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Efficiency of trans-ethnic genome-wide meta-analysis
and fine-mapping

Rick Twee-Hee Ong1, Xu Wang1, Xuanyao Liu1,2 and Yik-Ying Teo*,1,2,3,4,5

Genome-wide association studies have seen unprecedented success in identifying genetic loci that correlate with disease

susceptibility and severity. Early phases of these studies have predominantly been performed in the Caucasian populations.

The next phase in medical genetics is to extend the exploration across genetically diverse populations to leverage on larger

sample sizes for locating smaller effects that may be present in most human populations. However, discoveries from these

studies do not actually reveal the underlying functional changes to the human genome, but only point to broad regions

stipulated by the extent of linkage disequilibrium (LD). Fine-mapping the functional variants can, however, be hampered

by extensive LD, which can yield multiple perfect surrogates that are not distinguishable from the underlying causal variants,

although several studies have illustrated the value of relying on multiple genetically diverse populations to narrow the

candidate regions where the functional variants can be found in. Here, we explore the efficiency of trans-ethnic meta-analysis

in discovering genetic association and in fine-mapping the causal variants by asking: are there any population diversity metrics

that will be useful for: (i) identifying the populations or genomic regions where meta-analysis are likely to be more successful

for discovering associations?; (ii) identifying the populations or loci to perform deep targeted sequencing for the purpose of

fine-mapping causal variants? Our results indicate that simple metrics like the FST or the population specificity of haplotypes

are useful in trans-ethnic meta-analyses, while the degree of haplotype sharing and LD variation are informative of the

efficiency in trans-ethnic fine-mapping.
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INTRODUCTION

Genome-wide association studies (GWAS) have been successful at
identifying genetic loci that correlate with disease susceptibility and
severity.1,2 Early phases of GWAS and genome-wide meta-analyses
(GWMA) have predominantly been performed in the Caucasian
populations, although increasingly there are reports of GWAS and
GWMA involving non-Caucasian communities from Africa,3,4 East
and South Asia,5–7 and admixed African-Americans.8,9 These have
validated many previous discoveries made in the Caucasian popula-
tions, as well as identified and even guided the discovery of previously
unsuspected loci that are either likely to be ancestry specific or are
present at higher frequencies in the non-Caucasian populations. The
KCNQ1 association with Type 2 diabetes (T2D) is a classic example
where the initial discovery was made in East Asians and subsequently
validated in Caucasians, as the risk alleles of the associated single-
nucleotide polymorphisms (SNPs) were at higher frequencies in East
Asian populations than in Europeans.10,11 The next phase in genome-
wide studies will be to meta-analyze as many of the available GWAS as
possible, to increase sample sizes for locating the smaller effects that
will be generally present in most human populations, as well as to
leverage on the differential allele frequency spectrum to identify loci
like KCNQ1. However, this means such meta-analyses will take place
across genetically diverse populations, which presents additional
challenges owing to the use of tagging SNPs in GWAS.12,13

Although the extent of the phenotypic variance that has been
accounted for by discoveries made from these studies remained
moderate at best,14 the belief is that identifying the causative
variants will increase the heritability estimates, as has recently been
shown in the fine-mapping of known loci for low-density lipoprotein
cholesterol, which effectively doubled the variance estimates.15

However, fine-mapping causal variants suffer from the conundrum
of long-range linkage disequilibrium (LD), where a stretch of high
LD means there may be several neighboring markers that are
indistinguishable from the unknown functional polymorphism
simply on the basis of the strength of phenotypic association.13,16

Integrating data from multiple diverse populations has been shown to
increase the efficiency of fine-mapping by leveraging on the
differential patterns of LD, identifying SNPs that are consistent with
the observed association signals in the separate populations.16

Given that both the primary goal of discovering genotype–
phenotype associations and the secondary aim of localizing the
functional variants are converging on meta-analyzing multiple geneti-
cally diverse populations, the natural question will be whether there
are particular combinations of populations that increase the efficiency
of the trans-ethnic meta-analyses. For example, are there any
population diversity metrics that will be informative for: (i) identify-
ing the populations or genomic regions where meta-analysis is likely
to be more successful, or conversely to provide possible insight into a
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failure to reproduce known associations in populations of different
ancestries; (ii) identifying the populations or loci to perform trans-
ethnic fine-mapping, given that such experiments typically require
costly deep targeted sequencing of either a reference population or of
a small set of cases and controls.

