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Introduction

Monoclonal antibodies have emerged as a valuable approach for 
the treatment of cancer. This is most evident in the case of B 
cell malignancies, where CD20 antibodies have revolutionized 
the standard of care. Rituximab, a chimeric anti-CD20 anti-
body, represents a major breakthrough in the treatment of B cell 
malignancies. It is highly effective in non-Hodgkin lymphoma 
(NHL) and chronic lymphocytic leukemia (CLL) either as 
monotherapy or in combination with chemotherapy regimens.1 
Nevertheless, many patients relapse or progress while being 
treated with rituximab. Moreover, certain B cell malignancies 
[acute lymphocytic leukemia (ALL) and multiple myeloma] do 
not express CD20 and are consequently not amenable to CD20 
modulation. Therefore, there is still a need to expand beyond 
CD20 and identify novel targets for the treatment of B cell leu-
kemias and lymphomas.

Additional B cell markers such as CD19, CD22, CD79B and 
CD37 have the potential to fill the therapeutic void presented by 
rituximab relapse or refractory disease.2-4 CD19 is emerging as a 
promising target due to several factors. It is expressed on a variety 
of B cell lymphomas and leukemias and on normal B cells, but it 
is not found on hematopoietic stem cells, plasma cells, and other 
healthy tissues. CD19 has a broader expression profile than that 
of CD20 and it is thought to be a better target for antibody-drug 
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Despite progress in the treatment of B cell disorders, novel 
treatment approaches are still highly needed. CD19 is a pan-B 
cell marker that is recognized as a potential immunotherapy 
target for B cell disorders, including blood-borne malignancies 
and autoimmune diseases. Although initial attempts to target 
CD19 were unsuccessful, a new wave of investigational agents 
is currently in development. These agents are based on 
novel antibody-based technologies and formats that appear 
to better exploit CD19’s therapeutic potential, and some 
promising clinical study data has already been reported. This 
review provides an overview and the rationale for the most 
advanced CD19-targeting programs in development.
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conjugates (ADC) compared with CD20, which suffers from 
inefficient internalization. CD19 was also shown to be expressed 
in cases where rituximab is ineffective due to CD20 downregu-
lation or other factors.5,6 Lastly, because CD19-targeting agents 
have a mode of action that is distinct from that of anti-CD20 
antibodies, they could complement existing rituximab regimens.

Conventional antibodies targeting CD19 demonstrate lim-
ited activity in preclinical models, despite high CD19 expression 
and antibody internalization.5,7,8 This has led to the evaluation of 
CD19 in the context of novel immunotherapy approaches such 
as bispecific antibodies, ADCs, Fc- engineered antibodies and 
chimeric-antigen receptor (CAR)-transduced T cells (Table 1). 
As several of these programs have already generated promising 
results in clinical trials, CD19 antibody-based therapy has the 
potential to become a valuable addition to the armamentarium 
of hematology drugs.

CD19 Programs in development

Blinatumomab (Amgen): Phase 2 (pivotal). Blinatumomab is 
currently the most advanced CD19 program, with two pivotal 
Phase 2 studies in progress. It belongs to a novel class of bispecific 
antibodies, bispecific T-cell engager (BiTE), that redirect T cells 
to attack cancer cells.9,10 It comprises two scFvs that bind CD3 
and CD19, respectively. Upon simultaneous binding of both tar-
gets, blinatumomab brings a T cell and a target cell in close prox-
imity, which leads to T cell activation and subsequent killing of 
the target cell.

Blinatumomab and other BiTE antibodies have demonstrated 
potent activity in various preclinical models.11,12 In in vitro killing 
assays using peripheral blood mononuclear cells (PBMC), blina-
tumomab had an EC

50
 of 50 pg/ml compared with 11–50 ng/

ml for rituximab.12 In in vivo xenograft models, blinatumomab 
completely prevented tumor formation at cumulative doses of 5 
or 0.5 μg per animal.13

In clinical studies, blinatumomab has been evaluated in 
NHL and ALL. To mitigate side effects and maintain prolonged 
exposure to this rapidly-cleared antibody, blinatumomab is 
given as a continuous infusion, typically for a 4–8 week period. 
In the Phase 1 NHL trial, blinatumomab demonstrated objec-
tive responses across a variety of NHL subtypes.14 In the 22 
patients who received the highest dose of the drug (60 μg/m2/
day), a response rate of 82% was observed, including a complete 
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side effects might be prevented using a lower starting dose in 
high-risk patients (low B:T cell ratio).

