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There are a number of psychological phenomena in which dramatic emotional responses are evoked by
seemingly innocuous perceptual stimuli. A well known example is the ‘uncanny valley’ effect whereby a near
human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are
reasonably well documented, there is no quantitative explanation for the findings and no mathematical
model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical
perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give
rise to a perceptual tension at category boundaries that could account for these phenomena. The model is
not only the first quantitative explanation of the uncanny valley effect, but it may also provide a
mathematical explanation for a range of social situations in which conflicting cues give rise to negative,
fearful or even violent reactions.

T
he term ‘uncanny valley’ was coined by Masahiro Mori in 1970 to describe the observation that near-human
artifacts can engender strong negative emotions in an observer (Fig. 1)1. For example, Mori noted that
viewing a prosthetic hand can trigger feelings of eeriness and repulsion, whereas seeing a genuine human

hand or a simple mechanical hand does not. He also proposed that the uncanny valley effect can be stronger when
near-human artifacts are moving rather than still (as illustrated by the difference between the two curves illu-
strated in Fig. 1). Mori’s notion of the uncanny valley has entered into popular culture with lifelike artifacts (such
as ‘Furby’ - the children’s toy), animated films (such as the 2004 feature ‘Polar Express’ starring Tom Hanks), and
humanlike robots (such as ‘Geminoid F’) often being described by observers as ‘‘strange’’ or ‘‘creepy’’. In science
and engineering the effect has become of increasing relevance to technical developments in the field of human-
machine interaction as the fidelity of interface agents (either on-screen virtual agents or physical humanoid
robots) reaches the point where feelings of repulsion could detract from the user experience and inhibit
interaction2.

Notwithstanding the widespread interest in the uncanny valley hypothesis, only a few studies have provided
empirical evidence for its existence3–6, and several have failed to find the effect at all7–10. This lack of clear evidence
one way or the other maybe due, in part, to some confusion over the precise nature of Mori’s dimension of
‘familiarity’11,2,3. In fact, the term Mori used originally to describe his vertical axis - ‘‘shinwa-kan’’ - is a neologism
in Japanese, and some authors have suggested that a more accurate translation would be ‘affinity’ rather than
‘familiarity’12 – a proposal that fits well with the results reported here.

A number of accounts have been put forward, both for the effect itself and for why it is sometimes not
apparent13–15. For example, some studies have suggested a link between ‘eeriness’ and emotional responses
associated with fear (particularly of death)3, and this may explain how a potentially universal effect can be
obscured by systematic differences between subjects’ responses as a function of their personality type and
emotional stability16. Other studies have suggested that the effect might arise from a mismatch between different
sensory cues11,4, and recent results using fMRI scanning of the brain appear to support this hypothesis17 (as do the
results reported here). Overall, the majority of explanations of the uncanny valley effect are based on empirical
studies and, apart from a suggestion that it could be characterized using lateral inhibition18, no mathematical
model of the core result has been proposed hitherto.

It is hypothesized here that the uncanny valley effect is a particular manifestation of a more general psycho-
logical phenomenon in which perception is distorted by categorization19,20. This so-called ‘perceptual magnet
effect’21, in which stimuli close to a category boundary are judged by observers to be more dissimilar than stimuli
that are away from a category boundary, has recently been characterized mathematically by Feldman et al22 using
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a Bayesian model of optimal statistical inference. It is proposed here
that such an approach could provide the basis for a quantitative
account of the uncanny valley effect. However, while Feldman et al’s
model of categorical perception explains why observers are more
sensitive to distinctions at category boundaries, it does not in itself
account for why particular stimuli might be perceived as uncanny.

The key, therefore, is the realization that, in the situation where
there are multiple perceptual cues to category membership, there is
the possibility that the multidimensional perceptual distortions
induced at category boundaries could be misaligned. It is thus
hypothesized that conflicting perceptual cues can give rise to differ-
ential distortion in the region of a category boundary, and that such
distortion would be manifest as a form of perceptual ‘tension’. The
idea is that such tension may be experienced as physical or emotional
discomfort, e.g. feelings of eeriness or creepiness.

Results
Feldman et al’s Bayesian model of categorical perception22 has been
extended to account for differential perceptual distortion across mul-
tiple cues, and the enhanced model confirms that localized percep-
tual tension can indeed arise from differences in the distributions
associated with such cues. In particular, the model reveals that cue
conflicts can be manifest as variations in the means and/or variances
of their associated distributions or, more interestingly, from unequal
levels of uncertainty associated with observing the different percep-
tual cues. The latter is a particularly compelling result, since it indi-
cates that perceptual tension can arise when the reliability of infor-
mation derived from alternative cues to category membership is not
balanced across different observation dimensions. For example, a
humanoid robot might appear to be fully human from the cues
provided by the overall facial features, but small anomolous move-
ments in the eyes might be sufficient to increase the uncertainty
associated with the category membership of that particular cue,
thereby giving rise to perceptual tension (and feelings of discomfort)
in the viewer.