The FST is the most commonly utilized metric to assess population
diversity. At the single-SNP level, the FST measures inter-population
variation in the frequency of an allele; whereas at the population level,
the genome-wide FST provides a numerical quantification of genetic
distance between populations. These applications of the FST metric
fundamentally query each SNP individually and may not provide an
indication of the localized genomic variation between populations. In
interrogating the human genome for phenotypic associations, func-
tional variants may have arose as a consequence of selective adapta-
tion to hostile environments due to climate, diet and pathogens, and
this may produce localized genetic differences between populations
that may not be adequately represented with genome-wide metrics of
population diversity.17

Here, we perform an investigation into the correlation between
different population diversity metrics with the efficiency of trans-ethnic
meta-analyses for the dual purposes of discovering associations and
fine-mapping causal variants. We evaluate four population diversity
metrics that rely on comparing one of the following using SNPs that
are found in the vicinity of a simulated causal variant: (i) the variation
in the allele frequencies at each SNP across the populations (regional
FST); (ii) the degree of haplotype similarity in the genomic region
across the populations (haplotype entropy and haplotype similarity);
and (iii) the differential patterns of LD between the populations
(varLD). We subsequently apply these metrics to consider 43 estab-
lished loci for T2D, and investigate which of these loci are likely
to benefit the most from trans-ethnic analyses.

MATERIALS AND METHODS

Data sets
To simulate case–control data, the phased haplotypes for 988 individuals in the

11 populations in Phase 3 of the International HapMap Project 18 were used as

seed data. This consists of 1 387 394 SNPs that are found on either the

Affymetrix 6.0 or the Illumina 1M genotyping microarrays and are present in

all 11 populations. The population-averaged recombination rates from Phase 2

of the HapMap19 were also used to perform the simulations.

Case–control simulation
We simulated case–control data for each of the 11 populations with the

HAPGEN20 program using seed haplotypes from the corresponding HapMap 3

population, with effective population sizes of 11418 for populations of

Caucasian and South Asian ancestries (CEU, GIH, MEX and TSI); 14 269

for East Asian populations (CHB, CHD and JPT); and 17 469 for populations

with African ancestries (ASW, LWK, MKK and YRI). To generate genotype

data for samples with a dichotomous phenotype outcome, we identify the set

of SNPs that are not present on the Illumina 1M BeadChip (thus effectively the

SNPs that are found on the Affymetrix 6.0 array only) and are polymorphic in

all 11 populations as the set of possible causal variants. Each candidate causal

variant is categorized according to the minor allele frequency (MAF) in CEU

into three MAF bins: (i) high frequency defined as 0.2rMAFr0.5; (ii)

medium frequency, 0.05rMAFo0.2; and (iii) low frequency, 0.01rMAF

o0.05. To assess the impact of long-range LD in fine-mapping the causal

variants, we deliberately selected causal variants that are in perfect LD (defined

as r2¼ 1) with more than five other SNPs located within 100 kb of the

candidate SNP in the CEU panel. For each of the three MAF bins, we identified

1000 candidate causal variants across the autosomal chromosomes, and

generated 4000 cases and 4000 controls in each population at each causal

variant by assuming a multiplicative disease effect with an allelic relative

risk of 1.2.

Association and meta-analysis
The case–control association analysis is performed using the SNPTEST

program (version v1.1.5, https://mathgen.stats.ox.ac.uk/genetics_software/

snptest/snptest.html) with the frequentist additive test of association, which

is equivalent to a logistic regression. The meta-analysis across multiple

populations uses the standard fixed effects meta-analytic approach, which

pools the logarithm of the odds ratios while weighting the contribution for

each population by the inverse of the square of the standard errors. These

analyses are performed in two scenarios: (A) the ‘Association’ scenario where

we mimic the conditions of an actual GWAS by thinning the SNP density to

only the content present on the Illumina 1M array (which will thus not include

the causal variant); (B) the ‘Fine-map’ scenario where we use all the simulated

SNPs (including the causal variant). In scenario (A), we are interested in

measuring the strength of the largest association signal in each region, as well

as the change in the association signals upon meta-analysis. In scenario (B), the

outcome of interest is in the rank of the association signal at the causal variant

relative to all other SNPs in the region. The meta-analyses are performed across

two, three and four populations, by considering configurations where the

populations are minimally differentiated (for example, in three population

analysis, between CHB, CHD and JPT) to maximally differentiated (for

example, between CEU, CHB and YRI).

