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Prediction and control of the dynamics of complex networks is a central problem in network science.
Structural and dynamical similarities of different real networks suggest that some universal laws might
accurately describe the dynamics of these networks, albeit the nature and common origin of such laws
remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in
our accelerating universe is a power-law graph with strong clustering, similar to many complex networks
such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence
of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal
networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex
networks and spacetime in the universe, with implications to network science and cosmology.

P
hysics explains complex phenomena in nature by reducing them to an interplay of simple fundamental laws.
This very successful tradition seems to experience certain difficulties in application to complex systems in
general, and to complex networks in particular, where it remains unclear if there exist some unique universal

laws explaining a variety of structural and dynamical similarities found in many different real networks1–7. One
could potentially remedy this situation by identifying a well-understood physical system whose large-scale
dynamics would be asymptotically identical to the dynamics of complex networks. One could then try to use
the extensively studied dynamical laws of that physical system to predict and possibly control the dynamics of
networks. At the first glance, this program seems to be quite difficult to execute, as there are no indications where
to start. Yet we show here that there exists a very simple but completely unexpected connection between networks
and cosmology.

In cosmology, de Sitter spacetime plays a central role as the exact solution of Einstein’s equations for an empty
universe, to which our universe asymptotically converges. Here we show that graphs encoding the large-scale
causal structure of de Sitter spacetime and our universe have structure common to many complex networks8–10,
and that the large-scale growth dynamics of these causal graphs and complex networks are asymptotically the
same. To show this, we describe the causal graphs first.

The finite speed of light c is a fundamental constant of our physical world, responsible for the non-trivial causal
structure of the universe11. If in some coordinate system the spatial distance x between two spacetime events
(points in space and time) is larger than ct, where t is the time difference between them, then these two events
cannot be causally related since no signal can propagate faster than c (Fig. 1(a)). Causality is fundamental not only
in physics, but also in fields as disparate as distributed systems12,13 and philosophy14.

The main physical motivation for quantum gravity is that at the Planck scale (lP , 10–35 meters and tP , 10–43

seconds), one expects spacetime not to be continuous but to have a discrete structure15, similar to ordinary matter,
which is not continuous at atomic scales but instead is composed of discrete atoms. The mathematical fact that the
structure of a relativistic spacetime is almost fully determined by its causal structure alone16–18 motivates the causal
set approach to quantum gravity19. This approach postulates that spacetime at the Planck scale is a discrete causal
set, or causet. A causet is a set of elements (Planck-scale ‘‘atoms’’ of spacetime) endowed with causal relationships
among them. A causet is thus a network in which nodes are spacetime quanta, and links are causal relationships
between them. To make contact with General Relativity, one expects the theory to give rise to causal sets which are
constructed by a Poisson process, i.e. by sprinkling points into spacetime uniformly at random, and then
connecting each pair of points if they lie within each other’s light cones (Fig. 1(b)). According to the theorem
in Ref. 20, causets constructed by Poisson sprinkling are relativistically invariant, as opposed to regular lattices, for
example. Therefore we will use Poisson sprinkling here to construct causets corresponding to spacetimes. An
important goal in causal set quantum gravity (not discussed here) is to identify fundamental physical laws of
causet growth consistent with Poisson sprinkling onto realistic spacetimes in the classical limit21,22.
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In 1998 the expansion of our universe was found to be accelerat-
ing23,24. Positive vacuum energy, or dark energy, corresponding to
a positive cosmological constant L in the Einstein equations
(Supplementary Notes, Section II), is currently the most plausible
explanation for this acceleration, even though the origin and nature
of dark energy is one of the deepest mysteries in contemporary
science25. Positive L implies that the universe is asymptotically (at
late times) described by de Sitter spacetime26,27. We first consider the
structure of causets sprinkled onto de Sitter spacetime, then quantify
how different this structure is for the real universe, and finally prove
the asymptotic equivalence between the growth dynamics of de Sitter
causets and complex networks.

Results
Structure of de Sitter causets. De Sitter spacetime is the solution of
Einstein’s field equations for an empty universe with positive cosmo-
logical constant L. The (111)-dimensional de Sitter spacetime (the first
‘1’ stands for the space dimension; the second ‘1’—for time) can be
visualized as a one-sheeted 2-dimensional hyperboloid embedded in a
flat 3-dimensional Minkowski space (Fig. 2(a)). The length of horizontal
circles in Fig. 2(a), corresponding to the volume of space at a moment of
time, grows exponentially with time t. Since causet nodes are distributed
uniformly over spacetime, their number also grows exponentially with
time, while as we show below, their degree decays exponentially,
resulting in a power-law degree distribution in the causet.

