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Gametic phase disequilibrium, often referred to as linkage disequili-
brium (LD), describes the non-independence of alleles at different loci
on the same chromosome. There are various measures of LD
proposed in the literature (Hedrick, 1987; Devlin and Risch, 1995)
for the purposes of inferring population evolutionary history and
mapping genes (Slatkin, 2008). In a recent paper in this journal,
Mangin et al. (2012) proposed a new LD measure r2

S aiming to correct
the bias due to population structure by taking into account of the
population structure matrix. In this letter, we point out that r2

S is
essentially the square of the partial correlation coefficient between two
loci given the population structure, which was not explicitly explained
in the paper. We also distinguish between the partial correlation and
the conditional correlation, as the latter was ambiguously used in the
paper. We further extend the result on the relationship between r2

S and
power of association tests to generalized linear models and discuss the
potential use of r2

S in human genetic mapping.
A natural way to measure LD is by the correlation coefficient.

Consider two diallelic loci A and B, with alleles A1 and A2 at locus A
and alleles B1 and B2 at locus B. Denote by pi, where iA{A1, A2, B1,
B2}, allele frequencies, and by pj, where jA{A1B1, A1B2, A2B1, A2B2},
haplotype frequencies. The widely used LD measure
r2

AB¼D2/pA1
pA2

pB1
pB2

, where D¼ pA1B1
� pA1

pB1
, is the square of

Pearson’s correlation coefficient that measures the linear dependence
between the two loci (Hill and Robertson, 1968). Suppose in a sample
there exists population structure that can distort the correlation
between the two loci. One way to measure LD controlling for
confounding effects is by the partial correlation coefficient. Denote
by YA and YB the random variables of genotypes at loci A and B,
respectively, and by S a vector of variables on the population
structure. Regress YA and YB on S by the linear regression models
YA¼ SbAþ eA and YB¼ SbBþ eB, respectively, where bA and bB are
regression coefficients, and eA and eB are residuals. The partial
correlation rAB.S between YA and YB controlling for S is then defined
as Pearson’s correlation between the residual variables eA and eB (Yule,
1907). Alternatively, the partial correlation rAB.S can be calculated as a
negative off-diagonal element of the inverse correlation matrix
(Whittaker, 1990), which is exactly the square root of formula (1)
in Mangin et al. (2012). Therefore, the new LD measure they
proposed is the square of the partial correlation coefficient—r2

AB:S—
between two loci controlling for the population structure, which is a
direct extension of the original measure r2

AB that is used in the absence
of population stratification.

As the formula of partial covariance was referred to as the one for
‘conditional covariance’ in the paper (p 286), it is worth pointing out
that these two are equivalent only in special situations, such as when
variables follow a multivariate normal distribution. The partial

correlation rAB.S in general is not equal to the conditional correlation
rAB|S. The former by definition is independent of S, whereas the latter
is not necessarily free of S. Even if rAB|S is free of S, there exists the
inequality r2

AB:Spr2
AB j S, where the equality holds when both the

conditional variances and covariance of YA and YB given S are free of S
(Lawrance, 1976). Below we performed a simulation study to show
their subtle difference in case of rAB|S being independent of
S. Simulation settings I, III and V mimicked those by Mangin et al.
(2012) (Table 1), except for replacing r2

AB¼ 0:01 by 0.1; in settings II,
IV and VI, the allele frequencies in the second population were also
changed. In these six settings, the two loci were in the same degree of
LD in the two populations but with different minor allele frequencies.
In each population 1000 haplotypes were simulated and randomly
assigned into 500 pairs. The genotypes were then scored in an additive
fashion. The crude sample correlation coefficient r̂2

crude, the partial
correlation coefficient r̂2

AB:S and the conditional correlation coefficient
r̂2

AB j S were estimated based on the genotypic scores. Ten thousand
replicates were simulated, and the mean and standard error of the
estimates were recorded in Table 1. In all settings, r̂2

AB:S was smaller
than r̂2

AB j S, but the difference between them was small. Theoretically,
in settings I, III and V they should be equal because the minor allele
and the major allele at each diallelic locus were simply flipped
between the two populations, and thus both the conditional variances
and covariance of YA and YB given S are free of S; the small differences
(B10�4) were due to sampling errors. In settings II, IV and VI, the
differences between them (B10�3) were one order of magnitude
greater than that in settings I, III and V.

Measuring LD between loci by r2
AB:S in the case of population

stratification is in the same spirit as measuring correlation between
covariate-adjusted phenotypes and genotypes in genetic association
studies (Price et al., 2006; Xing et al., 2011). Suppose an allele at locus
A is the causal variant for a trait. Mangin et al. (2012) derived in a
linear regression setting that the power to detect association between
the trait and locus A would be reduced by a factor of r2

AB:S when locus
B was examined instead. As a matter of fact, this conclusion holds in
general when modeling phenotype–genotype association by a general-
ized linear model, as eB can be viewed as a surrogate variable for eA,
and it is well known the asymptotic relative efficiency of a test using
eB versus using eA equals the square of their correlation coefficient
(Lagakos, 1988; Tosteson and Tsiatis, 1988).

Characterizing LD structure is instructive in designing genetic
association studies, which is a major goal of the International
HapMap Consortium (2005) and the 1000 Genomes Project
Consortium (2010). These projects focus on genetically homogeneous
populations to document population-specific parameters. However,
in reality, a study sample can be genetically heterogeneous with
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substructure even though the recruiting criterion requires a specific
ethnic group. Imagine the diversity of African Americans in a
metropolitan area. Considering that a lot of genome-wide association
studies have been carried out, it will be valuable to use these available
genome-wide genotypes to document ethnic- and geographic-specific
r2

AB:S for the purpose of facilitating future genetic studies conducted in
the same population.

Finally, we also want to point out that the other LD measure r2
V

proposed by Mangin et al. (2012) for the purpose of correcting the
bias due to relatedness is the square of the correlation coefficient of
two loci modeled by a linear regression—the coefficient of
determination—using generalized least squares given the kinship
matrix instead of using ordinary least squares and assuming
independence between subjects as when calculating the usual correla-
tion coefficient.
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Table 1 Mean (and its s.e.a) of correlation coefficient estimates of a mixture of two populationsb

I II III IV V VI

Population 1

r2
AB 0.10 0.10 0.25 0.25 0.50 0.50

pA1 0.90 0.90 0.90 0.80 0.90 0.70

pB1 0.90 0.55 0.90 0.55 0.90 0.55

Population 2

r2
AB 0.10 0.10 0.25 0.25 0.50 0.50

pA1 0.10 0.70 0.10 0.65 0.10 0.60

pB1 0.10 0.70 0.10 0.65 0.10 0.60

Mixed Population

r̂2
crude 0.7227 (0.0188) 0.0438 (0.0131) 0.7925 (0.0160) 0.1980 (0.0247) 0.8757 (0.0125) 0.4716 (0.0281)

r̂2
AB:S 0.1012 (0.0247) 0.0969 (0.0177) 0.2508 (0.0366) 0.2484 (0.0251) 0.5007 (0.0412) 0.4995 (0.0265)

r̂2
AB jS 0.1014 (0.0247) 0.1030 (0.0186) 0.2511 (0.0366) 0.2515 (0.0253) 0.5011 (0.0412) 0.5005 (0.0264)

aBased on 10000 replicates.
bFive hundred diploid subjects from each population.
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