Blinatumomab is currently being evaluated in two pivotal tri-
als in ALL. The first trial is a single arm Phase 2 study initiated 
in 2010 that is expected to enroll 130 patients and could lead 
to approval in Europe. The primary endpoint is conversion to 
MRD-negative status, based on PCR tests. Results are expected 
in the later part of 2013. The second pivotal trial is a Phase 2 trial 
in relapsed/refractory ALL. This single arm, 65-patient trial, was 
initiated in late 2011. The primary endpoint is complete response 
rate after 2 cycles and results are expected in 2013. Additional 
studies evaluate blinatumomab in pediatric ALL and DLBCL, 
which is an aggressive subtype of NHL.

SAR3419 (Sanofi/Immunogen): Phase 2. SAR3419 is an 
anti-CD19 ADC currently in Phase 2 studies. The molecule is 
composed of the humanized antibody huB4 conjugated to the 
maytansine derivative DM4 via a cleavable disulfide linker.19 
Upon binding to CD19 on the surface of cells, SAR3419 is inter-
nalized and delivers its toxic payload into the cell, resulting in 
inhibition of microtubule assembly and cell death.

Based on robust preclinical activity in various xenograft mod-
els of NHL, including superiority over rituximab,20 SAR3419 
advanced into clinical testing in 2007. It was evaluated in two 
Phase 1 trials employing two dosing regimens (every 3 weeks 
and weekly) in NHL patients. In the every 3 weeks dosing trial, 
objective responses were seen in 6 (17%) out of 35 evaluable 
patients who received doses in the range of 10–270 mg/m2.21 Of 
note, 20 (57%) additional patients experienced tumor shrinkage. 
In the weekly dosing trial, 44 patients received 10–70 mg/m2 of 
SAR3419. Of 21 patients who received the maximum tolerated 
dose (55 mg/m2), 7 (33%) achieved a response.22

response (CR) rate of 45%. Interestingly, blinatumomab had 
activity in patients with bulky disease and resulted in massive 
T cell infiltration according to repeated biopsies. The study was 
expanded to enroll diffuse large B cell lymphoma (DLBCL) 
patients based on initial signs of clinical activity.

Blinatumomab was evaluated in a Phase 2 trial as consolida-
tion treatment in ALL patients with minimal residual disease 
(MRD).15 MRD status is defined by the presence of a detectable 
amount of leukemia cells in the bone marrow in the absence 
of active disease in the blood. MRD is associated with disease 
aggressiveness and poor prognosis.16,17 In the trial, MRD sta-
tus was evaluated using patient-specific PCR-based assays that 
could detect 1 tumor cell in 104 bone marrow cells. Of 20 
patients enrolled in the trial, 80% experienced a MRD response 
(defined as no evidence of MRD). At a median follow-up of  
405 d, the probability for relapse-free survival was 78%.

Another Phase 2 trial evaluated blinatumomab in relapsed/
refractory ALL. In this dose ranging study, patients were 
assigned to one of three regimens of blinatumomab. The anti-
body generated a complete response (with or without hemato-
logic recovery) in 17 (68%) of 25 evaluable patients. Strikingly, 
all responders also achieved a MRD response, implying that 
their bone marrow had no detectable presence of leukemic 
cells.18

The most common adverse events associated with blinatu-
momab were flu-like symptoms, which were typically observed 
in the first 48 h following treatment initiation. Blinatumomab’s 
safety profile was manageable in the ALL studies, which uti-
lized relatively low doses (5–15 μg/m2/day). In the NHL trial, 
however, investigators encountered a high degree of CNS tox-
icities that were reversible upon drug discontinuation. These 

Table 1. CD19 immunotherapy programs in development

Sponsor Program Class MOA Phase Indications

Amgen Blinatumomab Bispecific scFv- CD19xCD3 (BiTE) T cell recruitment 2 ALL, DLBCL

Sanofi-Aventis SAR3419 Antibody-drug conjugate Delivery of toxic payload 2 DLBCL, ALL

Medimmune (AstraZeneca) MEDI-551 Glyco-engineered antibody Enhanced ADCC 2
DLBCL, CLL, 

MS

Montefiore Medical Center Combotox scFv immunotoxins (CD19, CD22) Delivery of toxic payload 1 ALL

NCI DT2219ARL
Bispecific immunotoxin- CD19/

CD22
Delivery of toxic payload 1

B cell  
malignancies

Morphosys/Xencor MOR-208/Xmab5574 Fc engineered antibody Enhanced ADCC 1 CLL

Xencor/Amgen XmAb-5871 Fc engineered antibody B cell inhibition via CD32B 1 RA, SLE