To obtain this result, we consider in Fig. 2(a) a patch of (111)-
dimensional de Sitter spacetime between times t 5 0 (the ‘‘big bang’’)
and t 5 t0 . 0 (the ‘‘current’’ time), and sprinkle N nodes onto it with
uniform density d. In this spacetime the element of length ds (often
called the metric because its expression contains the full information
about the metric tensor) and volume dV (or area, since the spacetime
is two-dimensional) are given by the following expressions
(Supplementary Notes, Section II):

ds2~{dt2zcosh2 t dh2, ð1Þ

dV~cosh t dt dh, ð2Þ

where h[ 0,2p½ Þ is the angular (space) coordinate on the hyperboloid.
In view of the last equation and uniform sprinkling, implying that the
expected number of nodes dN in spacetime volume dV is dN 5 d dV,
the temporal node density r(t) at time t[ 0,t0½ � is

r tð Þ~ cosh t
sinh t0

<et{t0 , ð3Þ

where the last approximation holds for t0wt?1.

Since links between two nodes in the causet exist only if the nodes lie
within each other’s light cones, the expected degree �k tð Þ of a node at
time coordinate t[ 0,t0½ � is proportional to the sum of the volumes of
two light cones centered at the node: the past light cone cut below at t 5

0, and the future light cone cut above at t 5 t0, similar to Fig. 1. Denoting
these volumes by Vp(t) and Vf(t), and orienting causet links from the
future to the past, i.e. from nodes with higher t to nodes with lower t, we
can write �k tð Þ~�ko tð Þz�ki tð Þ, where �ko tð Þ~dVp tð Þ and �ki tð Þ~dVf tð Þ
are the expected out- and in-degrees of the node. One way to compute
Vp(t) and Vf(t) is to calculate the expressions for the light cone bound-
aries in the (t, h) coordinates, and then integrate the volume form dV
within these boundaries. An easier way is to switch from cosmological
time t to conformal time26 g(t) 5 arcsec cosh t. After this coordinate
change, the metric becomes conformally flat, i.e. proportional to the
metric ds2 5 –dt2 1 dx2 in the flat Minkowski space in Fig. 1,

ds2~sec2 g {dg2zdh2� �
, ð4Þ

dV~sec2 g dg dh, ð5Þ

so that the light cone boundaries are straight lines intersecting the
coordinate (g, h)-axes at 45u, as in Fig. 1 with (t, x) replaced by (g, h).
Therefore, the volumes can be easily calculated:

Vp tð Þ~
ðg tð Þ

0
dg’
ðg tð Þ{g’

0
dh sec2 g’~ln sec g tð Þ~ln cosh t<t, ð6Þ

Vf tð Þ~
ðg t0ð Þ

g tð Þ
dg’
ðg’{g tð Þ

0
dh sec2 g’

~ g t0ð Þ{g tð Þ½ �sinh t0zln
cosh t
cosh t0

<et0{t ,

ð7Þ

where approximations hold for t0?t?1, and where we have used g(t)
5 arcsec cosh t < p/2 – 2e–t. For large times t?1, the past volume and
consequently the out-degree are negligible compared to the future
volume and in-degree, which decay exponentially with time t,

�ki tð Þ~dVf tð Þ<det0{t : ð8Þ

These results can be generalized to (d11)-dimensional de Sitter space-
times with any d and any curvature K 5 L/3 5 1/a2, where a, the
inverse square root of curvature, is also known as the curvature radius of
the de Sitter hyperboloid, or as its pseudoradius. Generalizing Eqs. (3,8),
we can show that the temporal density of nodes and their expected in-
degree in this case scale as ea t{t0ð Þ and eb t0{tð Þ with a 5 b 5 d/a. In

Figure 1 | Finite speed of light c, and causal structure of spacetime. In panel (a), a light source located at spatial coordinate x 5 0 is switched on at time t 5

0. This event, denoted by L in the figure, is not immediately visible to an observer located at distance x0 from the light source. The observer does not see any

light until time t 5 x0/c. Since no signal can propagate faster than c, the events on the observer’s world line, shown by the vertical dashed line, are not causally

related to L until the world line enters the L’s future light cone (yellow color) at t 5 x0/c. This light cone depicts the set of events that L can causally influence.

