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The erythropoietin-producing hepatocellular (Eph) receptors
form the largest family of receptor tyrosine kinases. Upon
interaction of the Eph receptors with their ligands the ephrins,
signaling cascades are initiated downstream of both receptor
and ligand, a feature known as bidirectional signaling. The Eph
receptors and ephrin ligands mediate important roles in
embryonic development, particularly in establishing tissue
organization by mediating cell adhesion or cell repulsion. In
several adult tissues, at least one Eph/ephrin pair is found to play
critical roles in tissue physiology and homeostasis. In recent
years numerous members of this family have gained
considerable attention since changes in their expression levels
are a typical feature in cancer cells. Despite the fact that Eph/
ephrin developmental expression profiles are well documented,
little is known on transcriptional and post-transcriptional
mechanisms that permits their highly specific, graded,
complementary or overlapping expression patterns. Therefore
understanding the transcriptional and post-transcriptional
mechanisms regulating Eph/ephrin expression has far-reaching
significance in biology. This review provides an overview of the
mechanisms regulating Eph/ephrin expression. We highlight
important emerging mechanisms of Eph/ephrin regulation or
misregulation such as epigenetics and miRNAs.

Introduction

The Eph receptors and their ligands, the ephrins, belong to the
largest family of receptor tyrosine kinases.1-3 Ephrin ligands are
divided into two subclasses, A and B, depending on their mode of
attachment to the plasma membrane. The ephrinA subclass
ligands (A1–A5) are tethered to the membrane via a glycosylpho-
sphatidylinositol (GPI) anchor, whereas the ephrinB subclass
ligands (B1–B3) are transmembrane proteins.3 Correspondingly,
there are two Eph receptor subclasses, A and B, that exhibit
preferential affinities for the two ligand subclasses;4 yet promis-
cuity between ligand and receptor subclasses has also been
identified.5 Ephrins and Eph receptors require direct cell-cell
contact for their activation. A unique feature of this family is that
interaction of Eph receptors with their corresponding ephrin

ligands triggers signaling in both the receptor-hosting cell (termed
forward signaling) and the ligand-hosting cell (termed reverse
signaling).6 Most studies to date have focused on the biological
consequences of Eph/ephrin interactions, primarily in a develop-
mental context, where they have been found indispensable for
neural crest cell migration, axon guidance, the formation of tissue
boundaries and vascular development.1,3 Over the last decade
studies have highlighted the involvement of Eph receptors and
ephrins in organ function and in disease in the adult.7-12 For
instance, Eph/ephrins have been implicated in modulating cell
migration, growth and invasiveness in cancer.13

Substantial progress has been made in dissecting the molecular
mechanisms downstream of Eph/ephrin bidirectional signaling,
several of which have shown regulation of the actin cytoskeleton
by small GTPase proteins of the Ras superfamily.14 In addition to
the considerable insight gained into the functioning of this family
of proteins, these studies have correspondingly exposed the highly
complex and diverse gene expression patterns of Eph (eph)
receptors and ephrin (efn) ligands. In many tissues, specific Eph
receptors and ephrin ligands have complementary domains of
expression, whereas in other tissues family members may overlap
in their expression.7,15,16 In addition to their complementary or
overlapping expression domains, the receptor/ligand pairs can also
be expressed in gradients17 indicating sophisticated control
mechanisms. One challenge therefore, has been to understand
the transcriptional and post-transcriptional control of Eph
receptors and ephrin ligands. Not surprisingly, a large extent of
our knowledge on the transcriptional and post-transcriptional
control of Eph receptors and ephrins has been gained form
studying receptor/ligand expression in development or in tumor
growth and metastasis. This review will highlight data that
support clear associations between transcriptional and post-
transcriptional effectors of Eph receptor and ephrin ligand
regulation in developmental processes, adult tissues and in
carcinogenesis.