Population diversity metrics
To assess the genome-wide diversity between populations, we first perform a

principal component analysis (PCA) using the pca command in the eigenstrat

program 21 across 60 466 SNPs that are present in all 11 populations. The SNPs

are identified by choosing the first SNP out of every 20 consecutive SNPs.

Second, we calculated the genome-wide FST by taking the average of the

autosomal SNP-level FST, which for each SNP is calculated as the proportion of

variance in allele frequencies of a SNP between the populations. To quantify

the degree of genomic diversity around each causal variant between the

different population configurations, we implemented the following four

metrics for SNPs found within 50 kb on either flanks of the causal variant.

Regional FST. The regional FST is quantified as the average of the SNP-level

FST for SNPs within 50 kb of either flanks of the causal variant. This metric is

bounded between 0 and 1, with larger values indicating that there is greater

variation in the allele frequencies for SNPs located in the region.

Haplotype entropy. Within the 100-kb region when considering K popula-

tions, the set of unique haplotypes that are present with frequencies of at least

2% in each population is collated across all K populations, defined as {h1, h2,

y, hL}. The frequency of each of these haplotypes in the set is tabulated across

each of the K populations to yield population-specific frequencies, defined as fij
for haplotype hi in the jth population. The conditional probability for each

population given haplotype hi, Fij, can be calculated as fij/(Sjfij). We can

calculate the relative mutual information for haplotype hi as RMI(hi)¼ 1þ
Sj(Fij log Fij)/log(K). The haplotype entropy for the genomic region is thus the

overall frequency weighted sum of the individual relative mutual information

estimates, or Si[(Sifi�) RMI(hi)]/(Sifi�), where fi� represent the frequency of

haplotype hi calculated across all K populations. This metric is intuitively a

measure of population specificity of haplotypes and is bounded between 0

and 1, with larger values indicating there are specific haplotypes that are more

common in some populations than others and thus reflective of greater

haplotype diversity across the populations.

Haplotype similarity. Within the 100-kb region when considering K popula-

tions, the set of unique haplotypes that are present in all K populations are

identified. The haplotype similarity is defined as the proportion of the

haplotypes across the K populations that have been represented by these

haplotypes. This metric is bounded between 0 and 1, with larger values

indicating greater degrees of haplotype sharing between populations and thus

reflects lower haplotype diversity across the populations.

varLD. As varLD is a metric for quantifying LD variation between

two populations,22 we perform the varLD calculation across every possible

pair of the 11 populations in HapMap 3. Briefly, we consider windows of
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50 consecutive SNPs and calculate the signed r2 for every possible SNP pair 23

within each of the two populations. An eigen decomposition can be applied to

the resulting 50� 50 signed r2 correlation matrix for the 50 SNPs, and the

evidence for LD variation between the two populations is measured by the sum

of the absolute difference between the ranked eigen values from the two eigen

decompositions. The genome-wide distribution of this metric is subsequently

standardized to yield a mean of 0 and a s.d. of 1. For each causal variant, we

consider the standardized varLD statistic for the window with center closest to

the location of the causal variant. When the meta-analysis is performed across

more than two populations, we quantify the composite varLD score as the

average of the varLD statistics from all possible pairs of populations. This

metric is centered at 0, where larger negative values correspond to lower inter-

population LD variation and larger positive values are indicative of greater LD

differences between populations.

Application to T2D loci
We consider the 43 loci in autosomal chromosomes that have consistently

been associated with T2D in Caucasians24–31 as of September 2011 (see

Supplementary Table 1 for the listing of the loci). For each of these loci, the

index or proxy SNP is identified, and we consider all the SNPs present in the

HapMap 3 database located within 50 kb on either flanks of the focal position.

These SNPs are subsequently used to calculate the four localized population

diversity metrics.

RESULTS

We briefly reviewed the population structure across the 11 popula-
tions from Phase 3 of HapMap by calculating the genome-wide FST

and by performing PCA. We observed that the greatest genetic
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Figure 1 Overall performance of trans-ethnic meta-analysis and fine-mapping. The panels in the top row quantifies the power to identify an association in a

single population (K¼1, first column), and in meta-analyses across either two, three or four populations (second, third and fourth column, respectively), at

different sample sizes. The middle row represents the ranking of the association signal at each causal variant across all 1000 iterations when considering a

sample size of 4000 cases and 4000 controls within each population. The lowest attained value on the vertical axis is 1, which indicates that the causal

variant is correctly identified as the SNP displaying the strongest association signal. The horizontal axis represents the 1000 iterations of the simulation.
The bottom row represents the power of identifying the causal variant as the SNP with the strongest association signal at different sample sizes. The color

of each line for three panels in each column corresponds to a specific population configuration, which is summarized in the legends in the bottom panels

along with the FST values estimated across all the autosomal SNPs in the genome. For K¼2, 3 and 4, the colors of the lines are assigned according to the

