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Summary
A landmark in cell biology, the discovery of the JAK-STAT pathway provided a simple
mechanism for gene regulation that dramatically advanced our understanding of the action of
hormones, interferons, colony stimulating factors, and interleukins. As we learn more about the
complexities of immune responses, new insights into the functions of this pathway continue to be
revealed, aided by technology that permits genomewide views. As we celebrate the 20th

anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see
how this knowledge has rapidly been translated to human immune disease. Not only have
genomewide association studies demonstrated that this pathway is highly relevant to human
autoimmunity but targeting JAKs is now a reality in immune-mediated disease.

The importance of interferons (IFNs) and hormones such as erythropoietin, growth hormone
and prolactin has been recognized for more than half a century. With the advent of
molecular biology era came the discovery of a plethora of other cytokines, which we now
know regulate all aspects of cell development and differentiation. Cytokines, though,
represent a collection of structurally distinct ligands that bind to different classes of
receptors. A major subgroup of cytokines, comprising roughly 60 factors, bind to receptors
termed Type I/II cytokine receptors. Cytokines that bind these receptors include Type I
IFNs, IFN-γ, many interleukins and colony stimulating factors. From an immunology
perspective, these cytokines are important for initiating innate immunity, orchestrating
adaptive immune mechanisms and constraining immune and inflammatory responses.

As discussed by Darnell and Stark in this issue, the discovery of JAKs and Stats stemmed
from attempts to understand how IFNs exerted their effect. However, we now know that all
Type I/II cytokine receptors selectively associate with JAKs (JAK1, JAK2, JAK3 or TYK2).
For these receptors, activation of the receptor-bound JAKs is critical for initiating
phosphorylation of the cytokine receptor and subsequent recruitment of one or more STATs.
Over the past two decades, multiple lines of evidence have clearly established the roles of
different JAKs and STATs in mediating the effect of cytokines that use Type I/II cytokine
receptors in immunoregulation, host-defense and immunopathology (Darnell et al., 1994;
Leonard and O’Shea, 1998; O’Shea and Murray, 2008).
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As our understanding of these processes have become more sophisticated, additional roles
for this pathway have been recognized. For instance, with the identification of “newer”
helper subsets comes the appreciation of important roles of STATs in these subsets as well
as new roles for STATs in recognized subsets. As our understanding of the mechanisms
involved in innate immunity expands, new roles of STATs in these processes become
evident. In addition, new technologies also allow comprehensive views of STAT action
whereas insights from genomewide association studies clearly implicate JAKs and STATs in
human autoimmunity. Finally, the possibility of targeting the JAK-STAT pathway in
autoimmune disease has now become a reality. In this review, we will try to briefly discuss
these exciting advances. We recognize that this is a challenging task given the immense
amount of exciting work in this field. In the interest of brevity, we have been forced to limit
our discussion and we apologize in advance in advance for any omissions.

New insights into the immunoregulatory roles of JAKs and STATs
When the STATs were first discovered, the palette of helper T cells was simple - Th1 and
Th2 cells. TYK2, JAK2 and STAT4 were found to be critical for IL-12 signals and Th1
differentiation whereas JAK1, JAK3 and STAT6 were key for IL-4 signaling (Darnell et al.,
1994; Leonard and O’Shea, 1998; O’Shea and Murray, 2008). In various models of
infectious disease and immune-mediated disease, deficiency of STAT4 and STAT6 had the
expected outcomes [Goenka, 2011 #3629; Wurster, 2000 #3633; Murphy, 2000 #3636;
[Oestreich, 2012 #3692; Paternoster, 2011 #3436].

New roles for STATs in “old” helper T cell subsets
It is now appreciated, however, that Th2 responses can occur in the absence of STAT6(van
Panhuys et al., 2008). In fact, early Th2 differentiation can by driven by IL-2, which
upregulates GATA3 and enhances IL-4 receptor expression(Paul, 2010). Activated by IL-2,
STAT5A/B can directly bind the Il4r gene and promote its expression (Liao et al., 2008);
however, STAT5A/B can also enhance Th1 responses by regulating Tbx21 and Il12rb2
(Liao et al., 2011b). Interestingly, STAT3 is also a contributor to Th2 differentiation and
binds Th2-associated gene loci (Liao et al., 2008; Stritesky et al., 2011). Thus, in contrast to
the previous views equating STAT6 with Th2 differentiation, it appears that this process
involves more subtle and complex interactions of STAT3, STAT5 and STAT6 with the
relevant genetic loci.