Transcriptional Regulation

Historically, studies have focused on the transcriptional regula-
tion of several of the Eph receptors, mainly in the context of
developmental segmentation and patterning. Homeobox (HOX)-
containing transcription factors emerged as one of the key
regulators of Eph receptor expression.18-33 These transcription
factors contain a well conserved DNA binding motif, the
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homeodomain, which binds to the promoter of target genes to
regulate their expression. Their spatially restricted expression
patterns34 may have a central role in establishing the graded and
segmental gene expression patterns of Eph receptors during
embryogenesis. There exists evidence for direct regulation of Eph
receptors by HOX proteins. For instance the homeobox proteins
HOXA1 and HOXB1 have been shown to activate rhombomere-
specific ephA2 expression in the developing mouse brain,31 and
HOXA2 was found to regulate ephA4 in rhombomeres 3 and 5.32

While these studies have been performed essentially in the mouse
hindbrain, recent studies on endothelial cells and angiogenesis
have shown the necessity for HOXA9 in the regulation of
ephB4.27 In studying gene regulatory patterns in developing
mouse limbs, it was shown that ephA7 is a direct downstream
target of HOXD13 and HOXA13.35,36

The efnA2 promoter is targeted by otx2, a homeobox
transcription factor.37 In fact, this study demonstrated that
efnA2 regulation by otx2 was important for the patterning and
morphogenesis of the brain. EphA4 and ephrinA4 genes, ephA4
and efnA4, have been shown to be inversely regulated. Specifically,
ephA4 is positively regulated by Twist1 while efnA4 is negatively
regulated by Twist1 and the homeobox homolog, MSX2, in
coronal suture development.38,39 Additional evidence for the
inverse control of ephA4 and efnA expression has been shown in
the establishment of topographic motor projections in the limb by
Lim homeobox proteins.21 While the exact genetic mechanisms
underlying this regulation remain to be identified the authors
show that Lim1 promotes ephA4 gene expression in motor
neurons, while Lmx1b, the LIM homeobox transcription factor
1-β, inhibits ephrinA expression in the mesenchyme.

In addition to HOX-transcription factors, a handful of other
transcription factors have been shown to regulate the expression of
Eph/ephrins. The chick brain factor 1 (CBF1) is shown to directly
regulate efnA5 expression during development of the retinotectal
map in the chick.40 The efnA4 promoter can be bound by the
transcriptional activator nuclear factor-Y (NF-Y) in activated
lymphocytes.41 Likewise, NF-Y, in addition to Meis1 and MAZ
have been shown to physically interact with the efnB2 promoter
following extensive analysis of this promoter in prenatal
angiogenesis.42 Identified transcriptional regulators of ephB2
include TCF4 and β-catenin in the intestinal epithelium.21,43

The transcription factor valentino (val), the zebrafish ortholog of
mouse mafB/Kreisler, a bzip transcription factor, was shown to
establish the mutually exclusive expression domains of ephB4 and
efnB2 in the zebrafish caudal hindbrain.36 The zinc-finger
transcription factor Zic2 was shown to regulate the expression
of ephB1 in retinal ganglion cells; a process essential for the
development of the ipsilateral projection at the mammalian optic
chiasm midline.44 Exciting new evidence shows that Eph/ephrin
gene expression may be modulated by mechanical forces in
different tissue types, including bone and dental pulp.45,46 The
molecular mechanisms underlying mechanical force regulation of
Eph/ephrin expression in these contexts, however, are largely
unknown. Recent data obtained from endothelial progenitor cells
exposed to shear stress showed inverse transcriptional regulation of
efnB2 and ephB4.47,48 The increase in efnB2 expression was found

to be due to Sp1 activation and binding specifically to the efnB2
promoter. These findings put forward the notion that shear stress
induces ephrinB2 gene expression resulting in the differentiation
of endothelial progenitor cells into arterial endothelial cells.

Our understanding of the transcriptional regulation of Eph
receptors and ephrin ligands in developmental processes is in its
early stages. Importantly, over the last decade, our knowledge
surrounding transcriptional regulation of Eph/ephrin expression
in pathological processes has expanded. These discoveries stem
largely from studies on cancer, where misregulation of Eph
receptors and ephrin ligands is a typical consequence.