FST such that population configurations with increasing FST are assigned warmer colors (from blue to red). Each causal variant is chosen to possess a MAF

of between 20 and 50%, and to be in perfect LD with at least five other neighboring markers in the CEU panel.
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diversity is seen between East Asian populations (CHB, CHD and
JPT) and African populations (ASW, LWK, MKK and YRI), and the
next largest source of genetic diversity stems from comparing the
European, Hispanic and South Asian populations to the Africans and
East Asians (Supplementary Figures 1 and 2). As both PCA and the
genome-wide FST are calculated with autosomal SNPs across the
genome, these analyses measure overall genetic diversity between
populations, but they may not be representative of local variations in
the genome.

In our assessment on efficiency of genetic meta-analysis for the
purposes of (i) discovering associations; and (ii) identifying the causal
variants underlying associations identified from GWAS, we have
combined between 2 and 4 of the 11 populations in HapMap 3 in
different configurations to investigate the relationship between the
different population diversity metrics and the outcome of the meta-
analysis. For example, we considered a population configuration
consisting of three East Asian populations (CHB, CHD and JPT) that
has the least genetic diversity as measured by genome-wide FST

(0.7%), whereas the three-population configuration of CEU, CHB
and YRI produces a combination with considerably larger FST (9.7%).

There are different measures of outcome for the two purposes in
our study. In the first scenario of discovering associations, the
outcome is defined as the ability to successfully identify an association
signal stronger than genome-wide significance, or a Po5� 10�8.
Naturally as the sample size of the study or meta-analysis increases,
the power to identify a genuine association increases (top panel of
Figure 1). In the second scenario of fine-mapping the causal variants,
the outcome is defined as whether each simulated causal variant
successfully attains the top rank when the association signals of all the
SNPs in the region in the study or meta-analysis are ranked from
most significant (smallest P-value) to least significant (middle and
bottom panels of Figure 1). It is similarly evident that the ability to
identify the causal variant increases as sample size increases.

Genome-wide population diversity
When there is only one population (K¼ 1, Figure 1), our simulations
suggested that European populations enjoy the highest power for
discovering associations when MAF40.2, than East Asian and African
populations. However, this is an artifact introduced by the way we
have selected the causal variants, using the allele frequencies and LD
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patterns from CEU (Supplementary Figure 3 for simulations with
YRI-defined causal variants, and Supplementary Figures 4 and 5 for
SNPs with MAFso20%). However, the correspondence between
genome-wide FST and the ability of the meta-analysis to discover
association signals is consistent regardless of how the causal variants
have been defined, and population configurations with higher FST

consistently yield lower power to discover associations (for K¼ 2, 3
and 4, Figure 1).

The correspondence between genome-wide FST and the ability to
fine-map the causal variant with trans-ethnic meta-analyses is less
apparent though (Figure 1). Regardless of which population the
causal variants were defined with, analyses involving African popula-
tions tend to yield the greatest ability to identify the causal variant as
the SNP with the strongest association signal. This is true whether we
are considering just one African population or a meta-analysis of four
African populations, suggesting that genome-wide FST is not imme-
diately indicative of the efficiency of trans-ethnic fine-mapping.

Localized population diversity
We extend our analysis to consider four localized population diversity
metrics that are calculated in the 100-kb region around the causal

variant (50 kb on either flanks of the causal variant): (i) regional FST,
which summarizes the SNP-level FST across the region; (ii) haplotype
entropy, a scaled metric between 0 and 1 that effectively compares the
haplotype frequencies of the dominant haplotype forms between the
populations; (iii) haplotype similarity, which quantifies the extent of
similarity in the haplotypes from the different populations; and (iv)
composite varLD, which measures the extent of LD differences
between the populations. Across all three sets of 1000 simulations,
other than between haplotype similarity and haplotype entropy where
the two metrics appear to be negatively correlated, there is no striking
relationship between the remaining pairings of the four metrics
(Figure 2).