An example is event P located on the observer’s world line x 5 x0 at time t 5 t0 . x0/c. The past light cone of P (green color) is the set of events that can

causally influence P. Events L and P lie within each other’s light cones. Panel (b) shows a set of points sprinkled into the considered spacetime patch. The red

and green links show all causal connections of events L and P in the resulting causet. These links form a subset of all the links in the causet (not shown). Eyes

are (c) Pix by Marti - Fotolia.com

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 793 | DOI: 10.1038/srep00793 2



short, we have a combination of two exponentials, number of nodes
, eat born at time t and their degrees , e–bt. This combination yields a
power-law distribution P(k) , k–c of node degrees k in the causet, where
exponent c 5 1 1 a/b 5 2.

Structure of the universe and complex networks. The large-scale
causet structure of the universe in the standard model differs from
the structure of sparse de Sitter causets in many ways, two of which
are particularly important. First, the universe is not empty but

Figure 2 | Mapping between the de Sitter universe and complex networks. Panel (a) shows the 111-dimensional de Sitter spacetime represented by the

upper half of the outer one-sheeted hyperboloid in the 3-dimensional Minkowski space XY Z. The spacetime coordinates (h, t), shown by the red arrows, cover

the whole de Sitter spacetime. The spatial coordinate h0 of any spacetime event, e.g. point P, is its polar angle in the XY plane, while P’s temporal coordinate t0

is the length of the arc lying on the hyperboloid and connecting the point to the XY plane where t 5 0. At any time t, the spatial slice of the spacetime is a circle.

This 1-dimensional space expands exponentially with time. Dual to the outer hyperboloid is the inner hyperboloid—the hyperbolic 2-dimensional space, i.e.

the hyperbolic plane, represented by the upper sheet of a two-sheeted hyperboloid. The mapping between the two hyperboloids is shown by the blue arrows.

The green shapes show the past light cone of point P in the de Sitter spacetime, and the projection of this light cone onto the hyperbolic plane under the

mapping. Panel (b) depicts the cut of panel (a) by the YZ plane to further illustrate the mapping, shown also by the blue arrows. The mapping is the reflection

between the two hyperboloids with respect to the cone shown by the dashed lines. Panel (c) projects the inner hyperboloid (the hyperbolic plane) with P’s past

light cone (the green shape) onto the XY plane. The red shape is the left half of the hyperbolic disc centered at P and having the radius equal to P’s time t0,

which in this representation is P’s radial coordinate, i.e. the distance between P and the origin of the XY plane. The green and red shapes become

indistinguishable at large times t0 as shown in panels (d,e,f) where these shapes are drawn for t0 5 5, 10, 15 using the exact expressions from Section II of

Supplementary Notes. Assuming the average degree of �k~10, these t0 times correspond to network sizes of approximately 40, 200, and 2000 nodes.

www.nature.com/scientificreports
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contains matter. Therefore it is only asymptotically de Sitter26,27,
meaning that only at large times t?a, or rescaled times t:t=a
?1, space in the universe expands asymptotically the same way as
in de Sitter spacetime. In a homogeneous and isotropic universe, the
metric is ds2 5 –dt2 1 R2(t)dV2, where dV is the spatial part of the
metric, and function R(t) is called the scale factor. In de Sitter
spacetime, the scale factor is R(t) , cosh t, while in a flat universe
containing only matter and dark energy, R(t) , sinh2/3 (3t/2). In both
cases, R(t) , et at large times t?1, but at early times t *v 1 the scaling
is different. In particular, at t R 0 the universe scale factor goes to
zero, resulting in a real big bang. The second difference is even more
important: the product between the square of inverse curvature a4 5

1/K2 and sprinkling density d~1
�

l3
PtP
� �

(one causet element per unit
Planck 4-volume) is astronomically huge in the universe, da4 , 10244,
compared to dadz1

*v 1 in sparse causets with a small average degree.
Collectively these two differences result in that the present universe
causet is also a power-law graph, but with a different exponent
c 5 3/4 (Fig. 3(a)).