Misregulation

Transcriptional regulation of ephB2 has been studied extensively
since alterations in its expression levels occur in several
cancers.49-52 Loss of ephB2 expression is observed in many tumors,
and is particularly studied in colonic adenomas and carcino-
mas.53,54 The downregulation of ephB2 in early and advanced
colorectal cancers was found to be due to c-Rel binding to a
negative regulatory element in the ephB2 promoter.52 On the
other hand, upregulation of the EphB2 gene is associated with
pancreatic ductal adenocarcinoma where it has been shown to be
transcriptionally regulated by the Basic transcription factor 3
(BTF3).55

Another Eph receptor commonly linked to cancer and believed
important in tumor metastasis and angiogenesis is ephA2.56,57 The
EphA2 promoter was reported to be a direct transcriptional target
of the Ras-Raf-MAPK pathway in breast cancer cell lines.58,59 In
addition these studies have shown a negative feedback loop
between efnA1 expression and ephA2 levels, indicating that this
regulation may contribute to receptor-ligand reciprocal expression
patterns. Similarly, evidence exists for MAPK dependent
regulation of ephA2 in UV radiated induced apoptosis.60

Altogether these studies show several mechanisms underlying
the misexpression of Eph receptors and ephrins. In addition to the
transcriptional mechanisms controlling Eph/ephrin expression,
epigenetic mechanisms have also been studied.

Epigenetic regulation. A major step in epigenetic regulation of
gene expression is gene inactivation by hypermethylation of CpG
islands located in the promoter regions (for extensive reviews see
refs. 61 and 62). Specific enzymes and methylated DNA binding
proteins play a major role in epigenetic regulation of gene
expression. Alterations in CpG island methylation can affect gene
expression in normal and cancer cells.63-66 The possible regulation
of Eph receptors and ephrin ligands by epigenetics has been under
considerable study. For example, the ephA5 receptor is a major
player in regulating patterning of the topographic connections of
retinal ganglion cells during visual system development.67 New
findings have shown that CpG islands in the ephA5 promoter
display site-specific differences in methylation that could
preferentially activate or repress promoter activity and may
contribute to graded ephA5 gene expression in the tectum.68 More
studies, however, have focused on aberrant methylation patterns
of Eph receptor and ephrin genes in cancer. Methylation of CpG
promoter sequences of ephA1, ephA2, ephA7, ephB2, ephB4 and
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ephB6 has been reported in several human tumors, including
colorectal, prostate and breast cancer.69-73 The EphA3 gene
promoter region isolated from human embryonic kidney cells is
also found to be rich in CpG islands that may regulate ephA3
transcription in hematopoietic tumors.74 A recent study using
acute lymphoblastic leukemia bone marrow samples and cell lines
provided a thorough analysis of CpG island methylation of almost
all of the Eph receptors and ephrin ligands.75 Specifically the
authors demonstrated hypermethylation of the promoter regions
of the ephA2, ephA4, ephA5, ephA6, ephA7, ephA10, ephB1,
ephB2, ephB3 and ephB4 receptors, in addition to the efnA1,
efnA3, efnA5, efnB1 and efnB2 ligands. More detailed analyses
were performed on the EphB4 promoter region showing that
hypermethylation renders ephB4 a tumor suppressor gene in acute
lymphoblastic leukemia.

