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Abstract: The scattering-phase theorem states that the values of scat-
tering and reduced scattering coefficients of the bulk random media are
proportional to the variance of the phase and the variance of the phase
gradient, respectively, of the phase map of light passing through one thin
slice of the medium. We report a new derivation of the scattering phase
theorem and provide the correct form of the relation between the variance
of phase gradient and the reduced scattering coefficient. We show the
scattering-phase theorem is the consequence of anomalous diffraction by a
thin slice of forward-peaked scattering media. A new set of scattering-phase
relations with relaxed requirement on the thickness of the slice are provided.
The condition for the scattering-phase theorem to be valid is discussed and
illustrated with simulated data. The scattering-phase theorem is then applied
to determine the scattering coefficientµs, the reduced scattering coefficient
µ ′

s, and the anisotropy factorg for polystyrene sphere and Intralipid-20%
suspensions with excellent accuracy from quantitative phase imaging of
respective thin slices. The spatially-resolvedµs, µ ′

s and g maps obtained
via such a scattering-phase relationship may find general applications in the
characterization of the optical property of homogeneous and heterogeneous
random media.
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1. Introduction

Multiple scattering of light by random media is ubiquitous in nature. Multiple scattering by
tissue, cloud, and other random media withholds direct image of such systems. Indirect charac-
terizing and imaging these systems with multiple scattering light has attracted immense interest
due to its practical importance and noninvasiveness nature. In the limit after light being scat-
tered a sufficient number of times, light diffuses in the random medium and light diffusion is
characterized by the reduced scattering coefficientµ ′

s. The transport mean free path, given by
the inverse ofµ ′

s, can be significantly larger than the distance that light travels between consec-
utive scattering events,µ−1

s , the inverse of the scattering coefficient. Their ratio,µ ′−1
s /µ−1

s , is
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typically 10−100in strongly forward-peaked scattering media such as biological tissue probed
by visible or near infrared light [1]. In the other extreme, light transmitted through a thin slice of
forward scattering media of thicknessL ≪ µ−1

s suffers minimal scattering with its unscattered
intensity decreasing according to the Beer’s law. The phase mapφ of the transmitted light wave
can be measured using quantitative phase imaging. The two extreme cases of light propagation
in random media–diffusion of multiply scattered light and transmission of minimally scattered
light–has been recently suggested inherently connected first by Wang et al. [2, 3] and later by
Iftikhar et al. [4]. The values ofµs andµ ′

s of the bulk media are found to be proportional to the
variance of the phase and the variance of the phase gradient, respectively, of the phase map of
light passing through one thin slice of the medium. This is so called “scattering-phase theorem.”

In this paper, we report first a new derivation of the scattering phase theorem and pro-
vide the correct relation between the variance of phase gradient andµ ′

s. The anisotropy factor,
g≡ 1−µ ′

s/µs, an important parameter linked to the morphology of the scatterers in the medium,
can then be derived directly from the phase map. More importantly, we show the scattering-
phase theorem is the consequence of anomalous diffraction by a thin slice of forward-peaked
scattering media. A set ofµs-φ , µ ′

s-φ , andg-φ relations are provided, for the first time, with
relaxed requirement on the thickness of the slice. The condition for the scattering-phase the-
orem to be valid is discussed and illustrated with simulated data. The scattering-phase theo-
rem is then applied to determine the scattering coefficient, the reduced scattering coefficient
and the anisotropy factor for polystyrene sphere and Intralipid-20% suspensions with excel-
lent accuracy from their quantitative phase maps measured by differential interference con-
trast microscopy. The paper ends with a discussion of the significance and applications of this
scattering-phase relationship.

2. Theory

Let’s consider a thin slice of random medium of thicknessL illuminated by a plane wave of
unit intensity. The spatially resolved phase mapφ(ρ) for wave transmission is expressed as
φ(ρ) = k

∫ L
0 dzm(ρ,z) wherek ≡ 2πn0/λ is the wave number,n0 is the background refractive

index,λ is the wavelength of light in vacuum, andm is the relative refractive index at position
(ρ,z) with ρ andz the lateral and axial coordinates, respectively. The fluctuation in relative
refractive indexδm≡ m−1 satisfies〈δm〉 = 0 where〈〉 means the spatial average. The phase
mapφ(ρ) can be readily measured with quantitative phase imaging approaches [5–9].

