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A Bayesian method for the joint estimation of outcrossing
rate and inbreeding depression

VA Koelling, PJ Monnahan and JK Kelly

The population outcrossing rate (t) and adult inbreeding coefficient (F) are key parameters in mating system evolution. The
magnitude of inbreeding depression as expressed in the field can be estimated given t and F via the method of Ritland (1990).
For a given total sample size, the optimal design for the joint estimation of t and F requires sampling large numbers of families
(100–400) with fewer offspring (1–4) per family. Unfortunately, the standard inference procedure (MLTR) yields significantly
biased estimates for t and F when family sizes are small and maternal genotypes are unknown (a common occurrence
when sampling natural populations). Here, we present a Bayesian method implemented in the program BORICE (Bayesian
Outcrossing Rate and Inbreeding Coefficient Estimation) that effectively estimates t and F when family sizes are small and
maternal genotype information is lacking. BORICE should enable wider use of the Ritland approach for field-based estimates
of inbreeding depression. As proof of concept, we estimate t and F in a natural population of Mimulus guttatus. In addition,
we describe how individual maternal inbreeding histories inferred by BORICE may prove useful in studies of inbreeding and
its consequences.
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INTRODUCTION

The rate of outcrossing and the magnitude of inbreeding depression
are key parameters determining the evolution of plant and animal
mating systems (Charlesworth and Charlesworth, 1987; Goodwillie
et al., 2005; Jarne and Auld, 2006; Escobar et al., 2009). Outcrossing
rates also affect the amount and partitioning of genetic diversity in
natural populations (Hamrick and Godt, 1996; Charlesworth, 2003;
Glémin et al., 2006) and the amount of inbreeding depression
(Husband and Schemske, 1996). Furthermore, in a world with
increasing anthropogenic disturbance, measures of outcrossing rates
and inbreeding depression are important in conservation efforts
(Aguilar et al., 2006; Eckert et al., 2010).

Inbreeding depression can be measured directly using experimental
crosses in laboratory/greenhouse populations, or indirectly using
genetic markers in natural populations. Ritland (1990) suggested a
method for the latter approach simultaneously estimating inbreeding
depression (ID) and the outcrossing rate (t) of natural populations
from genetic marker data. ID reduces the homozygosity of adults,
measured by the mean inbreeding coefficient (F), relative to zygotes.
F changes because inbred individuals are less likely to survive to
adulthood and successfully produce offspring. ID is estimated from
the magnitude of the change in F from zygote to adult with the zygote
F inferred from the outcrossing rate. In plants, t and F are typically
estimated from progeny arrays (Jarne and David, 2008). Seed families
are collected from natural populations, grown in a greenhouse, and
individuals from each seed family are genotyped at variable marker
loci. The MLTR software, which implements a multilocus estimation
model (Ritland and Jain, 1981; Ritland, 2002), is then usually used for
statistical analysis of genotypic data (Goodwillie et al., 2005).

The direct and indirect methods to estimate ID each have their
respective advantages and disadvantages. One benefit of using experi-
mental crosses over field-based methods is that population substruc-
ture (for example, biparental inbreeding or the Wahlund effect) may
be less of a concern (Jarne and David, 2008). Experimental crosses are
also often less expensive and avoid the technical problems associated
with marker selection and genotyping. However, many organisms are
not experimentally tractable in the laboratory or greenhouse. Further-
more, several studies have shown that inbreeding depression can be
more severe under natural, stressful conditions (Dudash, 1990;
Crnokrak and Roff, 1999; Cheptou et al., 2000; Keller et al., 2002;
Armbruster and Reed, 2005; Hayes et al., 2005). Perhaps the greatest
advantage of genetic marker-based methods is that inbreeding
depression is estimated from survival and reproduction in nature.

Although a number of studies have used the Ritland approach to
estimate ID (Dole and Ritland, 1993; Eckert and Barrett, 1994; Kohn
and Biardi, 1995; Scofield and Schultz, 2006; Tamaki et al., 2009; Yang
and Hodges, 2010), a frequent criticism of the method is that ID
estimates are typically encumbered with high statistical uncertainty.
Confidence bands on ID estimates routinely span the entire range of
possible values. However, we suggest that this is not an intrinsic flaw
of the method. Instead, the large uncertainty associated with marker-
based ID estimates owes to the fact that experimental studies are not
optimally designed for the joint estimation of t and F.

A typical plant mating system experiment involves a few hundred
plants, 10–20 progeny genotyped from each of 10–20 field maternal
plants. We suggest that a better design for estimating the joint
distribution of t and F is one with more parents and fewer offspring
per family. The advantage of this reallocation of effort is shown
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in the simulation results summarized by Table 1. Here, we repeatedly
simulated genotypic data for three different mating systems (t¼ 0.1,
0.5 or 0.9) and then sampled according to two experimental designs
(see Materials and Methods for simulation details). Design 1 is similar
to the standard (15 maternal families each with 15 offspring), while
design 2 maximizes the number of families. We assume that the
maternal plants are genotyped, so each design involves 240 genotyped
plants.