Role of STATs in Treg cell function
Along with TGFβ, IL-2 is a key regulator of differentiation of Treg cells in the thymus and
the periphery. As mediators of IL-2 signaling, STAT5A/B are critical for the differentiation
of Treg cells. Their effect is very direct in that STAT5/A directly bind the Foxp3 gene and
drive expression of this key gene (Burchill et al., 2007; Yao et al., 2006; Yao et al., 2007;
Zorn et al., 2006). In addition, STAT5A/B regulate IL2ra, expression of which is also a
critical for Treg cells. Surprisingly, STAT3 also has an important role in Treg cell function
(Chaudhry et al., 2009). Deletion of STAT3 in Treg cells results in lethal gastrointestinal
disease, but the effect is selective and does not globally impair Treg cell function. Treg cells
retain the ability to limit T cell proliferation but have impaired ability to block Th17-
mediated pathology. Of interest, STAT3 physically associates with Foxp3.

Roles of STATs in “new” helper cell subsets
With the recognition of a multiplicity of fates for T cells, it has become clear that STATs are
also key elements for these “new” subsets. We now know that STAT3 is critical for Th17
differentiation both in mouse and humans, mediating signals by IL-23 and IL-6(Chen et al.,
2006; Mathur et al., 2007; Milner et al., 2008; Yang et al., 2007). STAT3 regulates Th17
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differentiation by directly binding Il17a/f, Rorc and Il23r, as well as other genes involved in
Th17 differentiation (Durant et al., 2010).

Interestingly, IL-2, acting via STAT5A/B, is an important negative regulator of Th17
differentiation (Laurence et al., 2007). In this case, the action of STAT5A/B action is very
direct – they compete with STAT3 binding to the Il17a/f locus (Yang et al., 2011).
Intriguingly, by sequestering IL-2, regulatory T cells promote Th17 differentiation (Chen et
al., 2011b; Pandiyan et al., 2011).

One of the newest “lineages” of CD4 T cells is the follicular helper T cell, which provides
help to B cells in germinal centers. Cytokines like IL-6 and IL-21 act on STAT3 and
promote expression of Bcl6 and other molecules that contribute to the phenotype and
function of this subset (Batten et al., 2010; Eddahri et al., 2009; Nurieva et al., 2008).
However, IL-12 and STAT4 also turn out to be drivers of Tfh cells (Nakayamada et al.,
2011; Schmitt et al., 2009). STAT4 directly binds many genes involved in Tfh
differentiation, including Bcl6 and Il21. Conversely, IL-2 inhibits Tfh differentiation and
once again, the action of STAT5 appears to be very direct. It competes with STAT3 binding
to the Bcl6 locus and also promotes expression of Prdm1, which encodes Blimp1 (Johnston
et al., 2012; Nurieva et al., 2012; Weinmann, 2012).

Perhaps less surprising given its role in transmitting IL-4 signals, STAT6 is an important
regulator of Th9 cells (Goswami et al., 2011).

STATs and CD8 memory
IL-7 and IL-15 are important for CD8 memory and accordingly STAT5A/B are also
important (Hand et al., 2010; Tripathi et al., 2010). STAT5A/B are essential for the survival
of viral-specific CD8 T cells and expression of Bcl-2. In contrast though, in the setting of
viral infection, the numbers of CD4 effector T cells are unaffected by the absence of
STAT5A/B. However, STAT5A/B are not the only family members important for CD8 cell
function; STAT3 is also important, mediating signals by IL-10 and IL-21 (Cui et al., 2011).
Expression of such key molecules as Eomes, Bcl-6, Blimp-1, and Socs-3 are all reduced in
STAT3-deficient CD8 T cells. A similar defect in CD8 T cell memory was seen in patients
with hyperimmunoglobulin E syndrome and dominant-negative STAT3 mutations(Siegel et
al., 2011).

