

posture changes, which are perhaps a read-out of DA not only

modulating the PCS, but also providing feedback onto a

locomotor circuit. This is a possibility since DOP-2 and DOP-3

are expressed in ventral cord neurons and body wall muscles [21],

which facilitate locomotion. During non-arched postures, either

scanning or at the vulva, DA ray neurons display stable activity.

However; if a male develops an arched posture at the vulva, or

during scanning, then the DA ray neurons display dynamic

changes in their activity, maybe to modulate the transition in

overall motor response. During male behaviors, we have observed

a similar spicule circuit independent modulatory role for DA and

D2- receptors, where reduction in D2-like signaling results in

mutants engaging in prolonged backward scanning locomotion

with other males and hermaphrodites of different species.

Therefore, the DA-signaling mutant phenotypes, together with

the expression of DA ray neuronal activity, suggest that DA refines

motor outputs at the vulva and delimits them at other areas via

interactions with neural-muscular networks that include the

spicule protraction circuit. This ACh/DA interplay might share

analogy with how the vertebrate CNS fine-tunes locomotor

control.

In the vertebrate CNS, DA secretions from the substantia nigra

(SN) inhibit striatal ACh interneurons, and ACh-induced DA

release in these networks coordinate voluntary movements [10,57].

Although this suggests bidirectional DA/ACh signaling in the

CNS, direct evidence for how these neurons shape motor outputs

at the animal behavioral level is scarce, due to complex CNS

connectivities [54,58]. In the C. elegans male, the DA ray neurons

and cholinergic cloacal ganglia interact bi-directionally to regulate

sex-muscle behaviors. The optogenetic experiments suggest that

cloacal ganglia neurons promote DA- ray activity and the

pharmaco-genetic experiments indicate that DA attenuates the

ACh spicule circuit output partly via DOP-2 and DOP-3 on PCB

neurons and sex muscles. Decrease of PCB output could

subsequently result in reduced DA secretion and dampening of

DA and ACh circuits’ interactions.

During mating, how can a male insert his spicules while

attenuating DA signaling occurs? Possibly during the repetitive

vulval penetration attempts, potent ACh secretions can override

DA-negative signaling, due to acute vulval stimulation of the cloacal

sensory-motor neurons. However, these cloacal neurons make

reciprocal (recurrent) synapses with one another (Figure 4A). If the

wild-type male moves off the vulva or if these neurons are

inappropriately stimulated (on non-vulval regions, on another male,

or by a mate from a different species), then a negative mechanism,

such as D2-like signaling, must dampen the circuit’s residual self-

amplifying property. Indeed, the ectopic mating behaviors displayed

by cat-2 and dop-2; dop-3 males give the illusion that they

compulsively maintain motor behaviors (spicule prodding ) in the

absence or withdrawal of the appropriate stimuli. The ACh and D2-

like signaling interactions in C. elegans are reminiscent of D2

receptor-regulated synaptic plasticity in vertebrate SN-striatal

networks. In these networks, D2 receptors regulate long term

synaptic depression. This form of plasticity reduces pre-existing

motor memory storage and maintains a balance between old and

newly encoded motor information. In DA-deficient Parkinson’s

disease models, dyskenisia (voluntary movement disorder) is caused

by plasticity abolishment in these networks [12,59–62].

Materials and Methods

Strains and culture methods
Strains were maintained at 20uC on NGM agar plates and fed

with E. coli OP50. All C. elegans males contain the allele him-5(e1490).
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Additional alleles used were: cat-2(e1112), dop-1(vs100), dop-2(vs105),

dop-3(vs106), dop-4(tm1392), goa-1(n363), gpa-7(pk610), gpa-

14(pk347), gpa-16(it143), pha-1 (e2123), unc-64(e246), fog-2(q71),

unc-29(e193), gar-3(gk305) and acr-16(ok789).

Transgenic strains include: pha-1(lf); lite-1(lf); rgEx197[ Punc-

103E:G-CaMP1.3, Punc-103E:mDsRed, pha-1(+)], pha-1(lf); lite-1(lf);

rgEx317[Pdop-2:ChR2::YFP; pha-1(+)], pha-1(lf); lite-1(lf);

rgEx326[Ptph-1:CFP; pha-1(+)], pha-1(lf); lite-1(lf); rgEx431[Phsp-

16:egl-2(n693gf)cDNA; Punc-103E:mDsRed; pha-1(+)], dop-2(lf);

pha-1(lf); lite-1(lf) rgEx462 [Paex-3:dop-2::CFP], dop-2; pha-1(lf); lite-

1(lf); rgEX467 [Punc103E:dop-2::CFP], dop-3; pha-1(lf); rgEx482

[Punc103E:dop-3::YFP]; dop-3; pha-1(lf); rgEx490 [Paex3:dop-3::YFP],

pha-1(lf); lite-1(lf); rgEx491[Pgpa-7:YFP; pha-1(+)], pha-1(lf); lite-1(lf);

rgEx512[Pgar-3B:GCaMP3::SL2:::mDsRed; pha-1(+)], dop-2(lf); dop-

3(lf); rgEx515[Ptph-1:YFP], pha-1(lf); lite-1(lf); rgEx517[Pdat-

1:GCaMP3::SL2:::mDsRed; pha-1], pha-1(lf); lite-1(lf); rgEx519[Pgpa-

16: gpa-16 exon1::YFP; pha-1(+)], pha-1(lf); lite-1(lf); rgEx523[Pdat-

1:G-CaMP3::SL2:::mDsRed, Pgar-3B:ChR2::YFP, pha-1(+)], pha-1(lf);

lite-1(lf); rgEx549[Pdat-1:G-CaMP3::SL2:::mDsRed, Pdat-1:unc-

103(gf), pha-1(+)], dop-2(lf); dop-3(lf); pha-1(lf); rgEx550[Pdat-

1:ChR2::YFP, pha-1(+)]