The relation between the scattering coefficientµs of the bulk medium and the variance of
the phase has been obtained based on the decomposition of the transmitted statistically ho-
mogeneous wave fieldU into its spatial average and a spatially varying componentU(ρ) =
U0(ρ)+U1(ρ) and the fact thatU0 = 〈U〉 corresponds to the unscattered wave andU1 is the
scattered component [2, 10]. When the thickness of the thin sliceL ≪ µ−1

s , the intensity of the

unscattered wave is expressed as|U0|
2 =

∣

∣

∣

〈

eiφ(ρ)
〉∣

∣

∣

2
= exp(−µsL) by the Beer’s law. Hence

µsL = −2ln
∣

∣

∣

〈

ei∆φ(ρ)
〉∣

∣

∣
where∆φ ≡ φ −〈φ〉 = k

∫ L
0 dzδm(ρ,z). Since|∆φ | ≪ 1 as implied by

L ≪ µ−1
s , this reduces to

µsL =
〈

(∆φ)2〉 (1)

if we apply the well-known cumulant expansion theorem [11] and write
〈

ei∆φ(ρ)
〉

=

exp
(

i 〈∆φ〉− 1
2

〈

(∆φ)2
〉)

. The distribution of the phase needs not to follow a Gaussian dis-
tribution for Eq. (1) to be valid.

Both relations between the scattering coefficientµs and the variance of the phase, and the
reduced scattering coefficientµ ′

s and the variance of the phase gradient are the consequence of
anomalous diffraction by a thin slice of forward-peaked scattering media and the requirement of
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L≪ µ−1
s can be relaxed. Following the treatment of anomalous diffraction by van de Hulst [12],

the scattering amplitude of light into directionθ due to the thin slice is given by

S(θ) = i
k2

2π
1+cosθ

2

∫

(1−ei∆φ(ρ))exp(−iks·ρ)dρ (2)

whereks is the propagation direction of the scattered light ands is a unit direction vector using
the Huygens’ principle [12, 13]. The presence of the thin slice alters the field on thez= L plane
to ei∆φ(ρ) from 1 and hence thescatteredwave isei∆φ(ρ) −1 whereasei∆φ(ρ) is the total wave
on that plane [12]. We could replace cosθ in Eq. (2) by 1 as scattering is forward-peaked. The
scattering cross sectionCsca= 4πk−2ℑS(0) by the optical extinction theorem is then found to
be

Csca= 2
∫

(1−cos∆φ)dρ. (3)

The reduced scattering cross sectionC′
sca= k−2∫

(1− cosθ) |S(θ)|2dΩ can be simplified by
first writing 1−cosθ = s2

⊥/2 wheres⊥ is the projection ofs on the lateral plane and rewriting
C′

scaas

C′
sca =

1
8π2

∫

ds⊥

∫

dρ(1−ei∆φ(ρ))
d

dρ
exp(−iks⊥ ·ρ) (4)

×

∫

dρ ′(1−e−i∆φ(ρ ′))
d

dρ ′
exp(iks⊥ ·ρ ′).

By performing partial integration ond/dρ andd/dρ ′ in Eq. (4) and then integrating overs⊥,
we have

C′
sca =

1
2k2

∫

dρ
∫

dρ ′

[

d
dρ

(1−ei∆φ(ρ))

][

d
dρ ′

(1−e−i∆φ(ρ ′))

]

δ (ρ −ρ ′)

=
1

2k2

∫

∣

∣

∣

∣

d
dρ

(1−ei∆φ(ρ))

∣

∣

∣

∣

2

dρ, (5)

which reduces to

C′
sca=

1
2k2

∫

|∇φ |2dρ. (6)

As the scattering and the reduced scattering cross sections are given byµsAL andµ ′
sAL, respec-

tively, by definition for the thin slice of areaA, we obtain

µsL =
2
A

∫

(1−cos∆φ)dρ = 2〈1−cos∆φ〉 (7)

and

µ ′
sL =

1
2k2A

∫

|∇φ |2dρ =
1

2k2

〈

|∇φ |2
〉

(8)

from Eqs. (3) and (6). In addition, the anisotropy factorg≡ 1− µ ′
s/µs, representing the mean

cosine of the scattering angle, is given by

g = 1−

〈

|∇φ |2
〉

4k2 〈1−cos∆φ〉
≃ 1−

〈

|∇φ |2
〉

2k2
〈

(∆φ)2
〉 . (9)