STAT5 in B cells
IL-7, acting via STAT5A/B, is important in B lymphopoiesis, controlling survival and
development (Malin et al., 2010). Conversely, the B cell adapter, BLNK, antagonizes IL-7
signaling via inhibition of JAK3, and absence of BLNK leads to constitutive JAK-Stat
activation and leukomogenesis(Nakayama et al., 2009).

STATs and innate immunity
STATs also have numerous functions in innate immunity – too many to review in detail in a
short review(Murray, 2007; O’Shea and Murray, 2008). The importance of STAT1 in
mediating IFN effects has long been recognized as has the role of STAT3 in IL-6 signaling
and the acute phase response. CSFs and cytokines like GM-CSF, G-CSF and IL-5, which
regulate myeloid development, also signal via STATs. Consequently, STATs have key
functions for neutrophils and macrophages (Croker et al., 2004; Lee et al., 2002; Nguyen-
Jackson et al., 2010; Panopoulos et al., 2006; Zhang et al., 2010a). GM-CSF inhibits Flt3L-
mediated plasmacytoid DC production and conventional DC growth and STAT5 is
important in this process(Esashi et al., 2008). In contrast, STAT3 is important for the
expansion of DC progenitors.
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The importance of IL-22, acting via STAT3, in regulating the barrier function of epithelial
cells and wound repair is a topic of considerable interest (Sonnenberg et al., 2011). Like
IL-10, IL-22 is produced by and acts on innate immune cells, and has critical anti-
inflammatory properties (Sonnenberg et al., 2011; Zenewicz and Flavell, 2011). Precisely
how STAT3 promotes inflammation in some circumstances and inhibits in others is an
important, but challenging question (El Kasmi et al., 2006). STAT3 can negatively regulate
IFN responses and has been proposed to inhibit TLR signaling either by inducing anti-
inflammatory molecules or by a direct suppression of NF-κB (Wang et al., 2011).
Nonetheless, a clear understanding of the pro- and anti-inflammatory actions of STAT3
remains elusive.

Recently, the role of innate immune cells in promoting Th2 responses has become
increasingly apparent (Oliphant et al., 2011; Saenz et al., 2010). Thymic stromal
lymphopoetin (TSLP) in particular is an important Type I cytokine that promotes allergic
responses. It acts on multiple cells, but a critical effect is on basophils, which are major
producers of IL-4 (Siracusa et al., 2011; van Panhuys et al., 2011)The identity of the JAKs
responsible for signaling had been enigmatic, but we now know that TSLP signals via JAK1
and JAK2 to activate STAT5 (Rochman et al., 2010).

In addition to the classical mode of activating macrophages via IFN-γ, the appreciation of
the importance of Th2 cytokines to generate alternatively activated macrophages (AAM) is
now recognized (Gordon and Martinez, 2010). AAM appear to be important in a range of
processes including host defense, fibrosis, metabolic regulation, obesity and cancer. As IL-4
and IL-13 are major drivers of the AAM, STAT6 is a key player for these cells. STAT6 is
important in regulating insulin action, lipid metabolism and expression of proliferation-
activated receptor isoforms (Ricardo-Gonzalez et al., 2010; Szanto et al., 2010). Very
recently, AAM and STAT6 have been implicated in the mammalian stress response, the
response to cold (Nguyen et al., 2011). Intriguingly, AAM secrete catacholamines in a
STAT6-dependent manner and induce thermogenic gene expression in brown adipose tissue
and lipolysis in white adipose tissue. Beyond their role as transcription factors, a direct role
of STATs in mitochondrial function makes the argument for key roles in metabolism even
more compelling (Gough et al., 2009; Potla et al., 2006; Wegrzyn et al., 2009).

