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β1 integrin
An emerging player in the modulation of tumorigenesis and response to therapy
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Historically, a hallmark of tumori-
genesis was the ability to grow

in an anchorage-independent manner.
Hence, tumors were thought to pro-
liferate and survive independently of
integrin attachment to the substratum.
However, recent data suggest that inte-
grins regulate not only tumor cell pro-
liferation, survival and migration, but
may also influence their response to
anti-cancer agents. Interestingly, these
influences are largely masked by growth
of tumor cells in the standard, yet
artificial, environment of 2D cell culture,
but are readily apparent under 3D in
vitro culture conditions and in tumor
growth in vivo. We, and others, have
recently demonstrated that the β1 inte-
grin subunit controls the growth and
invasion of prostate tumor cells in 3D
culture conditions. Recently, the impor-
tance of integrins has also been demon-
strated using tissue specific conditional
knockout strategies in transgenic mouse
tumor models, where they control pri-
mary tumor growth and dictate the site of
metastatic spread. Furthermore, integrin-
extracellular matrix interactions may
modulate the response of tumors to
standard chemotherapy agents or radia-
tion. Taken together, these results high-
light the important role of integrins in
regulating tumor growth and metastasis;
however, point out that the evaluation of
their contribution to these processes
requires appropriate contextual modeling.

Integrins

Integrins are heterodimeric cell surface
molecules that link the internal signaling

components of the cytoskeleton to the
extracellular proteinacious microenviron-
ment. There are 18 a and 8 β subunits,
comprising 24 unique integrin receptor
heterodimers with varied affinities for
binding different extracellular matrix
(ECM) proteins.1,2 Integrins are capable
of mediating signal transduction through
the cell membrane in both directions:
binding of integrins to ECM ligands
results in cell signals that have effects on
proliferation, survival, migration and gene
expression (termed outside-in signaling)
and signals from within the cell, as a result
of, for example growth factor stimulation,
can act to regulate integrin ligand-binding
affinity and cell adhesion (termed inside-
out signaling).1,3 Signals from the micro-
environment are transmitted through
integrins with the aid of a variety of
signaling partners such as adaptor pro-
teins and intracellular protein kinases
including focal adhesion kinase (FAK)4-8

and integrin-linked kinase (ILK).9-13

By far the most commonly found
subchain in integrin heterodimers is β1
integrin, which has been shown to pair
with a variety of different a subchains
to form 12 different known integrins.1,2

Importantly, the integrin heterodimers
that predominantly bind the ECM pro-
teins that are upregulated in tumors
contain the β1 subchain.14,15 A number
of studies have demonstrated that the
ECM composition in tumors is vastly
different than that of its normal tissue
counterparts, with generally decreased
levels of the basement membrane ECM
proteins laminin and collagen IV, and
increased levels of ECM proteins asso-
ciated with remodeling tissues such as
fibronectin, collagen I and tenascin-C.16-28
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As we have an ongoing interest in prostate
cancer progression and metastasis, we
became interested in the potential regu-
lation of prostate tumor growth by ECM-
β1 integrin interactions. Similar to other
tumor types, prostate tumors have been
shown to have decreased expression of
collagen VII and increased expression of
fibronectin.29-31 Although β1 integrin has
been reported to be expressed in normal
prostate epithelium,32 its expression is
increased in prostate tumor cells33,34 and
is correlated with worse overall outcomes
in prostate carcinoma patients.35 β1 inte-
grin has also been shown to be the predo-
minant β integrin expressed in prostate
cancer cell lines.36 Given these reported
associations, we were prompted to further
examine the role of β1 integrin in prostate
tumor growth and metastasis using relevant
preclinical models.

b1 Integrin Regulates
Tumorigenesis in 3D Contexts

Traditionally, analysis of tumor cell
growth and phenotype has been performed

using in vitro models based on 2D
adherent cell growth, likely as a result of
the relative ease of this technique. In
reality, growth in a 2D monolayer does
not take into account environmental
stimuli that tumor cells likely experience
in vivo, and cells are known to form focal
adhesions whereby integrins and their
signal transduction partners are clustered
(Fig. 1). Additionally, stromal-derived
signals, including those from other tumor
resident cells or stromally produced ECM
proteins would be absent under these
conditions. While the most appropriate
3D tumor growth modeling would be
using in vivo xenograft or orthotopic
tumor growth in animal models, the value
of assessing tumor growth using 3D in
vitro modeling techniques has been
recently discussed.37,38 This is primarily
performed in the context of artificial
microenvironments that enforce 3D
growth of cells, such as soft agarose, or
more recently using more relevant base-
ment membrane ECM extracts produced
by tumor cells (e.g., matrigel). Although
not without its limitations, in vitro 3D