Applying MLTR to each of 50 replicates of each scenario, we find
that both designs yield approximately unbiased estimates for both
t and adult F, that is, the means of estimates are equal to the true
values. However, the variance among replicate simulations differs
strikingly between experimental designs. For t, differences are small,
with design 1 slightly more precise than design 2. For adult F
however, the standard deviation among estimates, which is what the
standard error in a single real analysis is intended to approximate, is
3–4 times greater for design 1 than design 2. Taken together, these
results suggest that a modified sampling scheme can greatly improve
estimation of adult F, and hence of ID.

The simulation of Table 1 differs from most real studies in that we
assumed complete maternal genotypes. In practice, field-sampled
maternal tissue is often unavailable or insufficient in quality to score
maternal genotypes. In these circumstances, mating system estimation
requires inference of the maternal genotype from progeny genotypes.
This works most efficiently with larger progeny sets unless the species
is highly selfing (Brown and Allard, 1970; Ritland, 1986). Therefore,
the need to infer maternal genotypes is mainly why larger family sizes
are used in practice.

We have found that if MLTR is applied to data with small family
sizes and unknown maternal genotypes, estimation of t and adult F
becomes problematic (Figure 1). The first set of Results presented in
this paper documents estimation bias for both t and F when family
sizes are small. In response to this observation, we develop a Bayesian
method for the joint estimation of t and F implemented in the
program BORICE (Bayesian Outcrossing Rate and Inbreeding Coeffi-
cient Estimation). This procedure can provide unbiased estimates of
t and F with small family sizes and incomplete (or absent) maternal
genotype information. We present the theory in the next section and
then two analyses. The first analysis is of simulated data (as in
Figure 1) to demonstrate the performance of the method under
known conditions. The second analysis is for real data from a single
natural population of yellow monkeyflower (Mimulus guttatus).

MATERIALS AND METHODS
Simulated genotype data
We simulate data for subsequent input to BORICE and/or MLTR from a

mating system model with the following parameters: the number of marker

loci, the number of alleles per marker, population allele frequencies, the

number of maternal plants sampled, the number of offspring per family, and

the population outcrossing rate. We assume marker loci are unlinked. In our

initial set of simulations (Supplementary Tables S1 and S2 and Figures 1

and 2), we assume that the population outcrosses at a constant rate t (selfing

occurs at rate 1–t) and that outcrossing is random. The first step in a simulation

was to determine the inbreeding history (Ck¼number of generations of selfing

in the ancestry of individual k) for each maternal plant. The population consists

of series of discrete ‘cohorts’ defined by individual inbreeding histories

(Campbell, 1986; Kelly, 1999). Cohort 0 is outbred individuals (inbreeding

coefficient F¼ 0). Cohort 1 is selfed progeny of outbred individuals (F¼ 1/2).

Cohort 2 (F¼ 3/4) is the selfed progeny of cohort 1 individuals, and so on. To

simulate maternal genotypes, we assume the population distribution of

inbreeding histories is geometric: Prob[Ck¼X]¼ t(1�t)X. Ck values within a

simulation run were sampled probabilistically from this distribution.

The second step in a simulation is to sample maternal genotypes given Ck

values and population allele frequencies. Probabilities of particular genotypes

are given by the standard formulas (Hartl and Clark, 1989, p 250; Equation (2)

Table 1 The s.d. of estimates for population outcrossing rate (t) and

adult inbreeding coefficient (F) are given for six distinct scenarios

True t Experimental design s.d. of t estimates s.d. of F estimates

0.10 Design 1: nF¼15; nO¼15 0.02 0.09

Design 2: nF¼120; nO¼1 0.03 0.03

0.50 Design 1 0.04 0.11

Design 2 0.05 0.04

0.90 Design 1 0.02 0.08

Design 2 0.02 0.02

Abbreviations: nF, number of families; nO, number of offspring per family.
Genotypic data (10 unlinked, codominant marker loci each with five equally frequent alleles)
were simulated for two experimental designs and three true outcrossing rates.
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Figure 1 MLTR bias in the estimation of the population outcrossing rate (t)

and adult inbreeding coefficient (F) using three experimental designs with

small family sizes. Mean estimated t (a) and F (b) from simulations with

100 families each with four offspring (squares), 200 families each with two

offspring (triangles), and 400 families each with one offspring (circles).