While it has long been recognized that viruses can disrupt IFN signaling by disrupting
STAT signaling (Ramachandran and Horvath, 2009), recent work shows that T. gondii alters
host response by injecting a kinase, ROP16 that activates both STAT3 and STAT6 (Butcher
et al., 2011; Saeij et al., 2007). In macrophages, the effect is down-regulation of
proinflammatory cytokine signaling and deviation to an alternatively activated phenotype.
Viruses can also activate STAT6 and can do so apparently in a JAK-independent manner
(Chen et al., 2011a). In this case though, Stat6 activation is protective in terms of host
response.

Towards a genomic view of STAT action: transcriptional and epigenetic
roles

The advent of chromatin precipitation and massive parallel sequencing (ChIP-Seq) has
permitted the understanding of STAT action on a global scale. Analysis of the genomewide
targets of STATs via Chip-seq analysis for all the STATs has now been obtained, albeit in a
limited number of tissues with relatively few stimuli and time points (reviewed in(Kanno et
al., 2011; O’Shea et al., 2011). Gene expression is dramatically influenced by chromatin
organization and until recently, the importance of STATs in regulating epigenetics has only
been implicated by analysis of selected regions of certain genes. However, new technologies
in in measuring cell-specific transcriptome and epigenome, coupled with the use of
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knockout mice, allows assessments of the global impact of STAT-dependent signaling.
What emerges is that STATs have thousands of genomic targets, and have major effects on
transcription and epigenetic modifications on a substantial portion of these genes (Durant et
al., 2010; Elo et al., 2010; Good et al., 2009; Kanno et al., 2011; Liao et al., 2011a; Wei et
al., 2010) In the case of STAT6, about half of its target genes are affected in terms gene
expression, epigenetic modifications or both when STAT6 is lacking in polarized Th2 cells
(Wei et al., 2010). The impact of STAT4 in Th1 cells is less, but this is expected as both
STAT4 and STAT1 contribute to Th1 differentiation (Schulz et al., 2009).

In addition to their roles in driving transcription, it is also clear from genomic studies that a
major function of STATs is their role as functional repressors (Mandal et al., 2011a; Wei et
al., 2010; Yang et al., 2011). In B cells, IL-7-mediated activation of STAT5 maintains
proliferation and represses Igk germline transcription. Recently it has been shown that
STAT5 binds the Igk intronic enhancer as a tetramer. This results in the recruitment of the
histone methyltransferase Ezh2, which in turn induces histone H3 lysine 27 trimethylation, a
repressive mark(Mandal et al., 2011a). Genome-wide analyses showed a STAT5 tetrameric
binding motif is frequently associated with transcriptional repression. As indicated above, in
T cells STAT5 displaces STAT3 and inhibits IL-17 expression (Yang et al., 2011). In Th1
and Th2 cells, STAT4 and STAT6 binding is frequently associated with repression.
However, the mechanism of inhibition is not necessarily mediated by competition; in a large
number of cases they bind distinct sites (Wei et al., 2010). Thus, it is clear STATs can both
enhance and repress gene expression depending upon the complexes they recruit.

Equally intriguing is evidence that aside from phosphorylating STATs, JAK can have a
direct role in regulating chromatin (Dawson et al., 2009). JAK2 has been found in the nuclei
of haematopoietic cells, where it phosphorylates histone H3 tyrosine 41. Phosphorylation of
this residue prevents heterochromatin protein 1alpha binding, and thereby counteracts gene
silencing (Li, 2008; Shi et al., 2006).

Evidence for genetic links between cytokines and cytokine signaling and
human autoimmune disease

While data from numerous animal models have implicated Type I/II cytokine receptors and
the JAK/STAT pathway in autoimmune disease, the limitations is that they are just models.
However, human genetics provides the ability to directly link genes to human disease. The
field has moved rapidly from candidate gene to genome-wide investigation of single
nucleotide polymorphisms (SNPs); systematic interrogation of the entire genome through
next-generation sequencing is also now feasible (Mardis, 2011). Genome-wide association
studies (GWAS) have led to an explosion of loci associated with risk of immune-mediated
diseases. Importantly, these data show that inherited variation in genes encoding cytokines,
Type I/II cytokines, JAKs and STATs are associated with these disorders.