Bristol-Myers Squibb MDX-1342 Glyco-engineered antibody Enhanced ADCC 1 (on hold) CLL, RA

NCI CD19-CAR Chimeric antigen receptor (CAR) Engineered T cells (CD28) 1 NHL, CLL

University of Pennsylvania CART19 Chimeric antigen receptor (CAR) Engineered T cells (4-1BB) 1 CLL

Seattle Genetics SGN-19A Antibody-drug conjugate Delivery of toxic payload Preclinical

Affimed AFM11
Tetravalent bispecific antibody - 

CD19xCD3
T cell recruitment Preclinical

Glenmark GBR401 Naked antibody  ADCC Preclinical

Macrogenics CD19xCD3 DART Bispecific scFv- CD19xCD3 (DART) T cell recruitment Preclinical

ADCC, antibody-dependent cell-mediated cytotoxicity; ALL, acute lymphoblastic leukemia; BiTE, bispecifc T cell engager; CAR, chimeric antigen recep-
tors; CD, cluster of differentiation; CLL, chronic lymphocytic leukemia; DART, dual-affinity re-targeting; DLBCL, diffuse large B cell lymphoma;  
MS, multiple sclerosis; NHL, non-Hodgkin lymphoma; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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observed in only 7–18% of patients, which may be due to the 
short exposure to Combotox and patients’ dysfunctional immune 
system. A Phase 1 evaluating the combination of Combotox and 
cytarabine in ALL patients started in June 2011.

DT2219ARL (Scott and White Hospital and Clinic): Phase 
1. DT2219ARL, a bispecific immunotoxin targeted to CD19 
and CD22, is composed of two scFv antibodies and a truncated 
form of a diphtheria toxin. Upon binding and internalization, the 
immunotoxin leads to strong inhibition of protein synthesis. In 
preclinical testing, DT2219ARL demonstrated anti-cancer activ-
ity using in vitro and in vivo of B cell malignancies.31 A Phase 1 
for DT2219ARL in B cell malignancies was initiated in 2009 and 
was to be completed in April 2012. No study results have been 
released as of June 2012.

MOR-208/XmAb-5574 (Morphosys/Xencor): Phase 1. 
XmAb-5574 is an Fc-engineered anti-CD19 antibody with 
enhanced FcγRIIIA binding, which results in improved ADCC 
activity. In contrast to MEDI-551 and MDX-1342, XmAb-5574’s 
Fc modification involves changes in the protein sequence of the 
Fc domain rather than the glycosylation pattern.32 In preclini-
cal studies, XmAb-5574 demonstrated in vitro and in vivo anti-
cancer effect primarily mediated by ADCC.33,34 Administration 
of XmAb-5574 to monkeys led to an immediate and dose-related 
B cell depletion that was not observed with a conventional anti-
CD19 antibody.35

XmAb-5574 entered Phase 1 in CLL in December 2010. In 
May 2012, Morphosys and Xencor announced the study com-
pleted enrollment of 30 relapsed/refractory CLL patients.36 
According to the announcement, no dose-limiting toxicity was 
observed and the study protocol was amended to include a period 
of extended dosing for patients responding to treatment. Results 
from the study are expected in the fourth quarter of 2012.

XmAb-5871 (Xencor/Amgen): Phase 1. XmAb-5871 is a 
humanized, Fc-engineered, anti-CD19 antibody for the treat-
ment of autoimmune diseases. The antibody’s Fc domain 
selectively binds FcγRIIB (CD32B), an inhibitory receptor on 
B cells which leads to suppression of B cell activity upon co-
engagement.37 Therefore, XmAb-5871 exploits the physiologic 
inhibitory role of FcγRIIB to regulate the immune system. 
Notably, XmAb-5871 is not expected to cause general B cell 
depletion, which could confer a better safety profile compared 
with B cell depleting antibodies such as rituximab, belimumab 
or other anti-CD19 antibodies. In preclinical models, XmAb-
5871 inhibited antigen-specific B cell activation in vitro and 
demonstrated robust activity in vivo in mice engrafted with 
PBMC from lupus patients.38 XmAb5871 entered Phase 1 study 
in October 2011.

