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Abstract

Alternative pre-mRNA splicing is a common way of gene expression regulation in metazoans. The 

selective use of specific exons can be modulated in response to various manipulations that alter Ca
++ signals, particularly in neurons. A number of splicing factors have also been found to be 

controlled by Ca++ signals. Moreover, pre-mRNA elements have been identified that are essential 

and sufficient to mediate Ca++-regulated splicing, providing model systems for dissecting the 

involved molecular components. In neurons, this regulation likely contributes to the fine-tuning of 

neuronal properties.
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1. Introduction

Ca++ signalling is important for a variety of cellular processes such as muscle contraction, 

hormone secretion and gene transcription. In neurons, Ca++-regulation of gene expression is 

known to be critical for the long-lasting changes associated with learning and memory [1]. 

Accumulating evidence supports that Ca++ signalling also controls the alternative splicing of 

precursor messenger RNA (pre-mRNA) transcripts (Fig. 1). Examples of this regulation 

have been identified in myotube cultures, endocrine cells, and mostly, in neuronal cells 

(Table 1).

The complex structure and function of the brain underlie the requirement for a high level of 

proteomic complexity. How can the human genome, with only the approximately 25,000 

protein-coding genes [2], encode enough diverse proteins to achieve the high level of 

complexity to ensure, for example, that individual neurons are precisely “wired” with many 

others and that their functions are finely tuned? It is now clear that protein diversity can be 

greatly increased through alternative pre-mRNA splicing [3–5]. This is a particularly 

common way for the regulation of gene expression among neuronal genes and likely 

contributes to the fine-tuning of neuronal functions [6–8].
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The pre-mRNA of most eukaryotic genes contains both expressed regions (exons) that will 

be included in the mature mRNA and regions that will be excluded (called intragenic 

regions, i.e. introns) [9]. Removal of introns and joining of exons happen in the cell nucleus 

through pre-mRNA splicing [10–12]. After introns were discovered, Walter Gilbert 

predicted in his short essay “Why genes in pieces” in Nature: “…the splicing need not be a 

hundred percent efficient; changes in sequence can alter the process so that base pairing and 

splicing occurs only some of the time” [9]. Soon afterward, alternative transcripts from a 

common precursor RNA were discovered [13]. Since then, more and more eukaryotic genes 

have been found to undergo alternative splicing [6,14,15]. Currently, the estimated 

percentage of human genes with alternative splicing is more than 50% [16,17]. In some 

cases, a single pre-mRNA transcript has the potential to generate a large number of protein 

isoforms, for example, transcripts of the Dscam, Neurexin and Slo genes [4,18–38] (Fig. 2).

The consequences of alternative splicing include altered mRNA stability or subcellular 

localization and the addition or deletion of specific protein sequences. Functional differences 

among protein isoforms range from subtle modulations to on/off switches or antagonistic 

effects [39–41]. Defects in alternative splicing factors or aberrant inclusion of alternative 

exons can result in genetic diseases [42–47]. During the Cambrian “explosion” of 

metazoans, alternative splicing likely contributed to the expansion of proteomes [48]. 

Therefore, this is an important control in the transmission of genetic information from DNA 

to proteins. Currently with the huge amount of genomic information available from various 

genome sequencing projects, it is becoming imperative to understand how alternative 

splicing is controlled, particularly by cell signals, and to elucidate the role of this form of 

regulation in normal cell function and human genetic diseases.

Splicing happens in two transesterification steps within a large spliceosome complex 

containing more than 100 proteins assembled stepwise onto pre-mRNA introns [12,49]. 

During alternative splicing, the spliceosome assembly is altered so that a splice site (s) is 

optionally used depending on the cell type, developmental stage or sex, resulting in the 

inclusion or exclusion of alternative exon sequences in the mature mRNA (Fig. 1). Studies 

with tissue-or sex-specific exons identified both cis-acting pre-mRNA elements and trans-

acting factors that control alternative splicing [15]. Depending on their location and effects 

on splicing, the RNA elements are called intronic or exonic splicing enhancers (ISE or ESE) 

or silencers (ISS or ESS). Many of these elements bind specific trans-acting factors (mostly 

proteins, but in some cases RNA) that enhance (enhancer) or inhibit (repressor) the assembly 

of the constitutive splicing factors. Well characterized examples of enhancer factors include 

most members of the arginine/serine-rich SR family that bind purine-rich ESE elements 