tumor cell growth does allow for more
appropriate assessment of the contribu-
tion of tumor microenvironmental factors
such as ECM and integrin signaling to
tumor growth and invasion. In this
context, cells predominantly grow as
spheroids with numerous cell-cell contacts
in place and no evidence of focal adhe-
sions but instead sites of focal contacts
(Fig. 1). It is likely that ECM-integrin
engagement plays a significant role in the
prevention of detachment-mediated death
(termed anoikis) in cells grown in these
contexts.

Our group has recently published that
depletion of β1 integrin in the PC3
prostate carcinoma cell line, abolished
the ability of these tumor cells to grow
in 3D anchorage-independent growth
assays in soft agarose and impaired their
3D growth in matrigel.39 We further
observed that inhibition of fibronectin-
β1 integrin interactions following use
of neutralizing antibodies to fibronectin
resulted in a similar inhibition of
anchorage-independent growth, suggest-
ing that this ECM-integrin interaction
plays an important role in this process.
Interestingly, we saw no difference in the
growth or survival of β1-depleted tumor
cells [including prostate,39 lung and neuro-
blastoma tumor lines (unpublished per-
sonal findings)], following growth in 2D
culture conditions, possibly as a result of
other β-subunit containing integrins com-
pensating for lack of β1 under these
conditions Alternatively, the fact that 2D
culture promotes clustering of integrins
and their signaling partners at sites of
focal adhesions may result in cell signaling
that significantly differs than that which
occurs in 3D growth.

Goel et al. have recently published
findings that also suggest a role for β1
integrin in regulating 3D growth of
prostate tumor cells.40 They also observed
reduced colony formation in 3D matrigel
by β1 integrin-depleted prostate tumor
cells.40 However in contrast to our find-
ings, they observed that depletion of β1
integrin resulted in equal numbers of
tumor cell colonies, but with reduced
colony size in their 3D matrigel assays.
The reduced colony size was attributed to
a proliferative defect resulting from lack
of Gli1 expression (a transcription factor

Figure 1. Tumor cell growth in 2D vs. 3D results in differential integrin sublocalization. Cells grown
in 2D tissue culture form monolayers which result in fewer cell-cell contact points, and
the clustering of integrins and their associated signal transduction molecules at sites of focal
adhesion contacts between the cells and the culture surface. In contrast, growth in 3D promotes
cell growth in clusters or spheroids whereby cell-cell contacts are increased, and integrins are not
clustered at sites of focal contacts, but may be more dispersed across the cell membrane in
association with ECM proteins at a multitude of points. This lack of integrin clustering likely leads to
different signal transduction events in cells grown in 3D as compared with those grown in 2D and
hence may render the cell more dependent on ECM engagement by integrins to overcome anoikis.
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that functions as an effector of hedgehog
signaling to modulate cell proliferation
and apoptosis), in β1 integrin-depleted
cells. Interestingly, we did not observe
proliferative defects in our 3D growth
model assays (which used growth factor
depleted matrigel), suggesting that differ-
ences in the composition of the micro-
environment, for example, the presence
of various growth factors, may also influ-
ence the observed β1 integrin-controlled
phenotypes.

When considering differences between
2D culture conditions and 3D culture
systems such as soft agar or matrigel, one
should note that these environments are
not necessarily identical in terms of the
rigidity of the surfaces that are in contact
with the cells. Cells cultured in 3D
environments in vitro are in contact with
substrate that is conceivably less rigid than
that encountered when cells are directly
plated onto a tissue culture plate, be it
uncoated or even coated with ECM.
Thus the elasticity of the growth environ-
ment may also be considered as a con-
tributing factor to phenotypic differences
observed in 2D vs. 3D assay conditions.
Indeed, the importance of ECM elasticity
has recently been noted for a variety
of processes including transcription and
replication,41 and for the self-renewal and
differentiation of stem cell populations in
culture,42-44 among others. Interestingly,
the study by Kocgozlu et al.41 indicated
that substrate rigidity affected both integ-
rin and FAK activation, with a small
window of optimal substrate elasticity for
the activation of FAK to occur. A similar
phenomenon was also observed by Wei
and colleagues, who saw an inhibition of
β1-integrin activation and decreased phos-
phorylation of FAK on soft substrate.45