However, the c 5 2 scaling currently emerges (Fig. 3(b)) as a part
of a cosmic coincidence known as the ‘‘why now?’’ puzzle28–31. The
matter and dark energy densities happen to be of the same order of
magnitude in the universe today. This coincidence implies that the
current rescaled time t0 ; t0/a is approximately 1. Figure 3(b) traces
the evolution of the degree distribution in the universe in its past and
future. In the matter-dominated era with t , 1, the degree distri-
bution is a power law with exponent 3/4 up to a soft cut-off that
grows with time. Above this soft cut-off, the distribution decays
sharply. Once we reach times t , 1, e.g. today, we enter the dark-
energy-dominated era. The part of the distribution with exponent
3/4 freezes, while the soft cut-off transforms into a crossover to
another power law with exponent 2, whose cut-off grows exponen-
tially with time. The crossover point is located at kcr , da4. Nodes of
small degrees k , kcr obey the c 5 3/4 part of the distribution, while
high-degree nodes, k . kcr, lie in its c 5 2 regime. At the future
infinity t R ‘, the distribution becomes a perfect double power law
with exponents 3/4 and 2.

In short, the main structural property of the causet in the present-
day universe is that it is a graph with a power-law degree distribution,
which currently transitions from the past matter-dominated era (t ,

1) with exponent c 5 3/4 to the future dark-energy-dominated era (t
. 1) with c 5 2. In many (but not all) complex networks the degree
distribution is also a power law with c close to 28–10. In Fig. 4(a) we
show a few paradigmatic examples of large-scale technological,

social, and biological networks for which reliable data are available,
and juxtapose these networks against a de Sitter causet. In all the
shown networks, the exponent c < 2. This does not mean however
that the networks are the same in all other respects. Degree-depend-
ent clustering, for example (Fig. 4(b)), is different in different net-
works, although average clustering is strong in all the networks.
Strong clustering is another structural property often observed in
complex networks: average clustering in random graphs of similar
size and average degree is lower by orders of magnitude8–10.

Dynamics of de Sitter causets and complex networks. Is there a
connection revealing a mechanism responsible for the emergence of
this structural similarity? Remarkably, the answer is yes. This
mechanism is the optimization of trade-offs between popularity
and similarity, shown to accurately describe the large-scale stru-
cture and dynamics of some complex networks, such as the Inter-
net, social trust network, etc32. The following model of growing
networks, with all the parameters set to their default values, for-
malizes this optimization in Ref. 32. New nodes n in a modeled
network are born one at a time, n 5 1, 2, 3, …, so that n can be
called a network time. Each new node is placed uniformly at random
on circle S

1. That is, the angular coordinates hn for new nodes n are
drawn from the uniform distribution on [0, 2p]. Circle S

1 models a
similarity space. The closer the two nodes on S

1, the more similar
they are. All other things equal, the older the node, the more popular
it is, the higher its degree. Therefore birth time n of node n models its
popularity. Upon its birth, new node n0 optimizes between
popularity and similarity by establishing its fixed number m of
connections to m existing nodes n , n0 that have the minimal
values of the product nDh, where Dh~p{ p{ hn{hn0j jj j is the
angular distance between nodes n and n0. One dimension of this
trade-off optimization strategy is to connect to nodes with smaller
birth times n (more popular nodes); the other dimension is to
connect to nodes at smaller angular distances Dh (more similar
nodes). After placing each node n at radial coordinate rn 5 ln n,
all nodes are located on a two-dimensional plane at polar coordinates
(rn, hn). For each new node n0, the set of nodes minimizing nDh
is identical to the set of nodes minimizing x~ln nn0Dh=2ð Þ~
rnzrn0zln Dh=2ð Þ, where x is equal to the hyperbolic distance33

between nodes n0 and n if r, r0, and Dh are sufficiently large. One
can compute the expected distance from node n0 to its mth closest
node, and find that this distance is equal to ln pmn0= 2 1{ðf½
1=n0Þg�<rn0zln pm=2½ �<rn0 , where approximations hold for large
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Figure 3 | Degree distribution in the universe. Panel (a) shows the rescaled distribution Q(k, t0) 5 da4P(k, t0) of rescaled degrees k 5 k/(da4) in the

universe causet at the present rescaled time t0 5 t0/a 5 0.85, where d is the constant node density in spacetime, and a~
ffiffiffiffiffiffiffiffiffi
3=L