[50], and repressors include the heterogeneous ribonucleoprotein particle proteins hnRNP 

A1 and hnRNP I that bind purine-rich elements containing UAGG motifs and pyrimidine-

rich elements containing UUCU, UCUU or CUCU motifs, respectively [51,52]. There are 

also elements/factors that function in a location-dependent way as either an enhancer or 

repressor, for example, the CA-repeat binding protein hnRNP L [53], the UGCAUG-binding 

proteins FOX-1 and -2 [54–61], and the YCAY-binding protein Nova-1 [62–66]. Binding of 

the trans-acting factors to the elements is thought to control mostly the early stages of 

spliceosome assembly before the first transesterification step [15]. For example, PTB 

prevents the binding of U2AF65, a factor of the E (early) complex, through competition or 
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looping out the target exons [67–69]. In mammalian systems, splicing regulation is generally 

dependent on the combinatorial effects of multiple pre-mRNA elements and trans-acting 

factors [70–72] (Fig. 1). The relative levels of positive and negative regulatory factors 

determine the generation of variant mRNA isoforms in specific cell types [73–75]. Brain-

enriched splicing factors include Nova-1 and -2 [62–66], FOX-1 and -2 [54–61], PTBP2 

(nPTB) and neuronal Hu proteins [76–83].

In addition to cell type, developmental stage and sex-specific regulation, alternative splicing 

can also be dynamically regulated in response to extracellular stimuli such as cytokines, 

hormones or neurotransmitters [24,84–88], adding a further dimension to the control of the 

flow of genetic information [86]. Examining the inducible alternative splicing events will 

help understand their roles in cell functions as well as provide systems where the dynamic 

changes of spliceosomal components can be tracked down to facilitate the mechanistic 

studies of splicing. Moreover, understanding the molecular basis of this process will help 

develop ways to reverse the aberrant splicing events in genetic diseases using extracellular 

factors. However, it is not clear in most cases how alternative splicing is controlled by 

external stimuli and intracellular signalling pathways. Ca++-regulation of alternative splicing 

is among the regulatory events being intensively studied.

The following sections on the evidence for Ca++-regulation of alternative splicing will be 

focused on the regulated alternative exons, the splicing factors and the pre-mRNA elements. 

It should be noted that both constitutive and alternative splicing are coupled with 

transcription and this topic has been covered in recent reviews [89–92]. Promoter-dependent 

regulation of alternative splicing by Ca++ stimuli has also been observed [84]. Readers are 

referred to these reviews and original papers for this aspect [84,89–92].

2. Alternative exons regulated by Ca++ signals

Table 1 lists some of the alternative exons whose inclusion in the mature mRNA can be 

changed upon stimulation by extra-cellular factors that activate Ca++ signalling pathways.

These factors include the ionophore ionomycin [93], the neurotransmitter glutamate or its 

analogue NMDA (N-methyl-D-aspartate) [94–98], the muscarinic acetylcholine receptor 

agonist pilocarpine (inducing seizure) [99], the ionotropic glutamate receptor agonist 

kainate, the inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase thapsigargin [100–

102], and depolarizing concentrations of KCl [84,98,101,103–106] (for a more complete list 

of the pharmacological agents and their descriptions, see Table 2). These stimuli can either 

promote or repress the inclusion of an exon (Table 1). Importantly, their effects on splicing 

can be inhibited by the L-type Ca++ channel blockers verapamil, nifedipine or nimodipine 

[95,96,102,103,107], by the NMDA receptor antagonist AP5 or MK-801 [84,95,96,103], by 

the Ca++/calmodulin-dependent protein kinase inhibitors KN93 or KN62 

[84,95,96,104,105], or by the cell permeable Ca++ chelator BAPTA-AM [101,108]. 

Together, these observations strongly support the regulation of alternative pre-mRNA 

splicing by variations in intracellular Ca++ levels.
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Most of these regulated exons are in genes known to be important for neuronal functions. 

Examples include the neural cell adhesion molecule (NCAM) in axon guidance [102,109–

113], the synapse-associated protein of 25 kDa (SNAP25), NMDA receptor type I 

(NMDAR1), BK and Ca++ channels and neurexin in synaptic function [8,96,108,114–123], 

the intracellular plasma-membrane calcium-pump isoforms 2 and 4 (PMCA2 and 4) and 

inositol triphosphate receptor type 1 (IP3R1) in Ca++ homeostasis [124–132], the caspase 

ICH-1 in neuronal survival/death [98,101,133], and the splicing factors Tra2 beta1 and 

Ania-6 in pre-mRNA splicing [99,106,134–136] (Table 1).