Plasmids
Reporters of dop-2, gpa-7, and gpa-16 expression. Primer

sequences are provided in Table S2. A 9.2 kb region upstream of

the dop-2 ATG was PCR-amplified using the primers: ATTB1-

Dop2pr and ATTB2Dop2pr. A 3.1 kb region upstream of the gpa-

7 ATG and the first four codons was PCR-amplified with the

primers: ATTB1gpa-7F and ATTB2gpa-7R. A 2.6 kb region

upstream of the gpa-16 ATG, exon1 and 34 codons of exon2 was

PCR-amplified with the primers: Pgpa-16Fv2 and Pgpa-16Rv2.

These primers contained Gateway ATTB sites, which allowed the

dop-2, gpa-7and gpa-16 PCR products to be recombined using BP

clonase (Invitrogen, CA), into the low copy number Gateway entry

vector pDG15 [63], to generate pPC1, pPC24 and pPC40,

respectively. To place the dopamine receptor and G-protein

sequences upstream of YFP, these vectors were recombined with

YFP destination vectors. pPC1 was recombined with pLR167 (a

plasmid containing the gateway destination AttR Reading frame

Cassette C.1 upstream of the channel rhodopsin fusion protein

ChR2:YFP) [24]; pPC24 and pPC40 were individually recom-

bined with pGW322YFP (a low-copy plasmid containing the

gateway destination AttR Reading frame Cassette C.1 upstream of

YFP) [63] using LR clonase (Invitrogen) to make plasmids pPC2,

pPC39, pPC41, respectively.

Cell-specific expression of dop-2 and dop-3 genomic

DNA. A 5.2 kb genomic dop-2-containing sequence from the

ATG to last valine codon was PCR-amplified via primers

Attb1DOP2F and Attb1DOP2R (Table S2). Since these PCR

primers contained Gateway ATTB sites, dop-2(genomic DNA) was

recombined using BP clonase, into pDG15, to generate pPC9. To

make pPC11 [dop-2::CFP], pPC9 was recombined with pGW77C

(a high-copy plasmid containing the gateway destination AttR

cassette upstream of CFP [32] using LR clonase. The LR sites

flanking DOP-2 were removed using single site mutagenesis to

obtain the pPC15 plasmid. To drive dop-2::CFP expression from

different promoters, pPC15 was cut with AfeIII and Gateway

Vector Conversion Reading frame Cassette B(Invitrogen) ligation

generated the destination vector pPC16. To drive dop-2::CFP

expression from the dop-2 endogenous promoter (Pdop-2), a sex-

muscle expressing promoter (Punc-103E) and a pan-neuronal

promoter (Paex-3), the plasmids pPC1, pLR21 [63] and pLR35

[33] were individually recombined into pPC16 using LR clonase,

to make pPC21 [Pdop-2 :dop-2::CFP] and pPC18 [Paex-3:dop-

2::CFP] and pPC19 [Punc103E:dop-2::CFP], respectively. A 5.2 kb

genomic dop-3-containing sequence from the ATG to last cysteine

codon was PCR-amplified via primers DOP3geneF and DOP3-

geneR (Table S2). To fuse DOP-3 C-terminal end to YFP, the

PCR product was cut with BamHI and AgeI, and then cloned into

the YFP-containing plasmid pSX322 BamHI site [63] to generate

pPC23. To drive dop-3::YFP expression, pPC23 was cut with

BamHI and ligated with the Gateway Vector Conversion Reading

frame Cassette C.1(Invitrogen) to generate the destination vector

pPC33. To make sex-muscle specific and pan-neuronal dop-3::YFP

expression vectors, the plasmids pLR21 and pLR35 containing

Punc-103E and Paex-3, respectively, were recombined into pPC23

using LR clonase, to generate pPC36 [Punc-103E :dop-3::YFP] and

pPC37 [Paex-3:dop-3::YFP].

G-CaMP3 plasmids. We inserted an SL2-accepting trans-

splice site followed by the mDsRed gene and an unc-54 39UTR

immediately downstream of Gateway AttR Reading frame

Cassette C.1and G-CaMP3 [64] to create the vector pLR279.

To introduce promoters upstream of the G-CaMP and DsRed

sequences, the plasmids containing the promoters: Pgar-3B(pLR57)

[28] and Pdat-1(pZL15) [26] were recombined with pLR279 to

generate the plasmids pLR283 and pLR286,respectively.

Plasmids used for hyper-polarization and stimulation of

DA neurons. We introduced the Pdat-1 upstream of the unc-

103(gf) and ChR2 sequences to hyper-polarized and stimulate DA

neurons respectively. The plasmid containing the dat-1 promoter

(pZL15) was recombined with pLR279 and pLR167 [31]to

generate the plasmids pPC47 and pPC48.