MDX-1342 (Bristol-Myers Squibb): Phase 1 (suspended). 
MDX-1342 is an Fc-engineered human anti-CD19 antibody 
with enhanced ADCC. Similarly to MEDI-551, it is an afucosyl-
ated antibody produced in a fucosyltransferase-deficient cell 
line.39 In preclinical testing, the antibody was active in murine 
lymphoma models and demonstrated profound B cell depletion 
in monkeys.39

MDX-1342 entered clinical testing in 2008. Two Phase 1 
studies evaluated the antibody’s safety and efficacy in CLL and 

SAR3419 is not associated with severe hematologic or gastro-
intestinal toxicities, which are maytansine’s primary toxicities. 
The most clinically-relevant dose limiting toxicity was ocular 
toxicity primarily in the form blurred vision. To minimize inci-
dence of ocular toxicity, a modified schedule (4 weekly doses of 
55 mg/m2 followed by every 2 weeks dosing of 55 mg/m2) has 
been evaluated. This optimized regimen resulted in decreased 
incidence of ocular toxicities with similar activity in the form of 
a 29% response rate in 21 evaluable patients.23

SAR3419 is currently being evaluated in three Phase 2 trials. 
Two trials are evaluating SAR3419 as monotherapy in DLBCL 
and ALL patients, respectively. The third trial is evaluating 
SAR3419 in combination with rituximab in DLBCL patients 
who are rituximab pre-treated.

MEDI-551 (AstraZeneca): Phase 2. MEDI-551 is an 
Fc-engineered humanized CD19 antibody with enhanced anti-
body-dependent cell-mediated cytotoxicity (ADCC). Because 
the antibody is produced in a fucosyltransferase-deficient cell 
line, it is afucosylated and therefore has increased binding to 
FcγRIIIA.24 MEDI-551 was found to mediate strong ADCC 
against multiple cell lines and had potent activity in various 
in vivo models. Compared with rituximab in vivo, MEDI-551 
exhibited superior growth inhibition in some models, although it 
was comparable or inferior to rituximab in others.25

MEDI-551 entered two Phase 1 studies in patients with B cell 
malignancies and scleroderma, respectively. The B cell malig-
nancy study included NHL, CLL and multiple myeloma patients 
who received MEDI-551 at doses of 0.5–12 mg/kg. Of 34 
evaluable patients, 9 (26.5%) achieved an objective response.26 
MEDI-551 appeared to have a benign safety profile and no max-
imum-tolerated dose was reached. The most frequent adverse 
events were infusion reaction and nausea, which were predomi-
nantly grade 1/2, although some grade 3 adverse events were 
observed.

Two large randomized Phase 2 trials comparing MEDI-551 
to rituximab are currently on-going. One trial is evaluating the 
combinations of MEDI-551 and bendamustine vs. rituximab and 
bendamustine in 156 relapsed/refractory CLL patients. The sec-
ond trial is in 170 rituximab-pretreated DLBCL patients, where 
either MEDI-551 or rituximab is added to salvage chemotherapy 
prior to autologous stem cell transplant. Another Phase 2 trial 
is evaluating MEDI-551 compared with interferon-β-1a for the 
treatment of multiple sclerosis.

Combotox (Montefiore Medical Center): Phase 1. Combotox 
is a mixture of two immunotoxins that target CD19 and CD22, 
respectively. Both immunotoxins are scFv antibodies fused to 
deglycosylated ricin A chain. Combotox and each immunotoxin 
demonstrated potent activity in in vitro and in vivo models of B 
cell leukemia.27,28

Combotox has been evaluated in two Phase 1 trials in 
adult and pediatric ALL, respectively. In the pediatric Phase 
1, Combotox was given to 17 patients, 3 of which achieved a 
complete response.29 In the adult ALL study, 1 out of 17 patients 
achieved a partial response.30 Dose limiting toxicities in both 
studies included vascular leak syndrome, liver enzyme elevation 
and pancreatitis. Antibodies against the immunotoxins were 
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sequences incorporated into a BiTE format, CD19XCD3 DART 
was 16–60 fold more potent. A 2nd generation CD19xCD3 
DART with improved cross-reactivity to non-human primates 
and a more frequent dosing regimen is currently in preclinical 
development.

CD19-targeted chimeric-antigen receptors. Chimeric-
antigen receptors (CARs) are T cells that are genetically modi-
fied to express a targeting moiety (most commonly antibodies) 
on their surface. These targeting moieties confer the desired 
specificity toward cells that express a given target, regardless of 
T cell receptor (TCR) specificity.49,50 Typically, the antibody is 
fused with an intracellular signaling domain of the TCR complex 
(CD3-zeta chain). Upon binding target cells via the antibody 
moiety, CARs undergo activation that leads to proliferation, 
cytokine production, and lysis of target cells. Importantly, as 
a cellular treatment, CARs have the potential to replicate and 
expand in vivo upon chimeric receptor engagement, which could 
result in durable anti-tumor effect.