Among the strongest evidence is work showing that multiple genes in the IL-23 signaling
pathway are involved in human autoimmunity. One of the first variants to be identified was
a non-synonymous variant of the IL-23R (Arg381Gln)(Duerr et al., 2006), which is
associated with reduced risk of of IBD, psoriasis (Cargill et al., 2007; Nair et al., 2009) and
ankylosing spondylitis (Burton et al., 2007). More recently, additional coding variants have
been found to influence disease susceptibility to Crohn’s and Behcet’s disease (Momozawa
et al., 2011; Remmers et al., 2010b). Subsequently, polymorphisms of the genes encoding
both subunits of IL-23 (p19/IL23A and p40/IL12B), JAK2, TYK2, and STAT3 have all
been linked to autoimmunity (Bowes et al., 2011; Chu et al., 2011; Franke et al., 2010;
Jakkula et al., 2010).
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STAT3 is also activated by IL-6 and its receptors, IL6R and gp130 (latter encoded by
IL6ST), have also been implicated in immune-mediated disease (Alloza et al., 2011; Ferreira
et al., 2011; Stahl et al., 2010). IL6R may also be associated with cardiovascular disease
(Elliott et al., 2009) and a disease-associated missense allele correlates with CRP levels
(Dehghan et al., 2011; Melzer et al., 2008).

Multiple genes in the IL-12 pathway have also been implicated by GWAS. IL12A and
IL12RB2, which are unique to IL-12 and not shared by IL-23, and STAT4 are associated
with multiple autoimmune diseases (Hirschfield et al., 2009; Mells et al., 2011; Radstake et
al., 2010; Remmers et al., 2010a; Remmers et al., 2007; Trynka et al., 2011; Zhernakova et
al., 2011). It needs to be borne in mind that STAT4 is not only activated by IL-12, but can
be activated by IL-23 and Type I IFNs.

With respect to allergic disease, polymorphisms of STAT6, and IL13 are associated with
IgE levels and atopic dermatitis (Granada et al., 2011; Paternoster et al., 2011).

Despite these exciting leads, there are challenges of interpreting the biological function of
genetic association data. Most disease-associated SNPs fall outside of protein-coding
regions, and several genes may be in the region of linkage disequilibrium (LD) surrounding
the SNP. The best biological candidate gene in the region is assumed to be the causal gene,
but this may not be the correct assumption. For instance, there is an association of RA and
multiple sclerosis with a SNP near the IL6ST gene (Alloza et al., 2011; Stahl et al., 2010);
there is no direct evidence that the disease-associated variant disrupts IL6ST function.
Similarly, IL12RB2 and IL23R are adjacent to each other, and it is not clear whether the
associated Behcet’s risk allele influences one gene or the other.

Another challenge is inferring function when genes can be involved in multiple pathways.
STAT4 is one example, but Tyk2 is another – both are involved in signaling by IL-12, IL-23
and Type I IFNs. Exactly who is the bad actor? Bioinformatic methods have been developed
to search for relationships across genetic risk loci in order to find patterns that might
otherwise be difficult to decipher (Hu et al., 2011; Raychaudhuri et al., 2009; Rossin et al.,
2011; Segre et al., 2010). Future studies aimed at functional integration of genetic risk loci
are a major effort to follow-up GWAS findings. Regardless though, the data clearly
implicate the JAK-STAT pathway and cognate cytokines in the human immune-mediated
disease.

Targeting Cytokine Signaling
The role of cytokine and cytokine signaling in mediating immune-mediated disease, now
supported by GWAS data, has made these attractive pharmacological targets (Plenge, 2010).
In fact, monoclonal antibodies directed against cytokines and cytokine receptors (e.g.
ustekinumab, tocilizumab, mepolizumab, lebrikinumab, and daclizumab) have already
shown efficacy in a variety of clinical settings. Additionally, the prospect of targeting
intracellular signaling by these cytokines is also now a reality.