Means are shown with standard errors. The solid black line represents no

difference between the mean estimate and the true value.
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below). Given the maternal genotype, we subsequently sampled progeny

genotypes. By draw of a uniform random number, u, we first determined if

the offspring was outcrossed (uot) or selfed (u4t). If outcrossed, we sampled

a gamete by randomly choosing one maternal allele at each locus. The

complementary paternal allele was chosen probabilistically given population

allele frequencies. For selfed progeny, two maternal gametes were formed and

then paired. Progeny genotypes were the standard output, although maternal

genotypes were also output if needed (as for Table 1).

We developed two elaborations of this program to test the robustness of

BORICE. The first variant allowed the outcrossing rate to vary among

maternal plants. Here, a uniform random value from 0 to 1 was sampled

and assigned as the individual outcrossing rate to each maternal plant. The

second variant allowed ‘correlated matings’. In this version, we did not sample

pollen genotypes independently for each outcrossed progeny. Instead, the

number of sires per maternal plant was specified as a model constant. We then

sampled paternal genotypes according to the same rules as for maternal

genotypes. Within a progeny set, we randomly sampled among sires for each

outcrossed progeny and formed a gamete from this sire. If a single sire was

specified per maternal plant, then the probability that outcrossed progeny were

full sibs (the rp parameter of Ritland, 1989) was 1. With two sires per maternal

plant, rp¼ 0.5. The programs to execute these operations were written in C

and are available upon request.

Tests of small family designs in MLTR
We used genotypic data simulated for three experimental designs and 15 true

outcrossing rates to obtain t and F estimates from MLTR. The experimental

designs were (a) 100 families each with four offspring, (b) 200 families each

with two offspring, and (c) 400 families each with one offspring (400

individuals total in each design). Data were generated for 10 marker loci each

with five equally frequent alleles. The maternal genotype was treated as

unknown in all three designs and therefore was inferred in MLTR. Simulated

data were run manually in MLTR for each replicate. Default settings were used

except no bootstraps were performed. Maternal genotype inference was

performed using the two options available in MLTR: (1) the ‘most likely

parent’ method, and (2) choosing a parent at random in proportion to its

prior probability (see the MLTR reference document for a description of these

inference methods).

Bayesian estimation of t and F
We apply a Bayesian approach to estimate the population outcrossing rate

and the distribution of individual inbreeding coefficients (F) among maternal

individuals from progeny arrays. The unobserved inbreeding history cohort for

each maternal plant (Ck) is a latent variable in our model. For cohort j, the

individual inbreeding coefficient F¼ 1–(1/2)j. This implies that the difference

among cohorts vanishes as j gets larger and we bin all cohorts of 6 and greater.

This cohort structure assumes that all outcrossing is random and all inbreeding

results from recurrent self-fertilization, that is, there is no biparental inbreed-

ing. If biparental inbreeding is substantial, individual inbreeding coefficients

may vary more continuously. In MLTR, biparental inbreeding is suggested by a

difference between individual and multi-locus estimates for t (Shaw et al.,

1981; Ritland, 2002), although direct experimental approaches may prove

more effective (Kelly and Willis, 2002; Herlihy and Eckert, 2004).

Unobserved maternal genotypes are also treated as latent variables. It is

straightforward to calculate the likelihood for a set of progeny genotypes

conditional on t, the maternal genotype, and population allele frequencies

(Ritland and Jain, 1981; Wang, 2004). We assume that each offspring is

independently determined as outcrossed or selfed, and for the former, siring of

offspring within a family is independently determined. The likelihood for

family k, lk, is:

lk¼ Pr½Mk�
Ynk

i¼ 1

ðtPout½Aik Mkj � þ ð1� tÞPin½Aik Mkj �Þ ð1Þ

Here, Mk is the vector of genotypes for maternal individual k, Aik is the

vector of genotypes for offspring i of maternal individual k, and nk is the

number of individuals in family k. Mk includes observed values as well as

imputed (latent) values for any loci not directly genotyped from maternal

DNA. Any missing values for the progeny vector (Aik) are ignored. Pr[Mk] is

the probability of the maternal genotype, which depends on population allele

frequencies and Ck, the inbreeding cohort of maternal individual k. Ck values

for all maternal individuals are also treated as latent variables. Pout½Aik Mkj � is

the probability of obtaining Aik given Mk by outcrossing, while Pin½Aik Mkj � is

the corresponding probability if the offspring is produced by selfing. The

likelihood for the entire dataset is the product of lk over families.

For a particular locus x, the maternal genotype probability is

Prob½AiAj� ¼ 2ð1� FÞqxiqxj for Ai 6¼ AjðheterozygoteÞ or ð2aÞ

Pr ob½AiAi� ¼ ð1� FÞq2
xiþ Fqxi for homozygotes; ð2bÞ

where F is the inbreeding coefficient of the maternal plant and qxi is the

population frequency of allele i at locus x. Pr½Mk� is a product over loci.