The 1st generation of CARs that entered the clinic demon-
strated disappointing activity stemming from insufficient persis-
tence in the body, loss of antigen receptor expression, low efficacy 
and suboptimal cytokine production.51-53 This result prompted 
the development of 2nd generation CARs that are currently in 
clinical development. To overcome some of the limitations of 
1st gen CARs, 2nd generation versions include endodomains of 
co-stimulatory molecules such as CD28, 4–1BB (also known as 
CD137) and OX40.

Typical production of CARs involves collecting peripheral T 
cells from a patient, genetically engineering the cells to express 
the chimeric receptor and expansion ex vivo. The cells are then 
injected into patients following lymphodepletion in combination 
with IL-2 in some cases. There are currently over 10 clinical trials 
evaluating CD19-targeting CARs,54 some of which have already 
demonstrated profound and sustained anti-cancer activity. Two 
programs that have recently generated positive data are described 
below.

Anti-CD19-CAR (National Cancer Institute): Phase 1. Anti-
CD19-CAR is generated by retroviral transduction of an anti-
CD19 antibody fused to CD3 zeta chain and CD28 endodomain 
as a co-stimulatory factor. Preclinical testing using a murine ver-
sion of the CAR demonstrated robust anti-lymphoma activity.55

A Phase 1 study recruited 8 patients with relapsed B cell 
malignancies (NHL or CLL) who were given autologous anti-
CD19-CAR.56 Patients were lymphodepleted with cyclophospha-
mide and fludarabine prior to CAR administration, which were 
given as a single infusion followed by IL-2 every 8 h until dose 
limiting toxicity was noted.

Of 8 evaluable patients, 6 achieved an objective response (1 
CR, 5 PR), with duration of response of 6–18 mo and some still 
ongoing at the time of publication. One patient died of influenza 
shortly after CAR administration and was consequently excluded 
from the efficacy analysis. Because patients received lymphode-
pleting treatment and IL-2, it is difficult to assess the exact con-
tribution of anti-CD19-CAR to the responses.

Interestingly, one of the responding patients had been previ-
ously treated with anti-CD19-CAR and reported as a case study.57 

rheumatoid arthritis. Preliminary results from the CLL study 
included early signs of activity in the form of 1 partial response 
(PR) out of 9 evaluable patients. A decrease in WBC and CD20+ 
cells was observed across several doses.40 This program appears 
to be terminated because both Phase 1 studies have been put on 
clinical hold without any further disclosure and the program no 
longer appears on the pipeline of Bristol-Myers Squibb.

SGN-CD19A (Seattle Genetics) – Preclinical. SGN-CD19A 
is an anti-CD19 ADC currently in preclinical testing. It is com-
posed of a humanized antibody conjugated to monomethyl 
auristatin E (MMAE) via a protease-sensitive peptide-based 
linker. Upon binding of target cells, SGN-CD19A internalizes 
into cells and releases its payload, leading to microtubule desta-
bilization and cell death. In preclinical testing, SGN-CD19A 
demonstrated robust anti-cancer activity in multiple models, 
including in vivo models of rituximab-resistant cells.5 According 
to Seattle Genetics’ website, SGN-CD19A is expected to enter 
Phase 1 during 2012.41

AFM11 (Affimed): Preclinical. As a bispecific antibody tar-
geting CD3 and CD19, AFM11 is designed to recruit T cells 
for killing CD19 positive cells. It is constructed based on the 
RECRUIT TandAb format, which entails a tetravalent structure 
with two binding sites for each antigen.42 This enables bivalent 
binding to both the effector target (CD3) and the therapeutic 
target (CD19), leading to superior killing activity compared with 
a conventional bivalent format.

In preclinical testing, AFM11 demonstrated potent in vitro 
killing activity using PBMC or T cells as effector cells, without 
any cytotoxicity toward non-target cells. In an in vivo model, 
AFM11 led to a dose-dependent anti-tumor effect using PBMC 
as effector cells.43 AFM11 is expected to enter Phase 1 during 
2013.