Equations (7), (8) and (9) constitute the main result for the scattering phase theorem. Theµs-
φ relation (7) reduces to the known expression (1) under the conditionµsL≪ 1, or equivalently,
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|∆φ | ≪ 1. These relations share the same origin as the anomalous diffraction by optically soft
particles introduced by Hulst [12] which has found wide applications in light scattering [14–
18]. Equations (7), (8) and (9) are valid for forward-peaked scattering media as long as the
ray does not deviate from the forward direction. The scattering-phase theorem is applicable to
a slice of homogeneous or inhomogeneous medium. In the latter case, a map ofµs, µ ′

s andg
can be computed from the phase map using spatial averaging over local regions rather than the
whole slice.

3. Simulations and experiments

We performed simulations to validate the scattering-phase theorem for a random medium. In
simulation, the fluctuation of the refractive index of the mediumRn(r) = 〈δm(r′)δm(r′ + r)〉
is assumed to be the Whittle-Matern correlation function [19] given by:

Rn(r) =
〈

(δm)2
〉

γ
( r

l

)

(10)

with
γ
( r

l

)

= 21−ν |Γ(ν)|−1
( r

l

)ν
Kν

( r
l

)

(11)

whereKν(·) is the modified Bessel function of the second kind. The Whittle-Matern correla-
tion function has been used extensively to model turbulence and refractive index fluctuation in
biological tissue [20, 21]. The typical values are

〈

(δm)2
〉

= 0.012, l ∼ 0.5µm, andn0 = 1.367
for biological tissue [22, 23]. The Fourier transform of the correlation function is given by

R̂n(q) =
〈

(δm)2
〉 Γ(ν +3/2)

π3/2 |Γ(ν)|
l3(

1+q2l2)−ν−3/2
(12)

whenν > −3/2. Light scattering by the random medium is fully described by the power spec-
trum of the fluctuation of the refractive index. Following [22,24], the scattering coefficient and
the reduced scattering coefficient are given by

µs = 2π1/2k2l
〈

(δm)2
〉 Γ(ν +1/2)

|Γ(ν)|

[

1− (1+4X2)−ν−1/2
]

, (13)

and

µ ′
s = π1/2l−1〈

(δm)2
〉 Γ(ν +1/2)

|Γ(ν)|

1
ν −1/2

(14)

×
[

1− (1+4X2)−ν−1/2[1+4X2(ν +1/2)]
]

,

respectively, in this model whereX ≡ kl is the size parameter.
We set the strength of refractive index fluctuation

〈

(δm)2
〉

= 0.012, the correlation length
l = 0.5µm, the background refractive index of the samplen0 = 1.367, and the wavelength of the
incident beamλ = 0.5µm in the simulation. The random field inside a box of size 10l×10l×L
with varying thicknessL = l , 5l, 20l, and 100lwas simulated using RandomFields [25] with a
specified spacial resolution. The phase map was generated by line integration. The gradient of
the phase was computed from the phase map using the finite difference between neighboring
phases. Total 15 simulations were performed for each set of parameters with their mean and
standard deviation being reported hereafter.

Figure 3, from left- to right-hand direction, displays the normalized phase map
(∆OPL/

√

〈δm2〉l ) where the optical path length fluctuation is given by∆OPL=
∫ L

0 dzδm(ρ,z),
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Fig. 1. The normalized phase map (∆OPL/
√

〈

δm2
〉

l ), the ratio of 2〈1−cos∆φ〉 overµsL,

and the ratio of(2k2)−1
〈

|∇φ |2
〉

overµ ′
sL are displayed, from left- to right-hand direction,

for a thin slice of random medium of varying thicknessL with the refractive index fluc-
tuation following the Whittle-Matern correlation function ofν = 1.0 (top row),ν = 0.5
(middle row) andν = 0.1 (bottom row). The normalized phase map is shown forL = 20l.

the ratio of 2〈1−cos∆φ〉 over µsL, and the ratio of(2k2)−1
〈

|∇φ |2
〉

over µ ′
sL for variousν .