Pin½Aik Mkj � and Pout½Aik Mkj � are also products over loci given that we assume

loci to be unlinked. Pin½Aik Mkj � is determined simply by Mendelian segrega-

tion, while Pout½Aik Mkj � also depends on the matrix of population allele

frequencies.

We use Markov Chain Monte Carlo with the Metropolis-Hastings algorithm

(Metropolis et al., 1953) to estimate the posterior distribution of each standard

parameter (the allele frequencies and t) as well as each latent variable (all

unknown maternal genotypes and the entire vector of maternal Ck). We

assume a uniform prior density (0, 1) for t and a Dirichlet density (essentially a

multivariate uniform density) for the prior on allele frequencies. An iteration
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Figure 2 Estimation of the population outcrossing rate (t) and adult

inbreeding coefficient (F) in BORICE using three experimental designs with

small family sizes. Mean t-max (a) and F-max (b) are reported from

simulations of the same parameter combinations in Figure 1. The solid

black line represents no difference between the mean estimate and the

true value.
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of the chain has four stages: (1) propose and then accept/reject adjustment to t,

(2) propose and then accept/reject adjustment to qxi with each locus (x)

considered in series, (3) propose and then accept/reject new value for Ck with

each maternal plant (k) considered in series, and (4) propose and then accept/

reject a new genotype for a random locus of maternal genotype Mk within each

family (k) considered in series.

The proposed value for the outcrossing rate t0 is equal to the current value

(t) plus a small random increment, e. e is uniform on an interval (�s, s)

around zero (our default value is s¼ 0.05). Reflection is employed to insure t 0

is in the feasible range of 0 to 1. In other words, if tþ e¼ 1.015, then

t0 ¼ 0.985. In general, the proposal ratio (R) is the product of the likelihood

ratio, the prior ratio, and the Hastings ratio. The proposal scheme for t0,
combined with a uniform prior on t, implies that both the prior ratio and

Hastings ratio are 1. As a consequence, R for adjustments to t is simply:

R¼ Prob½Data t0�j
Prob½Data t�j

If R41, the step is taken (t0 is accepted). If Ro1, then we draw a uniform

random value (u) and accept t0 if uoR.

For allele frequencies, we track and update a score, yxi, corresponding to

each allele (i) at each locus (x). These scores are bounded to non-negative

values and the prior density is Gamma[1,1] for each allele. We assume

independence of scores for the joint prior density. Allele frequencies are

calculated as qxi¼ yxiP
j
yxj

, with the summation taken over all alleles at locus x.

We propose updates to yxi using the same method as updates to t, but here

reflection occurs only at 0 (no upper bound). With this scheme, the qxi have a

Dirichlet prior, the Hasting’s ratio is 1 and the prior ratio takes a simple form.

The proposal ratio (R) for adjustments to yxi is

R¼
Prob½Data y0xi�

��
Prob½Data yxi�j

ðeyxi � y0xiÞ

This updating scheme for allele frequencies follows work on proportion

variables in phylogenetics (Lewis et al., 2010).

For the latent variables, we sample proposed values probabilistically given

the current t and allele frequencies. The proposed value for inbreeding cohort

of maternal plant k, Ck
0, is sampled from a geometric distribution:

Prob[Ck
0 ¼ 0]¼ t, Prob[Ck

0 ¼ 1]¼ (1�t)t, Prob[Ck
0 ¼ 2]¼ (1�t)2t, Prob[Ck

0 ¼ 3]

¼ (1�t)3t,y Prob½C0k¼ 6� ¼ 1�
P5

i¼ 0 Prob½C0k¼ i�. Imputed maternal gen-

otypes are sampled from the probability distribution implied by current allele

frequencies and Ck (see Equation (2)). With this scheme, proposed values for

latent variables can match current values. While this may not be optimal for

mixing, it is simple (prior ratio¼Hasting’s ratio¼ 1) and we have found that

it performs well in practice. Observed acceptance rates are usually in the range

of 40–75% for proposed updates to the latent variables when using default

program settings. As changes to Ck and maternal genotypes affect the

likelihood for only one family, family specific likelihoods are sufficient for

the proposal ratio. For Ck
0,

R¼
Pr½Mk C

0

k�
��

Pr½Mk Ck�
�� :

For Mk
0,

R¼
Ynk

i¼ 1

ð
tPout½Aik M

0

k

�� � þ ð1� tÞPin½Aik M
0

k

�� �
tPout½Aik Mk

�� � þ ð1� tÞPin½Aik Mk

�� �
Þ:

The description above is fully valid if null alleles are specified to be absent at

all loci. If null alleles are allowed at a locus, the probability statements for

maternal and offspring genotypes are modified to include the population

frequency of null alleles as a parameter. We also allow an imputed maternal

genotype even when the maternal genotype is observed. An observed maternal

homozygote for allele i, AiAi, is consistent with that as the true genotype but

the true genotype could also be A0Ai, a heterozygote of the observed allele with

a null allele. With null alleles, progeny likelihoods are also modified. If the

imputed maternal genotype is A0A0, the probability of progeny genotype AiAi

is qxi/(1�qx0) by outcrossing or zero if by selfing. The (1�qx0) denominator of

the outcrossing probability owes to the fact that we must condition on the

observation of an offspring genotype (thus excluding the possibility that

outcross pollen was null at locus x). If the imputed maternal genotype is A0Ai,

the outcross probability for progeny genotype AjAj is 0.5� qxj /(1�qx0) and for

progeny genotype AiAi is 0.5� qxi/(1�qx0)þ 0.5� (qxiþ qx0). For selfed

progeny, the only possible observed progeny genotype is AiAi if the imputed

maternal genotype is A0Ai. If both maternal alleles are non-null, then the

probability of producing outcrossed but homozygous offspring is elevated by

the additional possibility that pollen alleles are null. Selfed progeny genotype

likelihood equations are unchanged if both maternal alleles are non-null.

When null alleles are specified as present, allele frequencies are updated using

the same scheme specified above.

Our method of dealing with nulls treats absent progeny genotypes as

missing data. However, some information is lost with this method given that

null alleles increase the likelihood of missing data. A family with an abundance

of missing progeny genotypes may be an indicator that the maternal plant is

likely to have one or two null alleles at a locus. The difficulty is that a diversity

of reasons other than null alleles can yield missing data, for example, sample-

specific PCR failure. A possible alternative to our approach is to explicitly

model the multiple sources of error and include absent progeny genotypes in

the likelihood calculations (Wang, 2004).

We have implemented the algorithms outlined above using two program-

ming languages. A numerically efficient version was written in C. This version

was applied to simulated genotypic data to evaluate performance (see Results).

The experimental designs were identical to those used to test MLTR: 100

families each with four offspring, 200 families each with two offspring, and 400

families each with one offspring (400 individuals total in each design). Data

were generated for ten marker loci each with five equally frequent alleles. The

maternal genotype is unknown in all three designs and therefore must be

inferred in BORICE.

The publicly available version of BORICE is open source and written in

Python 2.7 (http://www.python.org/). BORICE functions through a graphical

user interface written in PyQt 4.8.5, and can be run on Windows or Mac OS X

machines. Genotype data for a population are imported into BORICE as a

comma-separated text file. The program runs an initial check for impossible

genotypes in the data set. Following the run, BORICE outputs text files with

(1) the posterior distributions of the population inbreeding history, t, F, allele

frequencies, maternal individual inbreeding histories, and maternal individual

genotypes, (2) the mean values of the posterior distributions for t and F and

the modal values t-max and F-max, (3) the credibility intervals (2.5 and 97.5

percentiles) for t and F, which are the Bayesian analog of 95% confidence

intervals, and (4) the list of t, F and ln likelihood values from every 10 steps in

the chain following the burn-in. Given that the posterior distributions for t, F

and allele frequencies are continuous, the output consists of binned values

ranging from 0 to 1 in increments of 0.01. t-max and F-max are the modal

values for each posterior distribution.

Empirical application
Mimulus guttatus (Phrymaceae), the yellow monkeyflower, is a hermaphroditic

and self-compatible plant species native to a diversity of habitats in the western

United States. It occurs in both annual and perennial growth forms. We

collected seed families of M. guttatus from a putatively perennial coastal

population, Short Sands (SS; N 45 145035.20, W 123 157052.30), located in

Tillamook Co., Oregon, USA. Mature fruits were collected randomly from

individuals throughout the population in July, 2009. Seed families were then

sown onto damp potting soil in the University of Kansas greenhouse in

October 2009 and grown under standard conditions (see Arathi and Kelly,

2004) until young leaf tissue could be collected for DNA extraction. DNA was

then extracted from 48 families with four offspring in each family using the

CTAB method (see Marriage et al. (2009) for a detailed description of the

protocol).

Multilocus genotypes were then determined for each individual using three

microsatellite loci (AAT240, AAT367 and AAT374) identified as polymorphic

in M. guttatus (Kelly and Willis, 1998). GenBank accession numbers and links

to the GenBank entries for these loci are available at http://www.mimuluse-

volution.org/. PCR was used to amplify length polymorphisms at these loci.