GBR401 (Glenmark): Preclinical. GBR 401 is a humanized 
anti-CD19 monoclonal antibody currently in preclinical testing. 
It depletes CD19 positive cells primarily via ADCC. GBR401 
had profound activity in SCID mice adoptively transferred with 
human PBMC.44 GBR401 started IND-enabling studies in 2011 
and is expected to enter clinical study in 2012.45

CD19xCD3 DART (Macrogenics): Preclinical. Dual-
affinity re-targeting (DART) antibodies represent a novel and 
diverse class of bispecific antibodies. A DART molecule com-
prises 2 variable regions with each consisting of a V

H
 and a V

L
 

domain, which is a format similar to BiTE antibodies. In contrast 
to BiTE antibodies, a DART antibody is encoded by 2 differ-
ent polypeptide chains that contain a V

H
 domain from one Fv 

fused to a V
L
 domain from the other Fv.46 A cysteine residue is 

engineered into each polypeptide chain to create a disulfide link 
that provides structural stability. To date, more than 60 DART 
molecules have been produced, including different variants that 
involve fusing DARTs to Fc or IgG.47

A CD19xCD3 DART was designed for optimal recruitment 
of T cells for killing CD19-positive cells. Like blinatumomab, it 
is a bivalent antibody capable of co-engaging a T cell and a target 
cell simultaneously. Using PBMC as effector cells, CD19xCD3 
DART demonstrated potent lysis of CD19-positive cells in a tar-
get-specific manner.48 Interestingly, compared with the same Fv 
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4 mo following administration. Because patients received lym-
phodepleting treatments, CART19’s exact contribution to the 
responses cannot be accurately assessed. The most common side 
effect was lymphopenia, which is expected given the expression 
of CD19 on B cells. Other toxicities included tumor lysis syn-
drome, fever, rigors, chills, liver enzyme elevation and cardiac 
dysfunction. Most adverse events were transient or manageable 
with corticosteroid therapy.

Summary

CD19 immunotherapy is emerging as a promising approach for 
B cell malignancies, as well as inflammatory diseases. With five 
anti-CD19 therapeutics in commercial clinical development 
to date, CD19 is one of the top five targets for antibody-based 
therapies developed by the pharmaceutical industry.61 Even 
more noteworthy is the number of different antibody-based 
approaches being employed for this target, including bispe-
cific antibodies, ADCs, Fc-engineered antibodies and CARs. 
Consequently, the importance of CD19 immunotherapy is not 
only in the direct clinical value, but also in validating novel 
antibody technologies. As numerous anti-CD19 programs have 
demonstrated clinical activity, it is likely that several of these 
agents will eventually receive regulatory approval. As each pro-
gram has a different clinical profile, actual use of the differ-
ent agents across the relevant indications is still hard to predict. 
Blinatumomab, a bispecific T cell engaging antibody is expected 
to be the first CD19 agent to reach the market in 2014 for the 
treatment of ALL.

This patient, who had originally achieved a PR with a duration of 
7 mo with the first CAR treatment, experienced a more durable 
PR (18 mo, ongoing at the time of publication) following retreat-
ment with anti-CD19-CAR.

The most common toxicity was B cell depletion and hypo-
gammaglobulinemia, which were expected given the expression 
of CD19 on B cells. In addition, every patient experienced mul-
tiple grade 3/4 adverse events, including hypotension, fever, renal 
failure and capillary leak syndrome. These toxicities generally 
peaked during the first 8 d after CAR-transduced T cell infu-
sion and resolved over time. There appeared to be a correlation 
between cytokines level (IFNγ and TNF) and toxicity.

CART19 (University of Pennsylvania): Phase 1. CART19 is 
produced by transducing patients’ unselected peripheral T cells 
with a CD19 antibody and the co-stimulatory molecule 4–1BB 
(CD137) signaling domain. In preclinical testing, incorporation 
of 4–1BB’s signaling domain led to improved persistence and 
potency in mice.58 4–1BB was also chosen over CD28 as a stimu-
latory molecule to avoid enhanced IL-2 and TNF-α secretion 
associated with CD28 incorporation.

In a Phase 1 study, CART19 was given to 3 patients with 
CLL over a period of 3 d.59,60 Patients had undergone lymphode-
pletion with bendamustine/rituximab or pentostatin/ cyclo-
phosphamide. Patients were not given IL-2. All three patients 
experienced durable responses, including two CRs that were 
ongoing at the time of publication. Impressively, CART19 
cells expanded and persisted in the blood and bone marrow of 
patients for a follow-up of six months. Moreover, it appears that 
a subset of CART-19 acquired features of central memory cells 
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