Altogether, studies on aberrant promoter methylation of Eph
receptors and ephrins are providing promising information on
the epigenetic regulation of this family of genes. One example is
that hypomethylation of the efnB1 promoter may be an early
prognostic event for rheumatoid arthritis.76

Post-Transcriptional Regulation

Over the last few years we and others have shown that ephrins and
Eph receptors can be regulated post-transcriptionally. One
interesting feature of this large family of proteins is that the
3'-untranslated regions (3'-UTRs) of several of the Eph receptors
or the ephrin ligands contain regulatory binding sites that are
highly conserved in vertebrates.77,78 An overview of these studies
showing Eph receptor or ephrin ligand regulation at the level of
mRNA stability or by microRNAs (miRNAs) in physiological and
pathological processes is provided below.

mRNA stability. Putative binding sites for RNA-stabilizing
and RNA-destabilizing factors have been identified in the 3'
untranslated regions (3'-UTR) sequences of several Eph/ephrin
transcripts.77,78 Bioinformatic approaches were used to identify
clusters of motifs consisting of cytoplasmic polyadenylation
elements (CPEs), AU-rich elements (AREs) and HuR binding
sites.78 Despite the presence of these clusters in numerous
members of the Eph/ephrin family, only some were validated.
Using HeLa cervical cancer cells and U373MG glioma cells, this
study showed that the HuR binding sites in the 3'-UTR region of
ephA2, ephA4 and efnA2 served to destabilize the transcripts,
despite the conventional role of HuR as an mRNA-stabilizing
protein. Moreover, the authors report that knockdown of HuR
greatly regulates Eph/ephrin expression at both the mRNA and
protein levels. Altogether, this study suggests that overexpression
of HuR, as found in many progressive tumors, could cause
variation in Eph receptor and ephrin ligand expression and
therefore result in increased tissue invasiveness.

Along the same lines, post-transcriptional regulation of ephB2
may also be important in cancer metastasis. The EphB2 gene has
been implicated as a tumor suppressor gene altered in both
prostate cancer and colorectal cancer.79 Huusko and colleagues80

reported that the DU 145 prostate cancer cell line carries a
truncating mutation of ephB2 and a deletion of the remaining

allele. This truncated version was subject to Nonsense-Mediated
Decay (NMD). Furthermore, the authors identified other
missense and nonsense mutations from clinical prostate cancer
samples. Overall, the authors proposed that EphB2 may have an
essential role in cell migration and maintenance of normal tissue
architecture, and that mutational inactivation of ephB2 may be
important in the progression and metastasis of prostate cancer.
Nonsense and frameshift mutations in the efnb1 gene were
reported to undergo NMD.81 In fact these mutations are
considered to be contributors to the pathogenic mechanisms
reported in the human X-linked malformation syndrome, cranio-
frontonasal syndrome (CFNS). Therefore, accumulating evidence
implicates mRNA stability as a possible regulatory or deregulatory
process in Eph/ephrin expression in cancer and other pathologies.
In addition to these processes miRNAs have also emerged as
post-transcriptional regulators of Eph/ephrin expression in both
developmental and pathophysiological conditions.

miRNAs. Post-transcriptional regulation by miRNAs is
important for many aspects of development, homeostasis and
disease. MicroRNAs constitute a family of short noncoding RNA
molecules of 20 to 25 nucleotides in length that regulate gene
expression at the post-transcriptional level.82,83 In animals,
miRNAs typically target sequences in the transcript 3'-UTRs
that are only partially complementary to the miRNA, thereby
causing a repression in translation of the mRNA.84 Eph receptors
and ephrin ligands have emerged as potential targets for miRNA
regulation. A number of studies have correlated changes in the
expression levels of Eph receptors or ephrin ligands to modula-
tions in specific miRNA levels. For example, the upregulation of
miR-223 following hepatic ischemia injury in mice resulted in a
downregulation of the ephrin-A1 transcript, efnA1.85 Similarly,
miRNA expression profiling coupled with proteomic analysis
following different dietetic regimens has inferred efnA1 and ephA2
as potential targets for miR-122, miR-451 and miR-27.86