Transgenics
Plasmids were co-injected with pBX1(50 ng/ml) [65] into strains

that contained the pha-1(e2123) allele. Transgenic lines that could

stably propagate at 20uC were kept for further analysis. For strains

that did not have the pha-1 allele, CFP or YFP expressed from one of

the injected plasmids was used to identify transgenic animals. For all

injections, pUC18 was used to make the final DNA concentration

200 ng/ml. The expression constructs pPC2 and pPC39 were

injected at 100 ng/mL into pha-1 him-5 lite-1 hermaphrodites. To

rescue the dop-2(lf) and dop-3(lf) DA+ARE sensitivity, pPC21,

pPC19, pPC18 (25 ng/mL) and pPC36, pPC37 (50 ng/mL) were

injected into dop-2; pha-1 and dop-3; pha-1 hermaphrodites,

respectively. To fluorescently label males for mating competition

tests, pTG10 [Ptph-1:CFP](100 ng/mL) and pTG11[Ptph-1:YFP

](100 ng/mL) [30] were injected into him-5 and dop-2(lf); dop-3(lf)

hermaphrodites, respectively. The goa-1(lf); gpa-7(lf) strain was

injected with pPC41 [Pgpa-16:gpa-16::YFP] (100 ng/mL) to test for

RNAi effectiveness. To label separately the dopamine-expressing

cells, the male cloacal neurons and the male sex muscles with G-

CaMP3::SL2:::mDsRed, pha-1; him-5; lite-1 hermaphrodites were

injected with pLR286[Pdat-1:G-CaMP3::SL2:::mDsRed](30 ng/

ml), pLR283[Pgar-3B:G-CaMP3::SL2:::mDsRed] (30 ng/ml) or

pLR289[Punc-103E:G-CaMP3::SL2:::mDsRed](30 ng/ml), respec-

tively. To co-express G-CaMP3 in dopamine-expressing cells and

Channel Rhodopsin in the male cloacal cells, pha-1; him-5; lite-1

hermaphrodites were injected with a mixture of pLR286

[Pdat-1:G-CaMP3::SL2:::mDsRed](30 ng/ml), and pLR183[Pgar-

3B:ChR2::YFP](100 ng/ml) [24]. To co-express G-CaMP3 and unc-

103(gf) in dopamine-expressing cells, pha-1; him-5; lite-1 hermaph-

rodites were injected with a mixture of pLR286[Pdat-1:G-

CaMP3::SL2:::mDsRed](30 ng/ml), and pPC47[Pdat-1:unc-103

(gf)](70 ng/ml). The dop-2; dop-3; pha-1 strain was injected with

pPC48 [Pdat-1:ChR2::YFP](70 ng/ml) and then crossed into pha-1;

him-5; lite-1 to obtained the heterozygous strain carrying the same

transgene for optogenetic experiments. To obtain a strain for
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behavioral comparisons with transgenic males [Pdat-1:G-

CaMP3::SL2:::mDsRed], the pha-1; him-5; lite-1 hermaphrodites

were injected with pPC46 [Pdat-1:YFP].

Behavioral assays and drug test
For behavioral and pharmacology assays, virgin males were

isolated from non-crowded plates, either at the late L4 stage (when

cells in the male tail spike have completely migrated anteriorly) or

after they newly crawled out of their L4 cuticle. They were kept

solitary or in groups of 10–20. All drug tests scored the number of

males that protracted their spicules by directly observing spicule

protraction for at least 10 seconds in a 5 min observation window;

these behavioral assays were not videotaped. If multiple mating

parameters were measured for individual males, we videotaped the

mating event from the time a male contacted a hermaphrodite

until spicule insertion. Because all of the sensory-motor metrics

were objective (% fluorescent changes, motor duration, contact

duration, number of contacts, locomoter velocity, sex muscle

contraction frequency), and not subjectively defined, it was not

necessary to collect data blinded to the genotype of the animals.

For populations of objective metrics that were statistically

different, but less than twofold between the experimental and

control animals, two observers, Paola Correa and L. Rene Garcia,

re-analyzed the movies independently to re-verify or amend the

results. Graphpad Prism 5 software was used to perform all

statistics. Fisher’s exact test was used when comparing categorical

variables (protracted vs. non-protracted, potent vs. non-potent).

The Mann-Whitney nonparametric test was used to compare the

metrics of an experimental group with a control group, when the

data did not fall under a normal Gaussian distribution. When the

data fitted a Gaussian distribution, 1-way ANOVA and Tukey’s

post-test were used to compare the means and standard deviations

of more than two groups.

To assay agonist-induced spicule protraction, we dissolved

levamisole (LEV) (ICN Biomedicals, OH), arecoline (ARE) (Acrose

organics, NJ) , nicotine (NIC) (EM, NJ), oxotremorine M (OXOM)

(Sigma, MO) and dopamine (DA) (Sigma) in water to make a stock

solution of 10 mM, 10 mM, 100 mM , 50 mM and 30 mM,

respectively. We added between 400–1000 mL of the drug to a

three well round-bottom Pyrex titer dish. Five to ten males were

then transferred to the drug bath and observed for five minutes at

20uC. Males were considered drug responsive if their spicules

remained protracted for $5 sec. For simultaneous exposure, DA

and ACh-agonists were pre-mixed. For sequential exposure,

worms were bathed in DA for 1 min and then ACh-agonists

were added at a concentration, such that the final DA

concentration was not significantly changed and the ACh-agonists

were at the EC90 concentration.