Inclusion of these alternative exons regulates the subcellular localization of proteins or their 

functions [25,26,119,120, 127–129,123,125,134,137–141], ranging from subtle changes 

such as current kinetics of ion channels to on or off switches in the sensitivity to protein 

kinases or hormones [26,114,139, 142–144] (Table 1). These observations suggest that the 

regulation of alternative splicing by Ca++ signals has effects on the expression of genes 

involved in a variety of cellular functions, from cell adhesion molecules at the synapse, ion 

channels in the cellular endoplasmic membrane, caspase in the cytosol as well as splicing 

factors inside the nucleus.

Of the various Ca++ signals that regulate splicing, those through the CaMK IV pathway have 

been the most intensively studied [104,105,107]. A prime example of the effect on splicing 

by this pathway is the BK channel STREX exon, one of the more than 10 alternative exons 

of the vertebrate Slo gene [19,21–35] (Fig. 2A). The BK channels contain both Ca++ and 

voltage-sensitive domains and are important in coupling Ca++ transients and electrical 

properties of excitable cells by participating in the repolarization and after hyperpolarization 

of action potentials [122] (Fig. 2B–D). These channels are important in neurotransmitter 

release [145], motor control [146], alcohol sensitivity [147–149], blood pressure and the 

fine-tuning of hearing frequencies [150,151]. The STREX-encoded peptide lies in the Ca++-

sensitivity domain at the COOH-terminal [30,152]. Inclusion of this exon confers higher 

voltage and Ca++ sensitivity on the channel [24,29–31,153], inhibition by PKA and 

oxidation [142,154], and sensitivity to glucocorticoids [143]. The exon is included in 

endocrine cells and neurons and enriched in the high frequency region of cochleae [22–

24,84,107], contributing to the fine-tuning of hearing frequencies in birds and turtles 

[23,31]. Its inclusion is also regulated by steroid hormones in animals and by membrane 

depolarization in cultured cells [24,104,107,155–157]. Thus, the STREX exon inclusion is 

inducible by external stimuli and the regulation may modulate multiple properties of the BK 

channels.

CaMK IV regulation of the STREX exon inclusion has been examined in both cultured cells 

and in mice. In rat pituitary GH3 cells and cerebellar neurons, addition of depolarizing 

concentrations of KCl leads to a decrease in transcripts containing the STREX exon 

[104,107] (Fig. 3). This effect can be specifically blocked by nifedipine [107], suggesting 

that L-type Ca++ channels mediate the depolarization-induced alternative splicing (Fig. 3). 

The splicing change is also completely blocked by KN93 [104], a CaM kinase inhibitor. 

Moreover, the repression of STREX exon inclusion is only seen with overexpressed 

constitutively active CaMK IV but not CaMK I or II [104]. Conversely, increased inclusion 

of the STREX exon was observed in the cerebella of CaMK IV+/− heterozygote mice 
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compared to that of the wild type [107]. These findings support the proposal that membrane 

depolarization activates the L-type Ca++ channels and CaMK IV to repress STREX exon 

inclusion.

Besides the Slo gene, similar regulation of the alternative splicing of NMDAR1 and other 

genes by membrane depolarization/CaMK IV has also been observed [84,104,105,107].

Another Ca++ signalling component calcineurin also appears to have a role in the control of 

alternative splicing. The inclusion of the 175 nt CII exon of the PMCA4 gene is reduced by 

KCl and NMDA in rat granule neurons [97]. This reduction can be prevented by FK506, a 

calcineurin inhibitor [97]. These data suggest that Ca++-dependent protein phosphatases and 

dephosphorylation events are required for depolarization-induced splicing in these cells.

For a single exon, its regulation by Ca++ signals can be different, depending on cell types or 

Ca++ signal stimuli. For example, inclusion of the STREX exon is repressed by 

depolarization in GH3 cells and cerebellar neurons but enhanced in cortical neurons 

[84,104,107]. In the Ania-6 gene, the retention of intron 6′ is promoted by glutamate but 

repressed by KCl depolarization [94], although both glutamate and KCl induce Ca++ signals 

and activate CaM kinases [158]. Thus, the control of alternative splicing by Ca++ signals is 

cell- and Ca++ signal-inducer dependent. Since the pre-mRNA elements are the same in a 

cell or among different cell types, except when RNA editing occurs [159], it is possible that 

diverse factors upstream of the RNA elements are involved [73–75], as is the case in the 

control of gene transcription [158].