We first interrogated the summary of each of the four localized
metrics obtained from the meta-analyses of two to four populations,
by calculating the average of each localized metric across all the
simulated causal variants within each population configuration
(Figure 3, Supplementary Figures 6–8). We observe there exists a
significant negative correlation between the average regional FST

values across all the simulated causal variants and the power to
discover associations in meta-analyses (Pearson’s correlation
r¼ �0.67, P¼ 2.7� 10�4). A stronger negative association is seen
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the bottom row are plotted against the same four metrics of population diversity, except the vertical axis measures the power of identifying the causal

variant as the SNP with the strongest association signal. Results from the meta-analyses of two, three and four populations are represented with circles,

triangles and squares, respectively, while the colors within each category are assigned according to the genome-wide FST between the corresponding

populations, such that configurations with increasing FST are assigned warmer colors. This figure shows the findings for causal SNPs with MAFs between

20 and 50% in CEU.
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for haplotype entropy (r¼ �0.83, P¼ 3.0� 10�7) while haplotype
similarity is positively correlated with statistical power (r¼ 0.64,
P¼ 6.0� 10�4). There is, however, no association between the
composite varLD score and power (P¼ 0.151). Conversely, the power
to fine-map the causal variant is not associated with the regional FST

metric (P¼ 0.361) or the haplotype entropy (P¼ 0.591). Although
the haplotype similarity is moderately associated with fine-mapping
power (r¼ �0.47, P¼ 0.017), the composite varLD score was more
correlated with the power of trans-ethnic fine-mapping (r¼ 0.70,
P¼ 8.7� 10�5). Although the extent of these findings varied with the
MAFs of the causal variants, the overall trends in the relationships
were consistent throughout. These results suggest the localized metrics
that are indicative of fine-mapping efficiency (composite varLD,
haplotype similarity) are actually different from the metrics that are
informative for association discovery (regional FST, haplotype
entropy).

We additionally considered the performance of the localized
metrics when meta-analyzing four populations (K¼ 4) as well as
the relationships of these metrics with the efficiency of meta-analysis
(Figure 4, Supplementary Figures 9 and 10). We identify the 100

simulated causal variants (out of 1000) that fall within the appro-
priate decile of each metric, and calculated: (i) the difference between
the –log10P-values from the meta-analysis and the most significant
single-population analysis, which thus represents how much stronger
the meta-analysis P-value was compared with the individual studies;
(ii) how many of these 100 causal variants attained the strongest
association evidence in the simulated region, which we quantified as
the empirical power to identify the causal variant. We observed that
the regional FST and haplotype entropy exhibited a very strong
negative relation with the change in –log10P-value for discovering
associations, where low FST and haplotype entropy values can result in
10-fold increases (Figures 4a and b). However, there was no apparent
trend between the change in statistical evidence with either haplotype
similarity or varLD score (Figures 4c and d). Intriguingly, when we
considered deciles, we observed that there is a moderate trend
between regional FST and haplotype entropy with the power to
identify the causal variant: increasing FST actually appear to corre-
spond with decreasing power (Figure 4e), while meta-analyses with
populations with larger haplotype entropy values yielded higher
power (Figure 4f). Consistent with previous observations, increasing
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degree of haplotype similarity actually decreases the ability to identify
the causal variant (Figure 4g), while there was no apparent correlation
between varLD and the power to fine-map the causal variant
(Figure 4h).

Application to T2D loci
For each of the 43 known T2D loci that are identified from GWAS or
meta-analyses of European populations (Supplementary Table 1), we
calculated the values of the four metrics for the 100-kb region
flanking the known index SNP across the four main HapMap 2
populations of CEU, CHB, JPT and YRI (Figure 5). We observe that
loci like TCF7L2, PRC1 and JAZF1 exhibit both high regional FST and
haplotype entropy (Figure 5a), which coincide with reports that the
associations at these loci tend to be found in certain populations
(South Asians)32 but not others (East Asians, South-East Asian
Malays).7 Conversely, the other spectrum of low regional FST and
haplotype entropy included loci like CDKAL1, SLC30A8 and IRS1
where the associations are consistently reproduced across East and
South Asians.5,7 For a higher chance of success in identifying the
causal variants, adopting a trans-ethnic approach to T2D loci like
THADA, IRS1, PRC1 and CDKAL1 may be useful as they are found in
genomic regions with either a lower degree of haplotype similarity or
a higher extent of LD variation between populations (Figure 5b).