For mating potency tests, 10 ml of a saturated E. coli culture was

spotted onto a NGM agar plate, to make a 3.5 mm lawn. ,20 hr

later, a single male and a single adult virgin pha-1(lf) hermaph-

rodite were put onto the mating lawn and incubated at 20uC for 4

days. A male was considered potent if the plate contained cross-

progeny. For mating behavioral assays, we spaced ten 48 hr-old

unc-64(lf) adult hermaphrodites on a 5 mm diameter bacterial

lawn and placed a male in the lawn’s center. Movies were

recorded using a stereomicroscope mounted with a Hamamatsu

ImagEM CCD camera (Hamamatsu, USA); recordings were

taken from the time a male contacted a hermaphrodite until

spicule insertion or 5 min. Different mating performances were

scored from observations of these recordings to address: the

number of times a male contacted the vulva, total duration of

vulval contact and the time a male spent scanning a hermaph-

rodite. The same population of males was used to obtain these

data sets for each behavioral metric. Wild type and mutant males

were tested in parallel for statistical comparisons. Through direct

observation and using a hand-held timer, we measured the time it

took wild type and cat-2(lf) males to contact and start scanning a

hermaphrodite. Moving hermaphrodites were used to measure the

duration over the vulval slit after the 1st contact for wild type and

dop-2(lf); dop-3(lf) males.

To determine if dop-2; dop-3(lf) males differ from wild type in

their chemotactic or locomoter behaviors toward paralyzed

pha-1; lite-1;him-5; rgEx431[Phsp-16:egl-2(n693gf)cDNA; Punc-

103E:mDsRed; pha-1(+)] hermaphrodites or males, 6 paralyzed

hermaphrodites and 6 paralyzed males were alternately and

equally positioned at the periphery of a 1.5 cm diameter OP50

lawn. One wild type or dop-2; dop-3(lf) male was placed at the

center of the lawn and allowed to crawl around for up to

5 minutes. The males were timed when they first placed the

ventral side of their tail against the cuticle of a paralyzed worm

(either male or hermaphrodite) for greater than 1 second.

To determine the male’s movement velocity, an 18–24 hr adult

virgin male was placed in the center of a thin 3 mm OP50 lawn.

The forward crawling animal was digitally recorded for 1 minute

at 30 frames per second using a stereomicroscope mounted with a

Hamamatsu ImagEM CCD camera (Hamamatsu, USA). The

lighting of the sample was adjusted to maximize the contrast of the

male against the bacterial lawn. Recordings were then analyzed

using the Hamamatsu SimplePCI (version 6.6.0.0) software to

determine the centroid of the male in each frame, and track the

changes in the X and Y coordinates of the centroid as the male

crawls forward. Microsoft Excel was then used to convert changes

in the X and Y coordinates into the velocity and distance traveled

during the 1 minute recordings.

For mating assays with multiple mates, a one-day-old wild type

or dop-2; dop-3(lf) male was paired with 1, 5, or 20 two-day-old fog-

2(lf) females in a plate containing a small bacterial lawn. After

4 hrs, the male was removed. The number of females that laid

eggs were determined 4 hours later and then subsequently

monitored for an additional 18 hrs. In experiments where wild

type or dop-2; dop-3 males must discriminate between C. elegans and

either C. remanei or C. briggsae, L4 fog-2(lf) females were grown to

adulthood on OP50-seeded NGM agar plates containing 50 mM

red fluorescent dye SYTO-17 (Invitrogen, Eugene OR); the dye

allowed the fog-2(lf) females to be identified from C. remanei or C.

briggsae animals. One stained virgin 18–24 hrs adult fog-2(lf) female

was placed with ten 18–24 hrs adult C. briggsae hermaphrodites or

10 virgin C. remanei females on a 3.5 mm diameter lawn of OP50.

The animals were allowed to acclimate to the lawn for one to two

hours before a single virgin wild type or dop-2; dop-3 male was

introduced. Males were kept continuously with their mates for

18 hrs. Four and 18 hours later after the male was first introduce

with his mates, using an epi-fluorescence-equipped stereomicro-

scope, we determined if SYTO-17 stained fog-2(lf) females

contained eggs in the uterus or sperm in the spermatheca.

To observed how post-cloacal sensilla-ablated wild type and dop-

2; dop-3(lf) males behave with paralyzed males, the cells PCA, PCB

and PCC were laser ablated (using a Spectra-Physics VSL-

337ND-S nitrogen laser attached to an Olympus BX51 micro-

scope via the MicroPoint laser focusing system) in L4 males prior

to tail spike retraction. During the operation, the laser-ablated and

mock-ablated males were immobilized between a microscope

coverslip and an 8% noble agar pad (a higher % pad caused the

males to rupture through their anus) containing Polybead

polystyrene 0.1 mm microspheres (Polysciences, Inc., WA). Eigh-

teen to 24 hrs later, 3–4 laser-ablated or mock-ablated adult males

were added to a 3 mm diameter OP50 lawn that contained 40–50
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paralyzed pha-1; lite-1; him-5; rgEx431[Phsp-16:egl-2(n693gf)cDNA;

Punc-103E:mDsRed; pha-1(+)] males. The animals were digitally

recorded at 1 frame per second for 10 minutes. The recordings

were then reviewed, and time and duration that the moving male

placed the ventral side of his tail against the cuticle of a paralyzed

worm or another moving worm for greater than 1 second was

determined for the whole 10 min recording. Cumulative time was

calculated by adding up the total time a male was in ventral

contact with other males. The average time was calculated by

dividing the total time in contact by the number of mating

contacts.

Because the mating behavioral steps that lead up to sperm

transfer can be highly variable, we required a metric to score/rank

a spectrum of behavioral responses that result in successful spicule

insertion. We wanted that metric to differentiate a male that

instantly found the vulva and inserted within a second or two of

contact, from a male that meandered around the hermaphrodite

for 110 secs, but eventually contacts the vulva, and inserts.