Each PCR mixture was 10ml in total volume, and consisted of 2–10 ng of

template DNA, 5mM HEX- or FAM-labeled forward primers, 5mM reverse
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primers, 250mM of each dNTP, 25 mM MgCl2, 0.15 U Taq DNA polymerase

(Promega, Madison, WI, USA) and 5� PCR buffer (Promega). A touch-down

PCR protocol for thermal cycling was implemented using an iCycler Thermal

Cycler (BioRad, Hercules, CA, USA): 94 1C for 3 min, 10 cycles of denaturing

at 94 1C for 30 s, annealing for 30 s and extension at 72 1C for 45 s; the initial

annealing temperature was 62 1C decreased by 1 1C with each cycle, followed

by 30 cycles of denaturing at 94 1C for 30 s, annealing using 52 1C for 30 s, and

extension at 72 1C for 45 s, and a final extension at 72 1C for 20 min Capillary

electrophoresis on an ABI 3130 Genetic Analyzer (Applied Biosystems, Foster

City, CA, USA) was used to size PCR-amplified fragments. We sized fragments

using GENEMAPPER 4.0 software (Applied Biosystems) calibrated with the

ROX500 size standard (Applied Biosystems).

We applied both MLTR and BORICE to the data. Estimates in MLTR were

obtained using the ‘most likely parent’ default setting and 1000 bootstraps

(resampling families). For BORICE, we used a chain of 100 000 steps with a

burn-in of the first 10 000 steps. This chain length was established sufficient

because it yielded stable posterior estimates of t and F in replicate applications.

Given the maximum posterior estimates for t and F, we calculated Ritland’s

(1990) moment estimator for the relative fitness (o) of selfed progeny in the

SS population. Assuming F remains constant across generations, o¼ 2� t�
F/[(1–t)(1–F)]. The inbreeding depression (@) is 1�o.

RESULTS

Tests of MLTR
When the maternal genotype was inferred, we found substantial
estimation bias in MLTR estimates for both t and F for family sizes
less than or equal to four (Supplementary Table S1). The outcrossing
rate, t, was consistently overestimated with MLTR yielding estimates
often 2–4 times greater than the true value for each of the three
experimental designs (Figure 1a). Exceptions were those data for 400
families each with one offspring where true t was 0.5 or greater; in
those scenarios, the MLTR estimate of t was zero. Adult F was
upwardly biased in these designs (Figure 1b), most severely for true
Fp0.7. The exception was with 400 families (one offspring per
family) and a true Fo0.4. These results used the ‘most likely parent’
method to infer the maternal genotype. When instead the maternal
genotype was inferred by choosing a parent at random in proportion
to its prior probability, MLTR returned zero for all estimates of t and
F (Supplementary Table S1). As expected, bias was minimal with
families of eight or more offspring (results not shown).

Tests of BORICE
The Bayesian method implemented in BORICE yields unbiased
estimates for t and adult F when applied to the same simulated data
sets (compare Supplementary Table S2 with Table S1). At each of 15
t values tested, the average modal posterior t and F values differed
minimally from the true t and F (Figure 2). The posterior distribution
means for t and F differed only slightly from the modal values.
Supplementary Table S2 summarizes results where null alleles were
absent from simulated data and BORICE was set to run without nulls.
To evaluate the consequences of null alleles for estimation, we
generated simulated data with and without nulls and then applied
both variants of the model. Supplementary Table S3 illustrates the
effect of allowing null alleles in model fitting when none are present in
the data. For this parameter set, allowing nulls did not bias estimates
for t or F. However, the average ln likelihood is substantially lower
than for the correct model where nulls are excluded (Supplementary
Table S2). Supplementary Table S4 summarizes model fits when null
alleles are present in the data and BORICE is specified to allow nulls.
Posterior distributions for allele frequencies correctly identify nulls,
although there is slight bias in estimates for a few parameter sets. We
cannot compare the average ln likelihood values of correct (nulls

allowed) and incorrect (nulls excluded) models because the latter
model would routinely yield zero likelihood values.

We also tested if (1) varying the outcrossing rate of maternal plants
or (2) correlated mating would bias the results of BORICE. Varying
the outcrossing rate of maternal plants had minimal effect. Simula-
tions with a constant outcrossing rate (t¼ 0.5) for all maternal plants
(mean t-max¼ 0.502, s.e.¼ 0.002; mean F-max¼ 0.334, s.e.¼ 0.003)
are very similar to results with variable outcrossing rates and the
same mean (mean t-max¼ 0.495, s.e.¼ 0.003; mean F-max¼ 0.321,
s.e.¼ 0.003). In the case of correlated mating, we examined data
simulated with either one sire (rp¼ 1) or two sires (rp¼ 0.5) per
family for 15 outcrossing rates. We observed some bias in our
estimates of t (Supplementary Table S5) although it is typically small.
For example when true t¼ 1, F¼ 0, with rp¼ 1, BORICE yielded
t¼ 0.97 and F¼ 0.04 whereas with rp¼ 0.5, BORICE yielded t¼ 0.99
and F¼ 0.00.