The normalized phase map is shown for thin slices of thicknessL = 20l. The scattering coeffi-
cient and the anisotropy factor for the bulk random medium are,µsl = 0.023 andg = 0.988 in
the case ofν = 1.0, µsl = 0.015 andg = 0.968 in the case ofν = 0.5, andµsl = 0.0040 and
g = 0.915 in the case ofν = 0.1, respectively. The thickness of the samples covers the range

starting fromµsL≪ 1 toµsL > 1. The two ratios 2〈1−cos∆φ〉/µsL and(2k2)−1
〈

|∇φ |2
〉

/µ ′
sL

are expected to be unity according to Eqs. (7) and (8). Figure 3 shows the former ratio ap-
proaches unity when the thickness of the medium is at least 5l. The value ofµs can be com-
puted from the phase map at all levels of resolution. On the other hand, the resolution matters
for probingµ ′

s. The latter ratio approaches unity and the best estimation forµ ′
s is obtained only

when the resolution is 0.1l−0.2l and the thicknessL ≥ 5l. Insufficient resolution results in an
underestimation ofµ ′

s.
We then examined the light scattering properties of polystyrene sphere and Intralipid-20%

suspensions by applying the scattering-phase theorem to the quantitative phase map of respec-
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Fig. 2. The optical path length map∆OPLfor a monolayer of polystyrene sphere suspension
(size: 8.31µm) in water (left) and a thin film (thickness: 4µm) of Intralipid-20% suspension
(right).

tive thin slice measured with a differential interference contrast (DIC) microscope (Axiovert
40CFL, Zeiss). The light source was a Halogen 35W lamp filtered by a 550nm narrow-band
filter. The numerical aperture for the condenser and objective (APlan 40×) were 0.2 and 0.5,
respectively. The pixel size for the recorded images was 0.064µmusing Canon 5D Mark II. The
quantitative phase map for a monolayer of polystyrene sphere suspension (size: 8.31µm) in wa-
ter and a thin film (thickness: 4µm) of Intralipid-20% suspension on a glass microscope slide
were computed from in-focus and out-of-focus (δz= 1µm) DIC images under K̈ohler illumi-
nation using the transport-of-intensity approach [9]. Figure 2 shows the computed optical path
length maps∆OPL for the two samples. The scattering property for each individual spheres
can be analyzed by applying the scattering-phase theorem to the region in the phase map being
occupied by the sphere. For example, the region highlighted by white dash lines for the central
sphere yieldsµs = 0.234µm−1, µ ′

s = 0.0202µm−1 andg = 0.91 with an area 61.0µm2. The
scattering and reduced scattering cross sections are 118µm2 and 10.2µm2. The mean scattering
and reduced scattering cross sections for all the spheres contained in the displayed section are
116µm2 and 9.8µm2, respectively. These values are in excellent agreement with the theoretical
prediction for a polystyrene sphere of the specified size (Csca= 125µm2, C′

sca= 9.5µm2 and
g = 0.92) computed with a Mie code [26].

The scattering and the reduced scattering coefficients for Intralipid-20% suspension are
found to be 0.136µm−1 and 0.001µm−1, respectively, from the whole section displayed in
Fig. 2. The former agrees with the knownµs value (0.139µm−1) whereas the latter dramatically
underestimatesµ ′

s (0.031µm−1) at 550nm[27, 28]. This behavior is expected as the character-
istic correlation length for the Intralipid suspension is sub-wavelength [29] and the resolution
of the phase map is insufficient to provide an accurate estimation ofµ ′

s directly (see Fig. 1).
The quality ofµ ′

s estimation, however, can be significantly improved by properly taking into
account light diffraction in the microscope and sharpening the phase map accordingly. This
procedure yields the new value ofµ ′

s to be 0.022µm−1, agreeing reasonably well with the real
value. The detail will be published elsewhere.