However, this metric must be able to rank the spectrum of males

that immediately undergo spicule insertion attempts and are

persistent, but are unsuccessful in penetration, with males that

were erratic in prodding behavior (and other steps of mating

behavior), but fully inserted their spicules. To achieve this, the

metric had to measure the period between vulval contact and full

insertion, but it also had to incorporate a penalty for not being

diligent at immediately initiating vulval spicule insertion behavior

after contacting with a mate, and a bonus if successful penetration

occurred, even after erratic performance of other mating

behavioral steps. The efficiency of spicule insertion, ESI, was

calculated from recordings made during the first 120 seconds of

contact between the male and a paralyzed 2-day-old hermaphro-

dite. The metrics recorded were: (1) duration of prodding at the

vulva; (2) duration in contact with the hermaphrodite at areas

outside the vulva. If the male successfully inserted his spicules

before the 120 seconds were over, then the observation was

stopped. ESI = (time (sec) spent at spicule insertion attempts/total

time (sec) in contact with hermaphrodite, up to 120 sec) X (1/time

(sec) in contact with the hermaphrodite, such scanning, but not

attempting insertion (penalty)) X (1+ (0 if no penetration, otherwise

time (sec) remaining after a successful penetration, /120 sec)(bo-

nus)). A hypothetical ESI of 1.99 would mean that the male located

the vulva and inserted his spicules approximately 1 sec after

contact with the hermaphrodite; whereas a hypothetical ESI of 0.0

meant that the males spent their first 120 seconds of contact not

attempting spicule insertion at the vulva [66].

For mating competition tests, transgenic males contained

expressed YFP or CFP from the tph-1 promoter [30]. Mid to late

L4 fog-2 females were separated from males; 48 hrs later, a single

female was added to 5 mm diameter lawns of bacteria. One 18–

20 hrs virgin CFP-expressing wild type and one YFP-expressing

dop-2(lf);dop-3(lf) male were added simultaneously to the lawn. The

plates were incubated at 20uC for one hour. If the female had

sperm in the spermatheca (determined via standard bright field

microscopy), then both males were removed, otherwise the

animals were allowed to mate for another hour. Majority of the

females were mated within 1 hour; by 2 or 3 hours, all females

were impregnated. The next day, the fluorescence color of

serotonergic neurons in the L1 cross-progeny was determined.

For the mating competition test with paralyzed males, rgEx431

males containing a heat shock promoter-driven egl-2(gf) construct

were incubated for 30 min at 30uC. After 3 hrs, the heat shocked-

expressed EGL-2(gf) K+ channels caused complete paralysis. Ten

paralyzed males were placed onto a mating lawn with a single

fog-2(lf) female. One CFP-expressing wild type and one YFP-

expressing mutant male were simultaneously placed in the middle of

the plate. The first male to insert was determined via observations

and subsequently identified using fluorescent microscopy.

For mating assays with multiple hermaphrodites, a one-day-old

wild-type or a dop-2; dop-3(lf) male was paired with 1, 5, or 20 two-

day–old fog-2(lf) females in a plate containing a small bacterial

lawn. After 4 hrs, the male was removed. The number of egg-

gravid females were determined 4 hours later and then subse-

quently monitored for an additional 18 hrs.

Ca2+ imaging and optogenetics
The genetically encoded Ca2+ indicator G-CaMP1.3 was used

to visualize calcium transients in the sex muscles, and G-CaMP3

was used to visualize Ca2+ transients in neurons. A 2 cm square

chunk from an NGM plate containing a 3 mm diameter OP50

lawn was placed on a microscope slide. 10–15 heat shocked

paralyzed pha-1; lite-1; him-5; rgEx431[Phsp-16:egl-2(n693gf)cDNA;

Punc-103E:mDsRed; pha-1(+)] hermaphrodites were then evenly

spaced on the lawn. The hermaphrodites were allowed to

condition the lawn for ,20 min before a male was added. One

18–20 hrs adult virgin transgenic male was placed on the lawn

without a microscope coverslip and immediately placed on an

epifluorescence–equipped Olympus BX51 microscope (Olympus,

USA). Matings were visualized using a 106, or 206 long working

distance objective. Males were not exposed to high intensity

filtered blue and green light until they initiated mating behavior.

Exposure to the high intensity blue light, even though the males

contain the lite-1 mutation, interferes with the contact response

step of mating. As the males were being recorded, the stage

position and focusing were actively manipulated to keep the

fluorescent cells in focus and in the center of the viewing field. New

mating lawns were used after every two observations; long

exposures to high intensity light affect the E.coli lawn in an

unknown way that reduces the males’ mating response.

The G-CaMP and DsRed fluorescence signals at the male tail

were recorded simultaneously using a Dual View Simultaneous

Image splitter (Photometrics, AZ) and a Hamamatsu ImagEM

Electron multiplier (EM) CCD camera, at the speed of ,30 frames

per second. The Ca2+ data was analyzed using the Hamamatsu

SimplePCI (version 6.6.0.0) software and Microsoft Excel, as

described previously [24,30].

The recordings were reviewed to find the first instance of an

uninterrupted behavioral step (either moving forwards or back-

wards along the hermaphrodite cuticle, or attempting spicule

insertion at the vulva) with a duration of 6 seconds or greater.

Region-of-interests (ROIs), of equal areas, were generated in the

Simple PCI software. The individual ray 5,7,9A neurons were too

close to one another to separate with different ROIs, and thus

their composite fluorescence was measured with a single ROI. The

male gubernacular erector muscle, anal depressor and ventral

protractor muscles were far enough so that separate ROIs could

be drawn for each muscle. ROIs were used to measure the

background and cellular fluorescence signals in both the green and

red emission channels. The positions of the ROIs were manually

adjusted for every frame in the movies. The mean pixel intensity

(MPI) was measured for every ROI in every frame, in each

recording (Figure S11B and S11C). The data was then transferred

from Simple PCI to Microsoft Excel. For each recording frame,

background ROIs values were then subtracted from their

respective ROIs that quantified neuronal or muscular fluorescence

(Figure S11D).