The model shows that, in order to obtain Mori’s basic response
curve (as illustrated in Fig. 1), it is necessary to posit a category
representing a ‘target’ perception (e.g. human) with the mean of its
distribution at one end of the stimulus continuum. Then, in order for

categorical perception (and the associated distortion of perceptual
space) to occur, it is necessary to posit a second category representing
a ‘background’ perception (e.g. non-human) whose distribution
overlaps that of the target. The model also shows that in order to
preserve the more or less monotonic property of the basic response
curve (i.e. a rising function that depicts low familiarity at low human-
likeness and high familiarity at high humanlikeness), the distribution
for the background needs to be broader than that for the target – an
intuitively satisfactory outcome (see Fig. 2a). The model shows that,
if the overlap between the target and background categories is
reduced, a dip in ‘familiarity’ can be observed at the class boundary
(see Fig. 2b). This dip reflects a degree of unfamiliarity (and hence
unpredictability) associated with the stimuli around the category
boundary. However, such a dip cannot go negative (since the curve
represents probability), and does not in itself represent uncannyness.
In fact, this intermediate result does indeed capture the concept of
‘familiarity’ but, crucially, not Mori’s notion of ‘affinity’.

Hence, the model reveals that there are two key variables that relate
to Mori’s vertical ‘affinity’ axis: (i) the overall probability of occur-
rence of a particular stimulus, and (ii) any perceptual tension that
might arise from conflicting perceptual cues. Not only does this
approach lead to the successful prediction of the uncanny valley
response curves, it also provides an explanation for the confusion
over the nomenclature for Mori’s verical axis (as described above). In
the model presented here, ‘familiarity’ is defined mathematically as

Figure 1 | Mori’s classic illustration of the uncanny valley effect.
MacDorman and Minato’s simplified version34 of the figure appearing in

Mori’s original Energy article1 illustrating the perceived familiarity of

different artifacts ranging in human likeness from an industrial robot to a

healthy human being. The ‘uncanny valley’ is shown as a dip in the curves

for both still and moving artifacts, with moving artifacts depicted as being

judged not only more familiar than still artifacts, but also more uncanny.

Figure 2 | Probability of occurrence of different stimuli given a broad
‘background’ category and a narrower ‘target’ category. a, A large overlap

between target and background categories gives rise to a monotonic

relationship between the value of a stimulus (horizontal axis) and the

probability of occurrence of that stimulus (vertical axis). b, A smaller

overlap between categories gives rise to a non-monotonic relationship.

www.nature.com/scientificreports
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the probability of occurrence of a stimulus, whereas ‘affinity’ (i.e.
Mori’s vertical axis) is defined as a function of both ‘familiarity’
and ‘perceptual tension’. In particular, it has been found that simply
subtracting a weighted measure of perceptual tension from the prob-
ability of occurrence of a stimulus predicts the appropriate behaviors
rather well. Interestingly, such a weighting factor effectively corre-
sponds to the sensitivity of an observer to any perceived perceptual
conflict. If the weighting factor is small or zero, then the implication
is that the observer does not notice (or does not care) if perceptual
cues are in conflict. If the weighting factor is large, then it indicates a
strong sensitivity to differential cues on the part of an observer. The
weighting is thus a key property of an observer, not of a stimulus.

As an illustration of the output of the model, Fig. 3 shows how
varying the differential uncertainty associated with cues along two
perceptual dimensions (for the distributions illustrated in Fig. 2a)
gives rise to different levels of localized perceptual tension (Fig. 3a)
and hence to different curves for affinity/eeriness (Fig. 3b). As can be
seen, increasing the differential degree of uncertainty between the
two cues leads to an increase in perceptual tension and a decrease in
the affinity function near the category boundary, with the highest
level of differential uncertainty leading to negative affinity. Clearly
the shapes of these curves are remarkably similar to those illustrated
in Fig. 1, and the affinity measure does indeed appear to correspond
to the notion of uncannyness as originally proposed by Mori.

As mentioned above, the other key aspect of Mori’s original un-
canny valley hypothesis was that a moving humanlike artifact could
be perceived as being more uncanny than the corresponding still
humanlike artifact. Such a difference may be modeled in a number
of different ways, but perhaps the simplest method is to regard a
moving artifact as providing clearer information about its category
membership, i.e. the distributions associated with a moving target
category would be sharper (i.e. have lower variance) than those for a
still target category. The output of the model for such a situation is
shown in Fig. 4. With all of the other parameters held constant, a
decrease in the variance for the target category leads to higher values
of affinity either side of the category boundary and a deeper negative-
going dip, precisely as predicted by Mori.

Discussion
One of the core ideas presented here is that the perceptual tension
arising from conflicting cues to category membership may be experi-
enced by an observer as physical or emotional discomfort (e.g. ‘cree-
piness’) which, in turn, may induce the observer to take action in
such a way as to reduce its effect. In other words, such perceptual
tension could act as an internal control signal that drives an oberver
to select one of a number of posssible behaviors: (i) withdraw from
the offending article, (ii) attempt to remove it by attacking it, (iii)
actively ignore one or more of the conflicting cues (i.e. turning a
‘blind eye’), or (iv) integrate the new information in such a way that
the misalignment between category boundaries is reduced (a form of
learning that would lead to habituation). Clearly, which of these
behavioral strategies is adopted by an observer would depend not
only on the characteristics of the stimulus, but also on the personality
and drive of the observer.