4. Discussion

The µs-φ andµ ′
s-φ relations can be justified intuitively as the following. Light scattering (µs)

depends on the fluctuation of the refractive index which emerges as the variance in the phase
map for light transmission through a thin slice. Light reduced scattering (µ ′

s) reflects the devi-
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ation of the equal-phase wave front away from the forward direction which is described by the
local tilt (gradient) in the phase for light transmission through a thin slice. Assuming the thin
slice of sample of thicknessL is uniformly divided intoN = L/l layers withl the correlation
length of the random medium,∆φ (and∇φ ) is the summation ofN independent random num-

bers from theN layers. Hence the spatial average
〈

(∆φ)2
〉

(and
〈

|∇φ |2
〉

) scales withN rather

thanN2. These considerations lead toµsL ∝
〈

(∆φ)2
〉

andµ ′
sL ∝

〈

|∇φ |2
〉

. In cases such as a

monolayer of scatterers of size much larger than the wavelength, the condition that|∆φ | ≪ 1
is not satisfied, the more generalµs-φ relation (7) should be used whereas theµ ′

s-φ relation
remains the same provided the rays do not deviate from the forward direction (the scatterers are
optically soft).

The above argument also explains that the thickness of the sample should be at least multiple
l (with a sufficient largeN) to obtain the values ofµs andµ ′

s correctly from the phase map as
observed in the simulation. To properly compute the local tilt in the phase to obtainµ ′

s with
finite difference, the separation between the two points must be smaller than the size of the
scattering structure. The separation at the order of 0.1l −0.2l may be optimal as suggested by
the simulation.

Finally, we would like to point out that the limiting form of the scattering-phase theorem
when|∆φ | ≪ 1 has also been obtained previously by us using another approach [4] through an-
alyzing the cross correlation〈∆φ(ρ)∆φ(ρ ′)〉 between two pointsρ andρ ′ on the phase map for
light transmission through a thin slice of a weakly scattering random medium. The scattering-
phase theorem in this limit is equivalent to

〈

∆φ(ρ)∆φ(ρ ′)
〉

= µsL−
1
2
(k∆ρ)2µ ′

sL (15)

where∆ρ ≡ |ρ −ρ ′| is the distance between the two points [4]. Ref [2,3] presented a different
expression for theg-φ relation. The difference originates from the scattered wave was assumed
to beei∆φ(ρ) in our notation in Ref [2,3]. Since the presence of the thin slice alters the field on
thez= L plane toei∆φ(ρ) from 1, the scattered wave is[ei∆φ(ρ) −1] whereas ei∆φ(ρ) is the total
waveon that plane. The probability density for light scattering into directionq = ks⊥, hence, is
given by

P(q) =

∣

∣Ũ(q)
∣

∣

2

∫

∣

∣Ũ(q)
∣

∣

2
dq

(16)

where

Ũ(q) =
1

(2π)2

∫

[

ei∆φ(ρ) −1
]

exp(−iρ ·q)dρ. (17)

One could follow the procedure outlined in Ref [2,3] and reach theg-φ relation (9) if the correct
probability density Eq. (16) for light scattering into directionq is used.

5. Conclusion

In summary, we have derived the scattering phase theorem and provided the correct relation
between the variance of phase gradient and the reduced scattering coefficient. More importantly,
the scattering-phase theorem is shown to be the consequence of anomalous diffraction by a
thin slice of forward-peaked scattering media. A set ofµs-φ , µ ′

s-φ , andg-φ relations have been
provided, for the first time, with relaxed requirement on the thickness of the slice. The condition
for the scattering-phase theorem to be valid has been discussed and illustrated with simulated
data. The scattering-phase theorem has been applied to determine successfully the scattering
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coefficient, the reduced scattering coefficient and the anisotropy factor for polystyrene sphere
andIntralipid-20% suspensions from their respective quantitative phase map of a thin slice.

The characterization of the scattering properties (µs, µ ′
s, andg) of biological tissue and cells

has been a challenging and important problem in biomedical optics [30]. This scattering-phase
relationship establishes a new means to characterize the scattering properties of these samples.
The spatially-resolvedµs, µ ′

s andg maps obtained via such a scattering-phase relationship will
provide detailed local maps for scattering structures which may be of important diagnosis value,
and may find applications in the characterization of the optical property of homogeneous and
heterogeneous random media in general.
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