Focusing/gross movement/muscle contraction/mercury arc

lamp flicking and photobleaching artifacts caused non-interesting

fluorescence changes in both channels and in every frame. In some
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cases, a higher rate of mDsRed photobleaching, relative to the

minimal G-CaMP photobleaching, made a simple green-to-red

fluorescence ratio-metric analysis not appropriate to use. To

correct this, the red channel was used as a reference to analyze the

green channel. In each frame, the red channel background-

subtracted MPI for each ROI was plotted with respect to time,

and an average line (Figure S11E) or a one-phase decay curve (to

correct for mDsRed specific photobleaching) was fitted over the

data points using GraphPad Prism (version 4.03). The fitted curve

serves as an arbitrary reference to quantify the magnitude of non-

interesting fluorescence changes that occurred in each frame. For

each frame, the measured background subtracted red channel

MPI value was divided by the average or fitted red value to give a

correction value. The corrected inverse value for each frame was

then multiplied to the subtracted green channel MPI of the

respective frame (Figure S11F). This corrects the values for the

green channel, so that the fluorescence changes reflect calcium

transients rather than gross experimental artifacts. The values for

each recorded frame was then calculated as DF/F0 = (((corrected

MPI (frame n)-corrected MPI (frame 0(initial frame)))/corrected

MPI (frame 0(initial frame))) 6100) (Figure S11G). The arbitrary

F0 value was determined as the fluorescence value in the first

frame of the recordings. The values were then plotted with respect

to time.

To determine whether the G-CaMP3 transgene might severely

interfere with the behaviors displayed by the males, we quantified

the mating behavior of the Pdat-1:G-CaMP3 strain. In a mating

potency test, these males sire progeny similar to wild type

(Figure 1A). During mating, the vulval contact duration, number

of vulval contacts and time in contact between insertion attempts

in these males were also similar to males carrying the Pdat-1:YFP

transgene (Figure S2D–S2F). This indicates that any observed

changes occurring in ray neurons of the Pdat-1:G-CaMP3 strain

portray a biological relevant phenomenon possibly occurring

during wild type mating.

For the optogenetic analyses, rgEx523[Pdat-1:G-

CaMP3::SL2:::mDsRed, Pgar-3B:ChR2::YFP, pha-1(+)] males, incu-

bated +/2 with all-trans-retinal, were immobilized between a

microscope coverslip and a 10% noble agar pad containing

Polybead polystyrene 0.1 mm microspheres (Polysciences, Inc.,

WA). In the cloacal region, we previously reported that the gar-3B

promoter is expressed in PCA, PCB, SPC and the spicule muscles;

however, in rgEx523, expression in PCA and the spicule muscles

were extremely variable, but expression in PCB and SPC were

consistent. The mosaic nature of rgEx523 does not affect the

experiments, since PCA, PCB and SPC are highly wired together.

Stimulation of any one would result in increased activity of the set.

The males were then put on an Olympus IX81microscope scope

fitted with the Mosaic illumination targeting system (Andor

Technology, USA). Using the Metamorph microscopy automation

and imaging analysis software (Molecular Devices, PA), illumination

regions were specified over the areas of the cloacal ganglia and

dopaminergic ray neurons. The software then controlled the Mosaic

targeted illumination system mirrors to reflect the filtered blue and

green excitation light to the G-CaMP3/mDsRed expressing

dopaminergic rays for ,4.2 sec, followed by directing the

illumination to both the ChR2-expressing cloacal ganglia and G-

CaMP3-expressing dopaminergic rays for ,5.7 sec, and then

redirect the illumination to only the dopaminergic rays for

,4.2 sec. The time between illumination protocols varied from

0.1 to 0.5 sec. The G-CaMP and mDsRed fluorescence signals were

recorded simultaneously using an Optosplit II simultaneous image

splitter (Cairn Research, UK) and an Andor iXon EM CCD

camera, at the speed of ,35 frames per second. After the males

were recorded, the coverslip of the immobilized male was removed.

If the male did not immediately crawl around the slide, the data was

discarded. The fluorescence data was analyzed using the SimplePCI

software and Microsoft Excel, as described earlier.

For ChR2 activation of ray neurons, L4 dop-2; dop-3;

rgEx550[Pdat-1:Chr2::YFP] and heterozygous males were incu-

bated overnight with +/2 all-trans-retinal. The adult males were

then placed in a 2% noble agar pad containing 5 mM ARE on a

slide and covered with a cover slip, while simultaneously being

exposed to 4.2 mW/mm2 blue light illuminated through a 106
objective fitted to a Zeiss Stemi SV 11 stereomicroscope. To

determine the working ARE concentration in 2% agar pads, a

dose response curved was done with wild-type males (Figure S1C).

Spicule prodding rate measurements
The spicule movements of wild-type or dop-2(lf); dop-3(lf) males

copulating with heat-shocked paralyzed pha-1; lite-1; him-5;

rgEx431[Phsp-16:egl-2(n693gf)cDNA; Punc-103E:mDsRed; pha-

1(+)] hermaphrodites were digitally recorded with Hamamatsu

ImagEM camera at a rate of ,35 frames per second. The grey-

scale recordings were analyzed using the SimplePCI software. The

recordings were reviewed to find the first instance where the male

repetitively prods the vulva with his spicules for an uninterrupted

duration of 6 to 10 seconds. In those frames of the recording, a

rectangular ROI was drawn over the region of the male spicule. In

the ROI of each frame, the standard deviation of the mean pixel

intensity was calculated. The data was transferred to Microsoft

Excel and plotted against time. Oscillation amplitudes greater than

5% were considered to be due to a spicule deflection. The

durations between oscillations were graphed in Figure 5C.