DISCUSSION

We set out to investigate whether there are any population
diversity metrics that will be useful for identifying the populations
or genomic regions where trans-ethnic approaches to meta-analyses
and fine-mapping are likely to be more efficient. By simulating
case–control data with genetic ancestries that are representative of
the 11 populations in Phase 3 of the HapMap project, we have
explored the correlation between the efficiency of meta-analysis
with four metrics that assess different features of trans-population
genetic diversity. These looked at: (i) variations in allele or haplo-
type frequencies; (ii) the degree of haplotype similarity; and

(iii) the extent of LD variation between populations involved
in the meta-analyses of SNPs in the genomic region that flanks
a simulated causal variant shared across all 11 populations. Our
results consistently suggest that quantifying the average FST of
the SNPs in the region or measuring the population specificity
of haplotypes in the region is indicative of meta-analysis effici-
ency at the preliminary stage of discovering genotype–phenotype
association. However, at the secondary stage of fine-mapping the
causal variants, these metrics appear to be less informative of
trans-ethnic fine-mapping efficiency. Instead, assessing the degree
of haplotype sharing and the extent of LD variation between
populations are more informative for predicting the efficiency of
trans-ethnic fine-mapping.

Metrics like regional FST and haplotype entropy effectively assess
the degree of similarity in the frequencies of the associated alleles
at the SNPs in the region across the different populations. It is
perhaps not surprising that these frequency-based metrics are more
predictive of meta-analysis efficiency in association discovery, as a
region with low regional FST or haplotype entropy likely indicates:
(i) the functional allele has a similar frequency across the different
population; (ii) the mutation event introducing the functional allele is
likely to predate the most common recent ancestor for these
populations; and/or (iii) the functional allele is likely to sit on a
common haplotype that is shared across the populations. On the
other hand, metrics like haplotype similarity and varLD interrogates
higher-order information with regard to the diversity of haplotypes
that are present in the region, particularly in the case of varLD that
interrogates the correlation patterns between every pair of SNPs.
These latter metrics are particularly valuable in addressing the
efficiency of trans-ethnic fine-mapping, as they assess whether the
functional allele is likely to reside on different haplotypes in the
different populations, which can circumvent the predicament of long-
range LD.

Although it seems that our interpretations of these metrics suggest
they are fundamentally similar or even surrogates to haplotype
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Figure 5 Population diversity at 43 T2D loci. The panels illustrate the genetic diversity across CEU, CHB, JPT and YRI at the 43 validated T2D loci.

For each of these loci, SNPs found within the 100-kb region flanking the known index SNP are used to tabulate four population diversity metrics, where:

(a) shows haplotype entropy against regional FST – two metrics shown to be informative for assessing meta-analysis efficiency such that larger values of
either metric correlate with lower power for finding associations in meta-analyses; (b) shows varLD against haplotype similarity – two metrics shown to be

informative for assessing the efficiency of trans-ethnic fine-mapping such that higher varLD scores and lower haplotype similarity correlate with higher power

for locating the causal variant at each locus as the SNP with the strongest association evidence. The composite varLD score for THADA is 3.2, and we have

represented this locus in a truncated manner to maximize the plot area for the rest of the genes. Gene names of some of the loci have been shown in

different colors for purely esthetic reasons to differentiate between loci with similar metric values.
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sharing, we emphasize the difference between the following two
statements: (A) the functional allele sits on a shared haplotype;
(B) the functional allele sits on different haplotypes that are shared
across different populations. In scenario A, there is one dominant
haplotype that carries the functional allele and this haplotype
predominates in most populations (and is quantified by the haplo-
type entropy metric); in scenario B, there are multiple haplotype
forms that carry the functional allele, and whether these different
forms are similarly present in most of the populations is what the
haplotype similarity metric is trying to quantify. In terms of
the nature of LD between the SNPs, scenario A corresponds to
the situation where SNPs in the region possess high r2 across the
different populations whereas scenario B corresponds to the situation
where SNPs in the region can possess differential r2 across the
different populations.

The discovery that different population genetic metrics are more
appropriate for investigating meta-analysis efficiency in discovering
associations and fine-mapping is timely, as different disease con-
sortiums are starting to congregate to perform global GWMA to
leverage on larger sample sizes for association discoveries, and also to
identify the confirmed associations to take to the fine-mapping stage.
It is inevitable there will be situations where an association identified
in a collection of populations does not successfully reproduce in other
global populations, and these metrics now provide the means of
quantifying whether the failure to replicate is likely to be a
consequence of significant genetic diversity at the local region
surrounding the association. Similarly, the application of haplotype
similarity and varLD metrics will be valuable for prioritizing loci to
take forward for trans-ethnic fine-mapping, especially as this is
expected to require costly targeted sequencing experiments, whether
for the purpose of generating a population-specific imputation
reference panel or to perform actual targeted sequencing of cases
and controls.
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