In contrast, the study by Du et al.44

indicated that the reliance on specific
ECM elasticity for cell lineage specificity
was due to increased activation and inter-
nalization of β1 integrin on soft ECM
substrates. The differences seen in integrin
activation in these studies suggests that
integrin regulation of the observed pheno-
types may be cell type-dependent in
addition to being influenced by elasticity
and hence these factors should also be
considered when examining the role of
integrin signaling in vitro.

b1 Integrin Control
of Tumor Growth

in 3D In Vivo Models

Tumor growth can be regulated at three
different levels: tumor initiation usually
resulting from deregulated cell prolifera-
tion following acquisition of genetic
mutations; tumor progression, including
the ability to induce angiogenesis; and
tumor invasion whereby tumor cells gain
enhanced migratory and invasive abilities
to access the circulation and intravasate
into new sites of metastatic tumor
growth. Recently, a significant role for
β1 integrin in tumor initiation has been
demonstrated in transgenic mouse models
of breast cancer. In this system, disrup-
tion of β1 integrin specifically in the
mammary epithelium essentially blocked
the polyomavirus middle T antigen (PyV
MT) oncogene-driven tumorigenic pro-
cess.46 Importantly, in this highly tumori-
genic background (PyV MT oncogene),
not only was initiation of tumors pre-
vented, but there was also no evidence
of hyperplasia in β1-depleted mammary
epithelium. Similar studies in the PyV
MT background in which the down-
stream integrin associated kinase FAK
was specifically deleted in mammary
epithelium, also resulted in inhibition of
breast tumor progression; however, in
these animals, evidence of pre-neoplastic
lesions was present.47 This suggests that
although FAK contributes downstream of
β1 integrin in modulating initiation and
progression of breast tumors, β1 integrin
has additional roles that appear to be
independent of FAK in mediating tumor
initiation. Our data also suggested that
β1 integrin played a significant role in the
initiation of colony formation in the 3D
assays; however, future work is required
to elucidate the mechanisms by which β1
integrin controls the process of tumor
initiation.

Interestingly, in contrast to the results
observed in transgenic mouse mammary
tumor models driven by PyV MT,
mammary-specific deletion of β1 integrin
in activated ErbB2 oncogene driven
mammary tumors readily formed tumors
with only a one month delay in onset.48

The β1 integrin-deleted ErbB2 tumors
did however have significant defects in

tumor progression, with significantly
smaller, less angiogenic tumors developing
compared with β1 integrin-expressing
control tumors. These findings support
the notion that the contribution of β1
integrin to tumor initiation and progres-
sion is modulated by other important
factors, such as growth factor stimula-
tion, or the type of oncogenic tumor
transformation.

b1 Integrin Regulates
Tumor Cell Invasion

As tumors progress, they acquire increa-
sed invasion capabilities, in part via their
ability to induce degradation of their
surrounding extracellular environment.
This is primarily mediated through their
ability to regulate matrix metalloproteinase
(MMP) and tissue inhibitor of metallo-
proteinase (TIMP) expression, thereby
facilitating ECM degradation and tumor
cell migration.49-51 In addition to modu-
lation of anchorage-independent growth,
we also identified an important role for
β1 integrin in regulating tumor cell
invasion through 3D ECM gels.39 We
elucidated a putative mechanism whereby
β1 integrin-depleted prostate tumor cells
expressed decreased levels of MMP-9
with concomitant increased expression of
TIMP2 as compared with control cells
following culture on fibronectin. This
suggests that β1-containing integrins,
likely a5β1 which is one of the primary
fibronectin receptors in tumor cells, are
responsible for the upregulation of MMP-
9. Previous studies have shown that
fibronectin can induce MMP-9 expression
in a a5 integrin-dependent manner in
both breast and laryngeal carcinoma cells
supporting this hypothesis.52,53 In con-
junction with suppressing the expression
of the endogenous MMP inhibitor TIMP-
2, this would result in an overall enhance-
ment of protease activity and invasive
capabilities. Although we were unable to
find published evidence that β1 integrin-
fibronectin interaction controls TIMP-2
expression in tumor cells, this has been
shown to be the case in T-cells where
fibronectin engagement significantly inhi-
bited TIMP-2 expression.54 Interestingly,
we did not observe β1 integrin-regulated
suppression of TIMP-2 expression when
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the shRNA transduced PC3 cell clones
were cultured on plastic as similar levels of
TIMP-2 expression was observed in con-
trol and β1 integrin depleted PC3 cells
(unpublished personal data). This further
highlights the importance of β1 integrin
in regulating tumor invasion particularly
in the context of tumor-associated ECM
proteins such as fibronectin. The fibro-
nectin-β1 integrin regulation of MMP-9
(or lack of it in the case of β1-integrin
depleted cells) may also be directly con-
tributing to the colony formation in soft
agar, as other studies have shown that
MMP-9 is required for STAT3C-induced
transformation (a constitutively active form
of the transcription factor STAT3 which
promotes growth in 3D conditions) and
anchorage-independent growth of normal
mammary epithelial cells.55 These observa-
tions support the contention that regulation
of these proteins is specific to integrin-
fibronectin interactions in our system.