Length measurements
The In-Contact Length (ICL) was calculated by using the

SimplePCI imaging software skeletonized tool to measure the

length of the male outline that contacted the hermaphrodite

cuticle of a representative frame. This measurement was then

divided by the total male body length and converted to percentage

values.

RNAi
To monitor gpa-16 RNAi effectiveness, pPC41[Pgpa-16:gpa-

16::YFP] was injected into goa-1(lf); gpa-7(lf) strain. RNAi was

induced by feeding worms bacteria producing double stranded

RNA (dsRNA) to the target gpa-16 ORF. Bacteria with the L4440

double-T7 vector including gpa-16 fourth and fifth exons were

grown and induced by IPTG using a standard protocol [67]. L4

males expressing the pPC41 transgene were transferred to plates

spotted with the dsRNA bacteria or OP50, as a control, and

incubated for 20 hours. In a subset of these males, fluorescence of

pharyngeal muscles and PDE neurons was checked. We found a

similar percentage of males glowing in both tissues when fed with

OP50 (80% vs. 75%, n = 20); however when males were fed with

dsRNA there was a reduction in fluorescence of pharyngeal

muscles when compared to PDE (78% vs. 4%, n = 23). The adult

males then were assayed for their response to DA+ARE drug baths

(Table 2).

Supporting Information

Figure S1 Male mating sub-steps and drug test controls. (A)

Representative frames taken from recorded behavioral movies for

each step of mating. (B) Percentage of paralyzed males when

treated with 20 mM of DA and water (n = 30 for each data set). (C)
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Dose response curve for spicule protraction in 2% agarose ARE

pads (n = 30 for each data set).

(TIF)

Figure S2 Mating profiles of DA deficient males, related to

Figure 1. (A) The duration wild type (n = 15) and cat-2(lf) (n = 21)

males require to contact a paralyzed hermaphrodite in a 10 min

observation. (B–C) Wild type (n = 20) and cat-2(lf) (n = 22) males

mated with paralyzed hermaphrodites. (B) The time males spent in

contact with a hermaphrodite’s vulva and (C) the number of vulval

contacts with a particular mate until insertion or in 120 sec. (D–F)

Pdat-1:G-CaMP3 (n = 16) and Pdat-1:YFP (n = 14) males mated with

paralyzed hermaphrodites. (D) The duration in contact with a

mate between insertion attempts. (E) The time males spent in

contact with a hermaphrodite’s vulva. (F) The number of vulval

contacts with a particular mate until insertion or in 120 sec.

Symbols represent an individual male performance. Open symbols

represent unsuccessful insertions. Line and error bars represent

mean and SEM.

(TIF)

Figure S3 Male tail expression of dop-2, dop-3 and gpa-7, related

to Figure 2. Post-cloacal sensilla B (PCB), dorsal spicule protractor

(DSP), ventral spicule protractor (VSP), dorsal spicule retractor

(DSR), and ventral spicule retractor (VSR). (A–G) DIC (right) and

fluorescence (left) images of adult tail regions. (A–C) Expression

patterns of Pdop-2:YFP, (D&E) Pdop-3:RFP, and (F&G) Pgpa-

7:YFP. Scale bar 10 mM.

(TIF)

Figure S4 Rays 5A, 7A, 9A Ca+2 transients during mating,

related to Figure 3. The Ca+2 transients were determined by

comparing G-CaMP and mDsRed intensity. mDSRed was used to

normalize G-CaMP measurements to account for focus and

illumination artifacts occurring while males mated with a

paralyzed hermaphrodite at 106magnification. (A) We measured

the %DF/F0 of 7 wild type males during scanning for the

hermaphrodite’s vulva or attempting spicule insertion (prodding).

The Y-axis depicts the %DF/F0 and X-axis the time scale. (B) We

measured the %DF/F0 of 5 Pdat-1:unc-103(gf) males during

scanning for the hermaphrodite’s vulva or attempting spicule

insertion (prodding). The In-Contact Length % (ICL%) are the

numbers located at the top of each bar taken from a representative

frame for each 1 sec intervals. The red arrow indicates exact time

of vulval contact.

(TIF)

Figure S5 Sex-muscle Ca+2 transients during spicule insertion

attempts, related to Figure 3. The Ca+2 transients determined by

%DF/F0 (Y-axis) when at the vulva trying to insert their spicules

during 10 secs (X-axis). For each subset of cells measured at 206
magnification, five different males are shown. For posterior sex-

muscles: gubernaculum erector, anal depressor and ventral

protractor expressed the Punc-103E:G-CaMP.

(TIF)

Figure S6 Ca+2 transients changes in Rn7A in individual males,

related to Figure 4C. The %DF/F0 representing Rn7A neuron

Ca+2 transients before, during and after PCB, SPC stimulation, for

individual males grown on all trans retinal. The average and

standard deviation of these traces are shown in Figure 4C. The

boxed region denotes when blue excitation light was applied to the

region of SPC and PCB. In some males, a slow increase of Rn7A

fluorescence occurred during sec 0.6 to 4.2 due to stimulation of

SPC/PCB from low intensity stray illumination of the Rn5A,

Rn7A and Rn9A neurons. (Bottom- Middle), cartoon depicting

the general area of illumination (blue ovals) of DA ray neurons and

SPC PCB cloacal ganglia neurons (green circles).