Janus kinases Inhibitors (JAKinibs)
As discussed by Notarangelo/Holland/Casanova (cite review in this issue), the unequivocal
in vivo importance of the JAK/STAT pathways was first established by the identification of
patients with severe combined immunodeficiency with JAK3 mutations. The profound, but
selective phenotype associated with JAK3-deficiency led to the proposition that targeting
JAKs would represent a new class of immunomodulatory drugs (Ghoreschi et al., 2009;
O’Shea et al., 2004; Russell et al., 1995).
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Tofacitinib, formerly designated CP-690,550, was the first JAK inhibitor to be studied in
humans. It inhibits JAK3 and JAK1 and to a lesser extent JAK2. Consequently, tofacitinib
potently inhibits common γ chain cytokines but also blocks IFN-γ, IL-6 and to a lesser
extent IL-12 and IL-23 (Ghoreschi et al., 2011). Functionally, tofacitinib affects both innate
and adaptive immune responses (Ghoreschi et al., 2011). Remarkably, tofacitinib has little
activity on kinases other than JAKs (Karaman et al., 2008).

Tofacitinib was effective in preclinical models (Changelian et al., 2003)and has shown
efficacy in a variety of Phase II and III trials in rheumatoid arthritis, as monotherapy and in
combination with other drugs (Fleischmann et al., 2012; Kremer et al., 2009; Kremer et al.,
2011; Tanaka et al., 2011). Importantly, Tofacitinib is effective in patients who have failed
one or more biologic and also prevents structural damage. Tofacitinib is under investigation
for psoriasis, inflammatory bowel disease, sicca syndrome and prevention of transplant
rejection.

Other JAK inhibitors are also rapidly moving ahead in preclinical assessment and clinical
trials (Table I) (Fridman et al., 2010; Lin et al., 2010; Lu et al., 2011; Stump et al., 2011). As
discussed by Green and Staudt in this issue, the JAK1 and JAK2 inhibitor, Ruxolitinib, is
efficacious in polycythemia/myelofibrosis, a disorder due to gain-of-function JAK2
mutations. As might be expected, based on its ability to block cytokines that use JAK1 and
JAK2, this drug is also efficacious in arthritis (Fridman et al., 2010). Conversely, drugs that
have relative selectivity for individual JAKs (JAK1, JAK2 and JAK3), also appear to have
utility in preclinical and early clinical trials (Table I)

The adverse effects associated with JAKinibs appear to be largely related to its mode of
action. Infections are among the common adverse effects, but opportunistic infections are
uncommon. Anemia and neutropenia, presumably related to JAK2 inhibition and
interference with signaling by erythropoietin and other colony-stimulating factors, can also
occur. Increases in serum LDL also occur, as has been seen with the IL-6 blocker,
tocilizumab (Kawashiri et al., 2011). Little reduction in CD4+ T cells has been noted in
nonhuman primates treated with tofacitinib, but more significant reduction in NK cells and
CD8+ T cells can occur (Conklyn et al., 2004; Paniagua et al., 2005). Whether this is will be
pertinent and clinically relevant in humans remains to be determined. A decline in functional
Treg cells has not been noted in human subjects in a renal transplant study (Sewgobind et
al., 2010).

Given the profound role of cytokines in disorders ranging from malignancy to
autoimmunity, JAKinibs have enormous potential utility. The extent to which JAK
inhibitors will be used as steroid-sparing agents or even supplant the use of steroids in
diseases like the vasculitides or systemic lupus erythematosus remains to be seen. A surprise
in the field is that targeting multiple kinases is not necessarily detrimental, especially in
circumstances in which multiple cytokines drive pathogenesis. Conversely though, it is
conceivable that more selective JAK inhibitors (e.g. selective JAK1 and JAK3 inhibitors)
might have efficacy with reduced adverse effects related to JAK2 inhibition. It is likely that
we will soon see if this is the case given the intense interest in JAKinibs.