Important roles for other β1-containing
integrins, namely a1β1 and a2β1 in
modulating tumor cell invasion have also
been demonstrated in hepatocellular car-
cinoma cells;56 however, no direct link to
regulation of MMP activity by integrin-
ECM engagement was investigated in
these studies. Additional evidence for β1-
subunit containing integrin control of
tumor cell invasion has also been demon-
strated in melanoma,57 osteosarcoma,58

glioma,59,60 ovarian carcinoma61 and hepa-
tocellular carcinoma.62 More recently, a
direct interaction between the β1 integrin
cytoplasmic tail and the GTPase Rab25
has been demonstrated.63 Rab25 has also
been linked to tumor aggressiveness and
metastasis and can promote directional
migration on 3D matrices by promoting
localization of vesicles that deliver integrins
to the plasma membrane at the cell front.
Interestingly, this Rab25-driven tumor-cell
invasion is strongly dependent on ligation of
fibronectin by a5β1 integrin and the capa-
city of Rab25 to interact with β1 integrin,
again supporting our contention that fibro-
nectin-β1 integrin interactions may be
important in prostate tumor cell invasion.

b1 Integrin in Metastasis

In addition to a putative role for β1 inte-
grin in tumor initiation and progression,

there is also increasing evidence that β1
integrin may regulate tumor metastasis in
vivo. For example, in transgenic mouse
mammary tumor models driven by the
activated ErbB2 oncogene, mammary-
specific deletion of β1 integrin resulted
in a significant reduction in the number of
lung metastases that spontaneously arose
in the β1 integrin-deleted ErbB2 expres-
sing animals.48 β1 integrin is also upregu-
lated in a number of human tumor cells,64

and its overexpression appears to correlate
with more aggressive phenotypes. For
example, in a study evaluating expression
of the integrin heterodimer a3β1 in paired
primary and metastatic breast cancer
biopsies, there was a significant increase
in expression in the metastatic lesions
compared with their counterpart primary
tumors.65 Increased β1 integrin expression
has also been found in ovarian carcinoma
cells isolated from pleural effusions as
compared with primary ovarian tumor
cells.66 The β1 integrin-fibronectin inter-
action has also been suggested to be
important in determining metastatic
potential, as a study looking at breast
cancer cells with varying degrees of
metastatic ability showed a fibronectin-
dependent, β1 integrin-mediated control
over the ability of metastatic cells to sense
the rigidity of the microenvironment;67

an effect that could contribute to the
increased metastatic ability of cells expres-
sing higher levels of β1 integrin.

There is also experimental support for
a role of specific integrin subunits in
regulating the sites of tumor metastasis.
For example, a4β1 positive melanoma
cells were found to establish bone meta-
stases, while a4β1 negative cells only
readily formed pulmonary metastases.68

Similarly, a2β1 or a3β1 overexpression
was correlated with the ability of gastric
carcinoma cells to spread specifically to
the peritoneum.69 The interaction of
overexpressed a5β1 with fibronectin also
facilitated the metastasis of Chinese
hamster ovary cells to the kidney in mouse
models, while the counterpart parental
cells did not metastasize to the kidneys.70

The results of these and other studies
suggest targeted inhibition of β1 integrins
may limit the not only the metastatic
spread of certain tumor types, but also
their spread to particular organ sites.