These examples of Ca++ signal-regulated alternative splicing are found in several species 

including chick, rat, mouse and human, suggesting that this regulation is evolutionarily 

conserved.

Taken together, these observations from many independent studies strongly support that Ca
++ signals control alternative splicing. This regulation controls the expression of a wide 

range of genes likely involving diverse factors, and is evolutionarily conserved.

However, most of these observations did not provide direct evidence for the involvement of 

the splicing regulatory components including the essential splicing factors and cis-acting 

pre-mRNA elements. To address this, in the following two sections, I will review literature 

on the splicing factors and pre-mRNA elements that are targeted by Ca++ signals.

3. Splicing factors regulated by Ca++ signals

Of the cis-acting elements in alternative splicing, most that have been studied to date are 

bound by protein factors, although, as in constitutive splicing, RNA secondary structures and 

transacting small RNAs have also been described [12,160–162]. Protein splicing factors 

reportedly regulated by Ca++ signals at various levels are listed in Table 3.

The protein level of splicing factors can be controlled by Ca++ signals. In some cases, it 

takes several hours for the splice variant mRNA to change significantly, and it has been 

shown that de novo protein synthesis is required [97,163,164]. Interestingly, the nuclear 
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level of the hnRNP A1 protein is increased in depolarized neurons in regulating the exon 21 

(or called C1 cassette exon) of NMDAR1 [72,84]. The increase is expected to contribute to 

the exclusion of exon 21 upon depolarization. Therefore, control of the protein level of 

splicing factors by membrane depolarization and the downstream Ca++ signalling is one way 

for Ca++ signals to regulate alternative splicing.

The alternative splicing of splicing factors themselves can also be regulated by Ca++ signals. 

For example, the inclusion of the alternative exons of hnRNP H3 and RNPS1 is specifically 

repressed by depolarization in cortical neurons [84], in contrast to the inclusion of the 

hnRNP A1 alternative exon 8, which is barely changed. The Ania-6 protein (also called 

cyclin L1) contains arginine/serine-rich (RS) domains that are characteristic of SR protein 

splicing factors and regulates alternative splicing [136,165]. The retention of the intron 6′ of 

Ania-6 is controlled by glutamate and depolarization in striatal neurons [94,95]. In another 

example, the exon III of the Tra2 beta1 is repressed in the brain during pilocarpine-induced 

seizure [99]. Since the alternative splicing of both Ania-6 and Tra2 beta1 is likely to alter 

their splicing activity [94,134,136,166], their own splicing regulation by Ca++ stimuli is 

expected to alter their target gene splicing as well.

Relocalization of splicing factors in response to Ca++ signals has also been observed, as in 

the cases of other cell signals [167–170]. In cortical neurons, thapsigargin or ischemia 

treament induces Tra2 beta1 relocalization from the nucleus to the cytoplasm [99]. This 

translocation is accompanied by an increased inclusion of a 61 nt cassette exon of the ICH-1 
gene.

Phosphorylation of splicing factors has been described in many other cases [85,87,171,172]. 

In Ca++-regulated splicing, the CaM kinase inhibitor KN93 inhibits the splicing changes of 

the Slo gene [84,104]. Whether this is due to inhibition of the phosphorylation of a splicing 

factor remains unclear.

Phosphatases, including PP1 [173–180], PP2C-gamma [181,182], PP2A [178,183], and the 

pol II CTD phosphatase FCP1 [184], also interact with splicing factors or are known to 

control splicing. Of these, PP2A binds CaMK IV in a signalling complex [185,186]. 

Moreover, PP2A is also shown to inactivate CaMK IV by directly dephosphorylating the 

Thr196 of CaMK IV [187]. Since the CaMK IV activity is essential for its role in the control 

of splicing [104,105,107], it is possible that the PP2A dephosphorylation of CaMK IV at 

Thr196 has an effect on CaMK IV-regulated alternative splicing.

Protein methylation has also been shown to control splicing factors or splicing [188,189]. 

Currently there is no evidence available to support a role for methylation in Ca++-regulated 

alternative splicing.