To date there is little evidence for the direct regulation of Eph
receptors and ephrin ligands by miRNAs, yet, several members of
the family have predicted miRNA binding sites (Table 1). This
indeed may be a reflection of the complexity of the gradient,
complementary and overlapping expression domains of Eph
receptors and ephrin ligands. A pioneering study in 2008 showed
that ephrin-A3 gene, efnA3, was a direct target of miR-210.87 The
authors concluded that efnA3 modulation by miR-210 had
significant functional consequences for endothelial cell response to
hypoxia, affecting cell survival, migration and differentiation. A
recent report has further shown that miR-210 modulation of
efnA3 underlies one of the molecular mechanisms in preeclamp-
sia.88 We have identified miR-124 as a post-transcriptional
repressor of efnB1 expression in neural stem cells.77 In addition we
presented evidence for the regulation of miR-124 levels by ephrin-
B1 reverse signaling, thus revealing the existence of a mutually
repressive interaction between ephrin-B1 and miR-124. More
recently it has been shown that ephA2 is a direct target of miR-
26b.89 EphA2 is expressed in a number of cancers and has
potential roles in the regulation of cancer cell growth, survival,
migration, invasion and angiogenesis.90,91 The authors demon-
strated that miR-26b may act as a tumor suppressor in glioma by
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directly regulating ephA2 expression. Therefore, miRNAs, which
are involved in the control of a wide range of biological functions
and processes, have now been implicated in post-transcriptionally
regulating members of the Eph/ephrin family.

The challenge to identify additional post-transcriptional regulat-
ing mechanisms for Eph/ephrins continues. Undoubtedly, this
will be fraught by the complexity in Eph/ephrin expression
patterns, and the means to identify cell-specific, context-dependent
regulation. Therefore, future analyses will be valuable for

understanding the changes in Eph/ephrin expression levels in
normal and disease states.

Concluding Remarks

We are only beginning to understand the regulatory mechanisms
governing the expression of Eph receptors and ephrins in
development, in adult tissues, and their misregulation in disease.
While HOX transcription factors have emerged as one of the key
transcriptional regulators of Eph receptor genes in development,
data shows that tissue-specific expression of each member of the
Eph/ephrin family is also dependent on distinct molecular
effectors. This indeed is surprising, given the high conservation
between Eph/ephrin subclass members and the noted redundancy
in their function. As we are only beginning to unravel the
transcriptional control of Ephs and ephrins, it is possible that
future studies may uncover common regulatory mechanisms.

There is an increasing body of evidence for inverse regulation
between Eph receptors and ephrin ligands. Several of the examples
demonstrating an inverse regulation between Eph receptors and
ephrin ligands in developmental processes and in cancer are
discussed in this review.38,39,47,48 Fewer findings exist for co-
regulation of the receptor/ligand pair. One such example revealed
that Eph/ephrins act synergistically in the mouse skin to induce
angiogenesis in response to local hypoxia.92 Curiously, one
emerging notion is that activation of bidirectional signaling may
be one of the cell-specific mechanisms employed to establish
positive (or negative) feedback loops regulating Eph/ephrin
expression. Our findings for the auto-regulation of efnB1
following ephrin-B1 activation in trans by EphB2 in neural
progenitors77 strongly suggest that one of the several outcomes of
the Eph receptor/ephrin bidirectional activation (or inhibition)
may lead to establishing their own highly precise and combin-
atorial expression patterns. If indeed additional future studies
corroborate that Eph/ephrin activity-dependent regulation is
involved in establishing Eph/ephrin complementary expression
domains, these discoveries will help identify the molecular basis of
topographic positioning within the developing embryo and adult.
Moreover, such findings may help explain the prominent
misregulation of the receptors and ligands in cancer.

Further studies on Eph/ephrin RNA processing mechanisms,
including the control of intracellular localization of Eph/ephrin
mRNAs and association with translating ribosomes, and the post-
transcriptional processing of the different members are necessary
to fully understand the mechanisms controlling their expression.
Indeed, it is likely an amalgamation of all these factors, genetic
and epigenetic, that leads to the highly precise and combinatorial
expression patterns of ephs and ephrins. Unraveling the mecha-
nisms that control Eph receptor and ephrin ligand expression
during development will undoubtedly yield important insight into
tumorigenesis, as it is probable that tumors exploit similar
regulatory mechanisms. It is important to take note that
mechanisms beyond transcriptional and post-transcriptional
regulatory processes have been presented in the literature. For
instance, the attenuation of EphA3 function by ephrinA5 in cis
can result in a loss of sensitivity of retinal axons to ephrinAs.94 A