The prospect of targeting STATs?
Given their importance and circumscribed functions, it would also seem logical to target
STATs – especially if different STATs could be selectively targeted. A number of STAT
inhibitors have been described (Nelson et al., 2011; Yue and Turkson, 2009); however, to
date, there is no STAT inhibitor that is near clinical development. Conceptually, one might
target STATs by: 1.) blocking STAT phosphorylation, 2.) disrupting STAT binding to
phosphorylated receptors or dimerization (both of which are mediated by the STAT src
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homology (SH)2 domain; or 3.) interfering with DNA binding. Phosphopepitidomimetics
continue to be designed that interrupt phosphotyrosine-SH2 binding (Mandal et al., 2011b;
Zhang et al., 2010b; Zhao et al., 2010); however, the challenge will be to generated
compounds with in vivo efficacy and selectivity. Targeting of the N-terminal domain has
also been proposed as a strategy (Timofeeva et al., 2007). Screening of libraries has also
revealed that small molecules like pimozide, nifruroxaide and pyrimethamine may be useful
STAT inhibitors (Nelson et al., 2011). Whether any of these strategies ultimately generate
orally available drugs that have efficacy with acceptable safety remains to be determined.
However, given the prominent role of STATs in cancer, it is like that work will continue in
this area.

Conclusions
The elegance of the JAK-STAT pathway is that it provides a simple, membrane to nucleus
mechanism for rapidly inducing gene expression. As complexities of immune cell function
continue to be unraveled, JAKs and STATs remain central players in all of the key cells,
ranging from the “newest” CD4 helper cell subset to alternatively activated macrophages.
Curiously though, there is still a paucity of information on conditional JAK and STAT
knockouts. While some were quickly generated and studies in other cases we are still
relatively ignorant about tissue specific functions of others (e.g. JAK1, JAK2, JAK3, TYK2,
STAT1, STAT4 and STAT6).

In addition, although the simplicity of the pathway is appealing, some subtleties have
become apparent. For instance, in contrast to the simplistic linear view, most cytokines
activate more than one STAT. Precisely what this means in terms of the molecular basis of
cytokine action is still being unraveled. However, technologic advances have certainly
facilitated a broader understanding of the function of STAT proteins. It is now clear that
STATs activate and repress gene expression and serve to organize the epigenetic landscape
of immune cells. Nonetheless, our understanding how this occurs is still in its infancy.
Despite the gaps in our knowledge, it is clear that this pathway is directly relevant to human
disease and the pathway can be successfully targeted. For all these reasons, the next twenty
years are likely to be just as exciting as the first.
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Figure 1.
Genetics links of cytokine signaling with human autoimmune disease. Although various
animal models have implicated cytokines, their receptors, JAKs and STATs with
autoimmune disease, genomewide association studies (GWAS) now show that these factors
are truly relevant to human disease. This work shows that pathways that lead to STAT3 and
STAT4 activation lie at the heart of many common autoimmune diseases Adapted from
(Cho and Gregersen, 2011). AS – ankylosing spondylitis, IBD – inflammatory bowel
disease; PBC –primary biliary cirrhosis, SLE – systemic lupus erythematosus.

O’Shea and Plenge Page 17

Immunity. Author manuscript; available in PMC 2013 April 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
Consequence of Jak inhibition on signaling by key immunoregulatory cytokines. A variety
of JAKinibs have been developed with varying degrees of specificity for the different Jaks.
The consequences of inhibiting each of the Jaks on these selected cytokines is depicted.
Most inhibitors in clinical use inhibit more than one Jak; however, increasingly selective
JAKinibs are in development. A selective Tyk2 inhibitor has yet to be reported.
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Table 1

Selected JAKinibs

Agent Targets Indication/Phase

Tofacitinib JAK3/JAK1/JAK2 RA/Phase III
Psoriasis/Phase II
IBD/Phase II

VX-509 JAK3 RA/Phase II

R-348 JAK3 RA/Phase I

Ruxolitinib JAK1/JAK2 Approved – MF/PV

INCB-28050 JAK1/JAK2 RA/Phase II

GLPG-0634 JAK1 RA/Phase II

AC-430 JAK2 RA/Phase I
Lymphoma/Phase I

Lestaurtinib FLT3/TrkA/JAK2 AML/Phase III
Psoriasis/Phase II
Pancreatic cancer/Phase II

CEP-33779 JAK2 Preclinical
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