Indeed, although Mori’s original hypothesis (and much of the
subsequent research into the uncanny valley effect) has been con-
cerned with the response of human subjects to near-human artifacts
such as avatars and humanoid robots, the model derived here pro-
vides a more general mathematical explanation (not necessarily
unique to human behavior) for a range of real-world situations in
which conflicting perceptual cues give rise to negative, fearful or even
violent reactions. Possible responses to ambiguous stumuli range
from feelings of disgust on encountering food that is off, negative
reactions to individuals who are in some way different from the norm
(such as ‘coulrophobia’ – fear of clowns), aggrievement at acts of
blatant deception, amusement at sensory illusions, or physical illness
as a result of sensory conflict23,24.

Figure 3 | Differential distortions arising from conflicting perceptual
cues. a, Perceptual ‘tension’ increases at the category boundary as a

function of differences in the uncertainty associated with different

perceptual cues. The degree of tension is proportional to the amount of

differential distortion. b, Peaks in perceptual tension give rise to dips in

‘uncannyness’. The depth of the dip is determined by the degree of

perceptual tension and the sensitivity of an observer to any perceived

perceptual conflict k. In this illustration, k is fixed at a non-zero value.

Figure 4 | Prediction of the Mori curves. An increase in clarity for the

target category (implemented in the model as a reduction of the target

variance) leads to a response curve which is higher at the category means

and lower at the category boundary. This mimics the difference between

‘still’ and ‘moving’ artifacts illustrated in Mori’s original diagram (Fig. 1).

www.nature.com/scientificreports
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Such outcomes align well with contemporary theories of emotion
such as ‘cognitive appraisal theory’25 in which stimuli are evaluated
with respect to a series of evaluation checks26, and the model may also
be of some relevance to social theories of group belonging such as
social identity theory27 and self-categorization theory28 in which un-
certainty associated with inter-group and intra-group categoriza-
tions can lead to discriminatory behavior29–31. The model may also
provide an explanation for the opposite effect, i.e. why reactions to
stimuli that are away from category boundaries may be judged as
especially attractive32,33.

Methods
Following Feldman et al22, the distortion arising from the perceptual magnet effect
along a single dimension can be modeled by a ‘displacement function’

D S½ �~E T Sj½ �{S ð1Þ

where E[TjS] is the expected value of the perceptual target T given a physical stimulus
S. The expected values are derived from the posterior probability of membership of a
given category

E T Sj½ �~
X

c

p c Sjð Þ s
2
c Szs2

Smc

s2
c zs2

S
ð2Þ

for each category c, where mc is a category mean, s2
c is a category variance and s2

s is a
measure of the uncertainty associated with observing the signal. Using Bayes’ the-
orem, the posterior probability is given by

p c Sjð Þ~ p S cjð Þp cð ÞP
cp S cjð Þp cð Þ ð3Þ

which can be modeled using

S cj *N mc,s
2
c zs2

S

� �
ð4Þ

where N is the normal distribution.
The displacement function D[S] represents a measure of perceptual distortion

towards/away from the different categories along the dimension specified by the
stimulus S. A non-zero value of D[S] indicates that the perceived position of a
particular stimulus S is displaced with respect to its actual physical value; a positive
value indicates a distortion in one direction along the stimulus axis, and a negative
value indicates a distortion in the opposite direction along the stimulus axis. A D[S]
value of zero indicates that no perceptual distortion is present. The derivative of
E[TjS] with respect to S is the familiar ‘discrimination function’ – a measure of
perceptual warping that corresponds to the enhanced sensitivity to stimuli differences
that subjects exhibit at category boundaries.

In the situation where there are multiple dimensions along which stimuli are
perceived (multiple cues), any differential perceptual distortion may be calculated
using

V S½ �~E D Si½ �2
� �

{ E D Si½ �½ �ð Þ2 ð5Þ

This expression is essentially a measure of the variance between the distortions
present in each individual dimension. Hence V[S] is an indication of the amount of
perceptual ‘tension’ that would arise as a result of differential distortions between
conflicting perceptual cues. If all perceptual cues are in agreement with respect to the
shapes and positions of category boundaries, then V[S] would be zero for all S. If, on
the other hand, V[S] is non-zero, then it implies that a particular stimulus S is not fully
coherent in its support for the different categories.

Given that V[S] increases with greater perceptual conflict, it is hypothesized that
subtracting V[S] from p(S) would provide a parsimonious combination function. In
particular

F S½ �~p Sð Þ{k:V S½ � ð6Þ

where F[S] corresponds to the vertical ‘affinity’ axis in Mori’s original diagram
(Fig. 1), and k is a weighting factor that reflects the sensitivity of an observer to any
perceived perceptual conflict.
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