p
. As shown in Section III of

Supplementary Notes, the rescaled degree distribution does not depend on either d or a, so we set them to d 5 104 and a 5 1 for convenience. The size N of

simulated causets can be also set to any value without affecting the degree distribution, and this value is N 5 106 nodes in the figure. The degree

distribution in this simulated causet is juxtaposed against the numeric evaluation of the analytical solution for Q(k, t0) shown by the blue dashed line. The

inset shows this analytic solution for the whole range of node degrees k[ 1, 10244½ � in the universe, where d , 10173 and a , 5 3 1017. Panel (b) shows the

same solution for different values of the present rescaled time t, tracing the evolution of the degree distribution in the universe in its past and future. All

further details are in Section I of Supplementary Methods.
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n0. In other words, new node n0 is born at a random location on the
edge of an expanding hyperbolic disc of radius r0 5 ln n0, and con-
nects to asymptotically all the existing nodes lying within hyperbolic
distance r0 from itself. The connectivity perimeter of new node n0 at
time n0 is thus the hyperbolic disc of radius r0 centered at node n0.
The resulting connection condition x , r0, satisfied by nodes n to
which new node n0 connects, can be rewritten as

rnzln
Dh

2
v0: ð9Þ

This model yields growing networks with power-law degree dis-
tribution P(k) , k–c and c 5 2. The networks in the model also
have strongest possible clustering, i.e. the largest possible number
of triangular subgraphs, for graphs with this degree distribution. The
model and its extensions describe the large-scale structure and
growth dynamics of different real networks with a remarkable
accuracy32. We next show that the described network growth
dynamics is asymptotically identical to the growth dynamics of de
Sitter causets.

To show this, consider a new spacetime quantum P that has just
been born at current time t 5 t0 in Fig. 2. That is, assume that the
whole de Sitter spacetime is sprinkled by nodes with a uniform
density, but only nodes between t 5 0 and t 5 t0 are considered to
be ‘‘alive.’’ We can then model causet growth as moving forward the
current time boundary t 5 t0 one causet element P at a time. By the
causet definition, upon its birth, P connects to all nodes in its past
light cone shown by green. As illustrated in Fig. 2, we then map the
upper half of the outer one-sheeted hyperboloid representing the half
of de Sitter spacetime dS

2 with t . 0, to the upper sheet of the dual
two-sheeted inner hyperboloid, which is the standard hyperboloid
representation of the hyperbolic space H234. This mapping sends a
point with coordinates (t, h) in dS

2 to the point with coordinate (r, h)
in H2, where r 5 t. Since in the conformal time coordinates the light
cone boundaries are straight lines intersecting the (g, h)-axes at 45u,
the coordinates (t, h) of all points in P’s past light cone satisfy
inequality DhvDg~g t0ð Þ{g tð Þ~arcsec cosh t0{arcsec cosh t<
2 e{t{e{t0ð Þ. If t0?t?1, then we can neglect the second term in
the last expression, and the coordinates (tn, hn) of existing causet
nodes n to which new node P connects upon its birth are given by

Dhv2e{tn , ð10Þ

which is identical to Eq. (9) since rn 5 tn. In Section II of Sup-
plementary Notes we fill in further details of this proof, extend it
to any dimension and curvature, and show that the considered map-
ping between de Sitter spacetime and hyperbolic space is relativisti-
cally invariant.

In short, past light cones of new nodes, shown by green in Fig. 2, are
asymptotically equal (Fig. 2(d-f)) to the corresponding hyperbolic
discs, shown by red. The green light cone bounds the set of nodes
to which node P connects as a new causet element. The red hyperbolic
disc bounds the set of nodes to which P connects as a new node in the
hyperbolic network model that accurately describes the growth of real
networks. Since these two sets are asymptotically the same, we con-
clude that not only the structure, but also the growth dynamics of
complex networks and de Sitter causets are asymptotically identical.