Application to Mimulus
From MLTR, estimated multilocus t for the SS population was 0.749
(s.e.¼ 0.075) and estimated adult F was 0.341 (s.e.¼ 0.164). The
posterior distributions for t and F from BORICE are shown in
Figure 3. Assuming no null alleles at these loci, the maximum posterior
t was 0.62 (2.5 percentile¼ 0.51, 97.5 percentile¼ 0.75) and maximum
posterior F was 0.19 (2.5 percentile¼ 0.11, 97.5 percentile¼ 0.30). The
average ln likelihood for this model was �580.21. From these data, the
relative fitness (o) of selfed progeny was calculated as 0.76 (@¼ 0.23).
Examining the posterior distributions of maternal inbreeding histories,
we found that the most probable Ck¼ 0 for most maternal plants.
However, a few maternal plants had Ck¼ 1 as the maximally probable
value. Figure 4 illustrates the posterior distributions of inbreeding
history for two maternal individuals, one outbred (Family 64) and one
likely inbred (Family 25). Despite that the SS data set did not exhibit
any ‘impossible genotypes’ in our initial model fitting, we also ran the
model allowing null alleles at each locus. Allowing nulls altered the
posterior distributions for t and F: the maximum t was 0.76 (2.5
percentile¼ 0.62, 97.5 percentile¼ 0.91) and maximum F was 0.13
(2.5 percentile¼ 0.04, 97.5 percentile¼ 0.23). The modal frequencies in
the posterior distributions for null allele frequency were displaced
from zero for loci 1 and 2. However, the average ln likelihood, �633.61,
was substantially lower than the chain run without null alleles.
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Figure 3 Posterior distributions of estimated t (distribution on the right) and

mean adult F (distribution to the left) for the SS population obtained using

the BORICE software. The distributions consist of values of t and mean

adult F from every 10 steps in the chain (total step length was 1 100000)

following the burn-in of 100000 steps. For a given value of t or mean adult

F on the x-axis, the corresponding value on the y-axis is the proportion of

the chain yielding that t or mean adult F value.
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DISCUSSION

Measuring inbreeding depression in natural populations is critical to
understanding mating system evolution, and perhaps also to con-
servation efforts. We suggest that the field-based method of Ritland
(1990) has been under utilized in this effort. Ritland’s method
requires accurate estimation of population t and adult F. The optimal
allocation of effort for the joint estimation of t and F is different than
the usual experimental design of mating system studies. Accurate
inference of F requires sampling many families (maternal plants),
which practically means fewer offspring per family. However, we have
found that the most commonly used software to estimate t and F
(MLTR) does not perform well with small family sizes unless the
maternal genotype is known. In contrast, the Bayesian method
executed in BORICE provides accurate joint estimates of population
t and adult F for this situation.

The primary motivation for BORICE is to enable mating system
studies with large numbers of families but small numbers of progeny
per family, with subsequent estimation of inbreeding depression
in situ. However, the platform may also prove useful if small families
are an inherent feature of a species. Animal mating system studies
commonly use single-generation approaches to estimate t and F
because progeny arrays of sufficient size are rarely obtainable (Jarne
and David, 2008). In this case, sampling of more families with fewer
offspring per family is a natural experimental design and BORICE
may here allow improved estimation.

BORICE characterizes the inbreeding history of the population
with a set of latent variables. Each maternal plant has an inbreeding
history value, Ck, which is the number of generations of selfing in its
ancestry. This count determines the inbreeding coefficient of the
maternal plant and hence the relative likelihood of inferred maternal
genotypes. The posterior distributions for two Mimulus plants
(Figure 4) illustrate how Ck is determined by progeny data when
maternal genotypes are unavailable. In family 64, the progeny
genotypes imply that the maternal plant must have been heterozygous
at all three loci. Given allele frequencies, this strongly suggests that the
maternal plant was outbred. In family 25, all four progeny were
identically homozygous at the first two loci and three of four were

homozygous at the third locus. The posteriors on maternal genotype
strongly favored one homozygous genotype for each locus; an
outcome most likely if the plant is inbred. Of course, with only three
loci, conclusions about particular maternal plants are tentative. This
data set is included here to illustrate the application of BORICE and
not as a complete description of mating system in the SS population
of M. guttatus.