(TIF)

Figure S7 Mating profiles of D2-like signaling deficient males,

related to Figure 5. (A–H) wild type (n = 49) , dop-2(lf) (n = 18), dop-

3(lf) (n = 14) and dop-2(lf); dop-3(lf) (n = 20) males were mated into

paralyzed hermaphrodites and mating performance, until inser-

tion or 120 sec, was assayed. (A–C) Time in contact with the

hermaphrodite cuticle between vulva insertion attempts. (D&E)

Time males spent in contact with the vulva during insertion

attempts. (F–H) Number of vulval contacts with a hermaphrodite.

Symbols represent an individual male performance. Open symbols

represent unsuccessful insertions. Line and error bars represent

mean and SEM.

(TIF)

Figure S8 Frequency of spicule thrusts during spicule insertion

attempts, related to Figure 5C. Temporal profiles of spicule thrusts

during 6 seconds of spicule insertion attempts for individual males.

Blue lines denote when the spicule retracts and then thrusts against

the vulval slit. The intervals between the blue lines include the

duration that the spicule depresses the vulval slit. The average and

standard deviation of the spicule thrust frequency are listed above

each profile. In Figure 5C, for each male the distribution of

individual spicule thrust intervals were plotted.

(TIF)

Figure S9 Refractory period, contact frequency, duration in

contact with unproductive mates, and number of fog-2 females

impregnated for D2-like signaling deficient males, related to

Figure 6. (A) The refractory period between ejaculations of wild

type (n = 10) and dop-2(lf); dop-3(lf) (n = 10) males after pairings

with moving hermaphrodites. (B) Average time males spent in

contact with either a female or a paralyzed male, calculated when

pairing one wild type or dop-2; dop-3(lf) males, singly with a one fog-

2(lf) female and 10 paralyzed males. (C) Number of transient

contacts with either a fog-2(lf) female or a paralyzed male

calculated when pairing one wild type or dop-2; dop-3(lf) males

with a single fog-2(lf) female and 10 paralyzed males. Symbols

represent an individual male performance. Open symbols

represent unsuccessful insertions. (A–C) Line and error bars

represent mean and SEM. (D) The time required for a dop-2; dop-3

or a wild type male to contact another worm in a 1.5 cm diameter

bacterial lawn containing 6 paralyzed males and 6 paralyzed

hermaphrodites. Line and error bars represent mean and SD. (E)

Number of fog-2 females impregnated after 4 or 18 hrs when

paired with a single fog-2(lf) female, 1 fog-2(lf) and 10 C. briggsae

hermaphrodites, and 1 fog-2(lf) and 10 C. remanei females. (F) The

average time in contact with males that a wild type and dop-2; dop-

3 male, represented by each symbol, spent when surrounded by

40–50 paralyzed males. Each data subset depicts non-ablated

animals (mock), PCB and p.c.s. ablated animals. p-values calculated

using the Mann-Whitney test. Line and error bars represent mean

and SEM.

(TIF)

Figure S10 (A) The cumulative distance traveled in one minute

by 9 individual wild type or dop-2; dop-3 males. (B) The velocities

plotted respect to time of the 9 individual wild type and dop-2; dop-

3 males depicted in (A).

(TIF)

Figure S11 (A) Representative video montage of Ca+2 imaging

recorded during mating. Each red square represents individual

ROI’s. ROI 1&3 indicate red and green backgrounds respectively;

2&4 indicate ray neuron fluorescence for G-CaMP3 and mDSred
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respectively. (B–F) The mean pixel intensity in arbitrary units (AU)

shown on the Y-axis plotted against time (sec). (B) Raw mean pixel

intensities determined from ROI’s of the green channel. (C) Raw

mean pixel intensities determined from ROI’s of the red channel.

(D) Green and red traces are the background fluorescence from

each channel, subtracted from ray neuron G-CaMP3 and mDSred

fluorescence, respectively. (E) The black solid line indicates the

average normalized red value. (F) Green channel values corrected

to the inverse of the red average values. (G) The %DF/F0

represents the percent flourescent changes from the last frame.

The arbitrary F0 value is the fluorescence value in the first frame

of the recordings.

(TIF)

Table S1 Acetylcholine receptor genes required for ARE-

induced protraction.

(DOCX)

Table S2 Primers used in this study.

(DOCX)

Video S1 DA ray neurons activities increase during vulval

spicule insertion attempts. We measured Ca+2 transients in

Ray5A, Ray7A and Ray9A ray neurons during mating by

comparing the fluorescence emissions of the G-CaMP3 Ca+2

sensor (green channel) and mDSred (red channel) co-expressed

from the DA reuptake transporter promoter (Pdat-1). The ray

neurons are the most posterior cells in the male tail. We applied a

pseudocolor spectrum to the images for better visualization.

Blue = baseline fluorescence; Red = maximum fluorescence.

(WMV)

Video S2 Stimulation of cholinergic spicule neurons increases

Ca+2 transients in Ray7A. We photo-stimulated PCB and SPC

neurons expressing channelrhodopsin-2 (ChR2), a light sensitive

cation channel, while simultaneously recording the G-CaMP3

fluorescence in ray neurons. The PCB and SPC neurons are

stimulated from 4.5 secs until 10.5 secs. G-CaMP3 Ca+2 sensor

(green channel) and mDSred (red channel). We applied a

pseudocolor spectrum to the images for better visualization.

Blue = baseline fluorescence; Red = maximum fluorescence.

(WMV)
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