Discussion
Geometrically, this equivalence is due to a simple duality between the
two hyperboloids in Fig. 2. The inner hyperboloid represents the
popularity3similarity hyperbolic geometry of complex networks;
the outer hyperboloid is the de Sitter spacetime, which is the solution
to Einstein’s equations for a universe with positive vacuum energy. In
that sense, Einstein’s equations provide an adequate baseline descrip-
tion for the structure and dynamics of complex networks, which can
be used for predicting network dynamics at the large scale. De Sitter
spacetime is homogeneous and isotropic, as is the hyperbolic space,
but if we take a real network, e.g. the Internet, and map it to this
homogeneous space, then after the mapping, the node density in the
space is non-uniform35. In real networks, the space thus appears
homogeneous only at the largest scale, while at smaller scales there
are inhomogeneities and anisotropies, similar to the real universe, in
which matter introduces spacetime inhomogeneities at smaller
scales, and leads to non-trivial coupled dynamics of matter density
and spacetime curvature, described by the same Einstein equations.
In view of this analogy, equations similar to Einstein’s equations may
also apply to complex networks at smaller scales. If so, these equa-
tions can be used to predict and possibly control the fine-grained
dynamics of links and nodes in networks.

Our results may also have important implications for cosmology.
In particular, de Sitter causal sets have exactly the same graph struc-
ture that maximizes network navigability36. Translated to asymptot-
ically sparse causal sets, does this property imply that the expanding
portion of de Sitter spacetime (t . 0) is the spacetime that maximizes

Figure 4 | Degree distribution and clustering in complex networks and de Sitter spacetime. The Internet is the network representing economic relations

between autonomous systems, extracted from CAIDA’s Internet topology measurements38. The network size is N 5 23752 nodes, average degree �k~4:92,

and average clustering �c~0:61. Trust is the social network of trust relations between people extracted from the Pretty Good Privacy (PGP) data39; N 5

23797, �k~7:86, �c~0:48. Brain is the functional network of the human brain obtained from the fMRI measurements in Ref. 40; N 5 23713, �k~6:14,

�c~0:16. De Sitter is a causal set in the 1 1 1-dimensional de Sitter spacetime; N 5 23739, �k~5:65, �c~0:82. Panel (a) shows the degree distribution P(k),

i.e. the number of nodes N(k) of degree k divided by the total number of nodes N in the networks, P(k) 5 N(k)/N, so that �k~
P

k kP kð Þ. Panel (b) shows

average clustering of degree-k nodes c(k), i.e. the number of triangular subgraphs containing nodes of degree k, divided by N(k)k(k – 1)/2, so that

�c~
P

k c kð ÞP kð Þ. All further details are in Section I of Supplementary Methods.
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the probability that two random Planck-scale events have an
ancestor in their common past? If it does, then this uniqueness of
de Sitter spacetime may lead to a different perspective on the cosmic
coincidence problem, as well as on dark energy, possibly casting the
latter as a phenomenon emerging from certain optimization princi-
ples encoded in the causal network structure.

The degree distributions in some complex networks deviate from
clean power laws, the exponents of these power laws vary a lot across
different real networks, and so do clustering, correlation, and many
other structural properties of these networks8–10. Therefore it may
seem unlikely that de Sitter causets can model the full spectrum of
structural diversity observed in complex networks. Focusing on the
trust network in Fig. 4 for instance, we have already observed that its
degree-dependent clustering is quite different from the one in de
Sitter causets. Yet, given that these causets are asymptotically ident-
ical to growing hyperbolic networks, this observation appears as a
paradox, because the hyperbolic networks were shown to accurately
match not only clustering peculiarities, but also a long list of other
important structural properties of the same trust network, as well as
of other networks32. The explanation of this paradox lies in the fact
that the hyperbolic network model has parameters to tune the degree
distribution exponent, clustering strength, node fitness, and other
network properties, while in de Sitter causets, only the number of
nodes and average degree can be controlled. Do the hyperbolic net-
work parameters have their duals in the de Sitter settings, what are
the physical meanings of these dual parameters, and do they lead to
similar modeling versatility—all these questions are open.

We conclude with the observation that the node density in grow-
ing hyperbolic networks with the default parameters corresponding
to de Sitter causets, is not uniform in the hyperbolic space32. This
observation means that these networks are not random geometric
graphs37, and that their structure does not exactly reflect the geo-
metry of the underlying hyperbolic space. Informally, a random
geometric graph is a coarse, discrete representation of a smooth
geometric space. Our finding that asymptotically the same networks
have a uniform node density in de Sitter spacetimes dual to hyper-
bolic spaces, strongly suggests that real networks are random geo-
metric graphs that grow in spacetimes similar to the asymptotically
de Sitter spacetime of our accelerating universe.
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