Can Ca++ or calmodulin (CaM) directly interact with the splicing machinery? In an 

experiment using calmodulin-affinity chromatography, several RNA binding proteins 

including hnRNP A2 and C were identified [190]. The binding of CaM to these splicing 

factors inhibits their phosphorylation by Casein kinase II [190]. SAP145 [191], a member of 

the spliceosome-associated proteins and a subunit of SF3 (b) [49], was also identified as 

binding to a CaM affinity column. In another report, polyadenylation specificity factor 30 
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(CPSF30) of Arabidopsis thaliana was found to bind calmodulin [192], which inhibits the 

RNA binding activity of CPSF30. In HeLa nuclear extracts, CPSF couples transcription with 

splicing [193]. Therefore, it will be interesting to know whether varying Ca++ concentrations 

and CaM can control any specific alternative splicing event through direct interaction with 

the factors that regulate splicing.

Taken together, the current evidence indicates that Ca++ signalling can control or interact 

with components of the splicing machinery. The regulation of hnRNP A1 by membrane 

depolarization to control the inclusion of exon 21 of the NMDAR1 gene through the UAGG 

motifs is particularly well characterized. In most other cases, however, a direct molecular 

link between the regulation of the splicing factors by Ca++ signalling and a change in RNA 

splicing remains to be demonstrated.

4. Pre-mRNA elements responsive to Ca++ signals in the control of 

alternative splicing

Since most mammalian exons are controlled in a combinatorial way by multiple positive and 

negative regulatory elements (Fig. 1), the role of a single RNA element in splicing regulation 

is usually isolated from its endogeneous gene context and tested in a heterologous mini-

gene, as has been done in studying the control of gene transcription [194,195]. This 

approach has also proved useful in studying the regulation of splicing by the CaM kinase 

pathway.

Two CaMK IV-responsive RNA elements (CaRREs) have been isolated [104,105,107] (Fig. 

3), which, when transferred to a heterologous gene, confer CaMK IV regulation on an 

otherwise constitutive exon. Similarly, a UAGG motif is also shown to mediate 

depolarization-regulated alternative splicing [84], which is inhibited by the CaM kinase 

inhibitor KN93. These observations allow the coupling of depolarization/CaMK IV with 

short RNA sequence elements, providing regulatory systems much simpler than the 

endogeneous genes for characterizing the components in-between the stimuli and RNA 

elements.

From the example of the regulation of NMDAR1 exon 21, it appears that multiple elements, 

either the same (UAGG) or different (both CaRRE1 and 2), can function within the same 

exon to respond to Ca++ signals to control alternative splicing [84,104,105]. However, it is 

unclear whether this is a feature common to the regulation of other exons.

Actually, search in alternative splicing databases or genomes for these depolarization/CaMK 

IV-responsive RNA elements identified different groups of exons and target genes 

[84,105,107]. This raises questions whether the target genes of a particular element are 

involved in specific cellular functions and whether each element has its preferred Ca++ 

stimulus, since CaMK IV can be activated by different stimuli [196–199].

As mentioned earlier, a trans-acting factor has been identified in the case of the UAGG 

motifs of the NMDAR1 exon 21. This motif binds hnRNPA1 to repress the 5′ splice site 

and exon inclusion [72,84]. Interestingly, the nuclear level of the hnRNP A1 protein is 
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increased in depolarized neurons [84]. Further evidence with loss-of-function of hnRNP A1 

will help verify its role in the inducible regulation of alternative splicing of endogenous 

genes in neurons.

Taken together, these studies couple Ca++ signals with specific pre-mRNA elements. This 

coupling isolates single RNA elements from the complex influences of their surrounding 

elements in the endogenous gene transcripts thus providing simple model systems for 

studying Ca++-regulation of alternative splicing.

5. The impact of Ca++-regulated alternative splicing on neuronal functions 

and diseases

As shown in Table 1 and references therein, alternative exons controlled by Ca++ signalling 

can affect a broad range of neuronal functions. Based on data from these Ca++ signal-

regulated splicing events and work from others [7,8], I will speculate on the effect of Ca++-

regulated alternative splicing on neuronal functions and diseases.