Table 1. Representation of predicted and validated miRNAs targeting Eph
receptors and ephrin ligands

Ephrin/ Eph
receptor

Position:
5’-3’ of 3’-UTR

Predicted miRNA
binding

EphrinA1 235–241 miR-9
miR-22385

miR-122, miR-451 and miR-2786

EphrinA2 NA NA
miR-122, miR-451 and miR-2786

EphrinA3 467–173, 474–480,
791–797

miR-30, miR-130, miR-153
miR-21087

EphrinA4 NA* NA*

EphrinA5 NA NA

EphrinA6 NA* NA*

EphrinA7 NA* NA*

EphrinB1 195–201 miR-12477

EphrinB2 1880–1886, 2871–2877,
2952–2958, 3078–3084,

miR-153, miR-182,
miR-200, miR-1 and miR-206,

EphrinB3 901–907 miR-124

EphA1 106–112 miR-29

EphA2 24–30
729–735

miR-2689

miR-141 and miR-200

EphA3 NA* NA*

EphA4 36–42, 48–54 let-7, miR-17

EphA5 NA* NA*

EphA6 NA* NA*

EphA7 776–782, 1815–1821,
1817–1823

miR-137, miR-133, miR-9

EphA8 550–556, 1162–1168,
1322–1328, 1323–1329

miR-138, miR-218,
miR-25/32/92, miR-137

EphA9 NA NA

EphB1 NA* NA*

EphB2 1403–1409 miR-128

EphB3 775–781 miR-137

EphB4 107–113, 317–323,
318–324

miR-17/93/106, miR-133, miR-9

EphB5 NA NA

EphB6 NA* NA*

Predictions of the 5’-3’ mRNA sequence position and corresponding miRNA
are assessed by TargetScan 5.1. Sites shown have a high probability of
preferential conservation between human, rhesus, chimpanzee and mouse.
Potential miRNAs derived from experimental evidence are italicized.
Validated miRNAs are in bold. NA, Eph receptor or ephrin ligand gene not
in TargetScan database; NA*, no highly conserved sites.
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similar cis-mediated attenuation of Eph receptors function has
been reported during spinal motor neuron selection of a limb
trajectory.95 Interestingly, cis attenuation of Eph signaling by co-
expressed ephrins has not been widely reported in cancer settings,
perhaps owing to the fact that expression of receptors and ligands
is usually inversely regulated. Data also exists for bidirectional
activity dependent regulation in Eph/ephrin localization and
expression. One example of this complexity is found in the work
published by Bush and Soriano93 showing that the mosaic
expression of efnB1 in ephrin-B1 heterozygote animals leads to
upregulation of the EphB3 receptor in adjacent, non-ephrin-B1
expressing cells through relief of EphB3 endocytosis and
degradation. This finding supports the notion that the Eph/
ephrin signaling cascade is involved in setting up complementary
domains via post-transductional mechanisms. These data high-
light how Eph/ephrin interactions can regulate their functional
expression patterns and more importantly offer an additional level
in the complexity of understanding the establishment and
maintenance in Eph/ephrin expression domains.

The changes in expression profiles of Eph receptors and ephrin
ligands in several cancers have made this family of proteins prime

targets for cancer prognosis and therapies.96-99 However, what is
important to note is that Eph/ephrins are expressed in numerous
organs through adulthood; therefore, any therapy aimed at
reducing their expression systemically to treat pathologies will
need to account for their requirement in normal tissues.
Therefore, details on tissue-specific molecular mechanisms of
Eph/ephrin gene regulation will be important to develop more
sophisticated and precise therapeutics. Future work should address
these important questions to resolve how Eph/ephrin gene
expression is controlled in highly diverse biological settings and
in cancer.
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