b1 Integrin-ECM Engagement May
Influence Response to Therapy

There is increasing evidence that not
only does β1 integrin modulate tumor
initiation and progression, but it may
also regulate tumor cell response to
chemo- and radiation therapy. β1 integrin-
fibronectin interactions have been shown
to confer resistance of multiple myeloma
cells to a number of chemotherapy
agents including doxorubicin, melphalan
and etoposide.71 β1 integrin-fibronectin
induced resistance to etoposide was also
observed in Burkitt lymphoma,72 and in
small cell lung carcinoma (SCLC).73

SCLC was also found to be resistant
to doxorubicin, etoposide, cisplatinum
and cyclophosphamide following similar
engagement of β1 integrins by fibronec-
tin.73 At least with respect to etoposide
treatment, β1 integrin engagement of
fibronectin inhibited caspase-3 induced
apoptosis of SCLC.74 Ligation of β1
integrins by ECM ligand also significantly
inhibited the apoptosis induced by the
microtubule-directed chemotherapy drugs
paclitaxel and vincristine in two different
breast cancer cell lines.75 The β1 integrin-
mediated inhibition of apoptosis in these
cases was mediated via inhibition of a
PI3K-dependent cytochrome c release from
the mitochondria in response to drug
treatment.

β1 integrin engagement has also been
associated with increased resistance to
radiation treatment. In lung cancer cell
lines, radiation treatment was found to
induce increased expression of β1 integrin
and its downstream signaling partner
ILK,76 which in turn resulted in modu-
lation of GSK-3β and Akt activities to
enhance cell survival post irradiation.77

Similar observations were made in glioma
cells, where β1 integrin was found to
confer enhanced survival in response to
radiation via its ability to activate PI3K
and Akt.78 The β1 integrin induced
activation of PI3K was also observed as a
mechanism of resistance to radiation and
etoposide in SCLC cells by overriding
the G2/M checkpoint induced following
DNA damage by the agents hence facili-
tating continued proliferation of these
cells in the presence of this damage.79

Interestingly, in a breast cancer xenograft,
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targeted inhibition of β1 integrin with an
inhibitory antibody post-radiation, effec-
tively enhanced tumor growth inhibition,
with tumor cells exhibiting decreased
Akt activity following combination treat-
ment.80 This enhanced inhibitory acti-
vity following blockade of β1 integrin
allowed for a lower efficacious dose
of radiation to be used with similar
levels of tumor growth inhibition being
achieved.80 Importantly, the influence of
2D vs. 3D assay systems on the tumor cell
response to radiation has also been recently
discussed.81 Taken together, these results
highlight the importance of ECM-integrin
engagement in response to standard anti-
cancer treatments and suggest that evalua-
tion of the role of these mechanisms in
cancer patients is warranted.

As more pre-clinical data supporting
the important role of β1 integrin in
modulating tumor growth, progression
and response to therapies is unveiled, it
is not surprising that novel approaches
targeting integrins or their signaling path-
way are beginning to be evaluated as
targeted anti-cancer agents. Targeting of
ILK,82-85 or more recently FAK,86-91 with
small molecule tyrosine kinase inhibitors

effectively inhibits tumor growth in a
variety of xenograft models. Specific
inhibitors to the a5β1 integrin hetero-
dimer have also been shown to attenuate
glioma growth and invasion in organ
slice cultures92 and impair colorectal
cancer metastases in xenograft models.93

However, clinical evaluation of these
agents appears to still be in its early stages,
so we will have to await the outcomes
reporting their ability to act as effective
anti-cancer agents.

Summary

Given the increasing evidence supporting
the role of β1 integrins in tumorigenesis
and response to therapy, future work
elucidating the specific mechanisms of
these responses is warranted. As clearly
indicated by our results and those of
others, however, the experimental condi-
tions under which the influence of β1
integrin is evaluated can affect the
observed outcome. Culture in 2D creates
a rather artificial environment whereby
cells grow in a monolayer attached to
substratum by integrins that are clustered,
along with their signaling partners, in focal

adhesions with fewer cell-cell contacts
being formed. Growth in 3D however,
creates a situation whereby significant
increases in cell-cell contact points are
created, and integrins likely engage ECM
ligands in order to overcome anoikis-
mediated apoptosis signals and survive in
this context (Fig. 1). Furthermore, given
the possible influences of various micro-
environmental factors such as the varied
composition and elasticity of ECM, along
with the presence of various growth
factors, definitive analysis of specific
mechanisms of β1 integrin regulation of
tumorigenic processes will require model-
ing in the most appropriate contextual
environments that best mimics each
tumor type or treatment setting if we are
to truly understand its role in tumor
growth and metastasis in patients.
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