Ck values are important determinants of the data likelihood, and
hence the posterior distribution for t, but they are also variables of
direct interest. Scofield and Schultz (2006) performed a meta-analysis
of marker-based estimates for F and t. Their analysis suggested the
provocative hypothesis that in mixed mating but long-lived plants,
inbred plants never survive to adulthood. This conclusion follows
from population mean F estimates for maternal plants that are close
to zero, even in species with substantial selfing. However, strong
conclusions about whether any inbred plants survive require inference
of individual inbreeding histories. In our application to the SS
population of M. guttatus, which is likely to be a short-lived
perennial, the 95% credibility interval on F did not include zero
and several maternal plants had posterior distributions for Ck

suggesting they were inbred.
An important practical choice in applying BORICE is whether to

allow null alleles at all marker loci, at a subset of loci, or at no loci.
BORICE is not currently equipped with a formal model selection
device. The Deviance Information Criterion is routinely used for
model selection when posterior distributions are estimated using
MCMC (Claeskens and Hjort, 2008), although it is unclear how to
implement this calculation with categorical latent variables (maternal
genotypes and inbreeding history values in the present application).
Our simulations suggest a practical approach: If nulls are present at a
locus but are excluded from the model, BORICE will routinely report
impossible genotypes. In addition, allowing nulls routinely elevates
the average ln likelihood when they are present in the data and the
posterior distribution for null allele frequency will be displaced from
zero. In contrast, if nulls are absent from the data but allowed in the
model, the average ln likelihood is routinely lower for the more
general (and in this case incorrect) model.

Does the evident bias in MLTR for small family sizes have
implications for surveys of mating systems across angiosperms?
Virtually every plant mating system study has used MLTR to estimate
t and/or adult F since its debut. After noting the MLTR bias for small
families with an inferred maternal genotype, we conducted a literature
search to examine if most applications were within or outside the
region of bias. Using a database of published mating system papers up
to the year 2006 (courtesy of Chris Eckert; modified from Goodwillie
et al. (2005)), we identified observations based, on average per family,
(1) more than eight progeny (and therefore largely outside the region
of bias), or (2) fewer than eight progeny (that is, within the region of
bias). Approximately 25 and 40% of the observations of t and F,
respectively, fell within the region of bias (Table 2; Mean t¼ 0.46,
s.d.¼ 0.41; Mean adult F¼ 0.45, s.d.¼ 0.32). Most estimates, how-
ever, were derived from progeny arrays of eight or more, and were
therefore minimally biased (Mean t¼ 0.71, s.d. of t¼ 0.26; Mean
adult F¼ 0.03, s.d.¼ 0.23). Far fewer studies reported F values from
MLTR than reported t. Although we did not conduct an exhaustive
literature search, it seems clear that most studies report unbiased
estimates. However, future surveys of mating systems across angios-
perms should take the MLTR bias into account when reporting
estimates of t and adult F.
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Figure 4 Posterior distributions of inbreeding histories of two maternal

individuals from the SS population obtained using the BORICE software.

Family 64 (shown in white) represents an outbred maternal plant and

Family 25 (shown in gray) an inbred maternal plant.
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Current limitations of BORICE and future work
The current version of BORICE is dedicated to a simple and specific
mating system model. As noted above, we assume that all outcrossing
is random and that the paternity of outcrossed seeds within a family
are determined independently. The same underlying outcrossing rate
is assumed for all maternal plants. We conducted simulations to
determine whether biased results would be obtained from BORICE if
these assumptions were violated. In the case of variation in out-
crossing rate among maternal plants, we found little to no bias. We
found slight bias in the estimate of the outcrossing rate with
correlated matings, that is, when outcrossed progeny within a family
are likely to be full siblings. In addition, we assume that inbreeding
results from recurrent self-fertilization and biparental inbreeding does
not take place. We intend to generalize BORICE allowing biparental
inbreeding by replacing the discrete distribution for Ck with a
continuous density for adult F values.

BORICE accommodates a systematic source of genotyping error,
null alleles, but does not account for stochastic sources of genotyping
error, such as spontaneous mutations, allelic dropout and false alleles.
These types of genotyping error may be common, particularly
when DNA is low in quantity or quality (Pompanon et al., 2005).
A maximum likelihood method of identifying allelic dropout and
false alleles is currently available (Johnson and Haydon, 2007).
Furthermore, quality control methods should be put in place by
researchers to identify stochastic genotyping errors during the
experimental design and data collection phase (Pompanon et al.,
2005; Guichoux et al., 2011). Thus, it should be possible for
researchers to decide if particular loci should be excluded due to
genotyping errors prior to using BORICE.

DATA ARCHIVING

The BORICE software package is included here as supplementary files
to the text. This includes the data set used for the empirical
application of BORICE (serving as an example input datafile), as
well as instructions for running BORICE. BORICE is also available
upon request from the authors and will soon be available on a website
to allow for easy download of future versions of BORICE. Questions
on the installation and running of BORICE should be directed to
Vanessa Koelling (vkoelling@ku.edu). In addition, the simulation data
used to generate Table 1, Supplementary Tables S1–S5, and Figures 1
and 2, as well as the database of published mating system papers used
in Table 2, have been deposited at Dryad: doi:10.5061/dryad.7455b.
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