5.1. Fine-tuning of neuronal functions

One fascinating property of neurons, for which the underlying molecular basis is not fully 

understood, is the fine-tuning of their functions. Interestingly, the functions of many 

neuronal genes are diversified and optimized through alternative splicing [6,8,18,200]. The 

large number of splice variants contributes greatly to the diversity of the protein functions, 

especially when functional proteins such as ion channels can be composed of 

heteromultimers of different splice variants. Take for example the production of 672 splice 

variants in all possible combinations of the mammalian BK channel subunits (Fig. 2). If any 

four variants are chosen to create a tetramer channel without considering their relative 

positions inside the channel, the total number of all possible combinations of every four 

variants can be calculated according to the algebra formula for “Combination” 

. Thus, 

theoretically about eight billion heterotetramers of BK channels can be formed in total, all 

composed of four different variant subunits. Note that this calculation is still an 

underestimate since it has not considered the relative subunit positions of a channel, 

homotetramers and combinations of homo- and hetero-subunits. With this large number of 

ion channels, a high resolution spectrum of BK channel properties emerges (Fig. 4A). For 

example, for a Ca++ sensitivity range of 0–100 μM, the spectrum will be a much smoother 

gradient of Ca++ sensitivities formed by different channels when there are eight billion than 

when only one or ten channel variants are available. The fine-tuning of electrical properties 

is exemplified in turtle and bird cochlear hair cells where the BK channel kinetics is “tuned” 

along the tonotopic map [151]. Differential alternative splicing of the Slo gene along the 

map is also observed and proposed to contribute to the fine-tuning of hearing frequencies 

[151]. By analogy, the electrical and other properties of neurons could also be finely tuned 

this way.

Greater diversity of protein properties could be further obtained by varying the strength of 

the signals controlling alternative splicing, particularly for individual cells where only a 
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limited set of splice variants is often observed. For example, when only two variants are 

produced in a cell and their relative levels are dependent on the strength of a Ca++ stimulus 

(Fig. 4B), varying the stimulus strength will induce a gradient of the relative levels of the 

two variant proteins leading to the formation of heterotetrameric channels with varying 

ratios of variant subunits and the generation of electrical currents of higher diversity than 

with only two homotetramers. In fact, splicing changes can be KCl concentration-dependent 

[84,105], and different ratios of two BK channel subunits generate channel current kinetics 

in-between the two homotetramer channels [19,201]. This way, alternative splicing 

regulation by Ca++ signals will greatly contribute to the fine-tuning of electrical properties 

of individual neurons.

5.2. Autoregulation and adaptive changes

As shown in Table 1, the alternative splicing of several Ca++ channel genes is regulated by 

Ca++ signals and some exons of ion channel genes are regulated by their own channel 

ligands or by membrane depolarization. For example, the inclusion of the exons 5 and 21 of 

NMDAR1 is controlled by NMDA or glutamate, and the STREX exon of the BK channel by 

membrane depolarization [103,104]. Inclusion of these exons has known effects on the 

functions or localization of the specific channels [24,29,30,39,140,141,202]. Therefore, a 

given first round stimulus (for example, depolarization during electrical stimulation) could 

cause a change in the ion channel subunits via alternative splicing (Fig. 4C). This change 

will provide neurons with a different set of variant ion channels to respond to a second-

round identical stimulus. The second-round stimulation will now have different effects on 

the neuronal electrical properties because of the different channels formed from the first 

round stimulation-induced alternative splicing. Such self-regulatory and adaptive changes 

are interesting when considering the most important functions of neurons and the brain: 

learning and memory, particularly electrophysiological memory that requires CaMK IV 

[203].

5.3. Neuronal death and neurodegenerative diseases

Aberrant alternative splicing of several genes or deficiencies in alternative splicing factors 

have been implicated in neuronal diseases [43]. Ca++ is also involved in neuronal diseases 

[204–206]. In normal neurons, Ca++ levels are under homeostatic control. However, when 

the balance is tilted, deficient neuronal functions or diseases develop [204]. For example, 

when excess Ca++ ions are present, neuronal toxicity occurs leading to neuron death or 

contributing to neurodegenerative diseases [204,206]. Inhibition of CaMK IV also leads to 

neuron death in cell cultures [207], and CaMK IV deficiency in mice results in loss of 

learning or memory or in less drug tolerance [208–211]. The ion channels involved in Ca++ 

toxicity including the AMPA and NMDA receptors undergo alternative splicing [202,204], 

and inclusion of the NMDAR1 exons 5 and 21 is controlled by membrane depolarization 

and CaMK IV [84,104,105,107,212]. In addition, the ICH-1S variant induced by 

thapsigargin or ischemia prevents cell death [213,214]. Therefore, it will be interesting to 

determine whether the regulation by Ca++ signals of these and other ion channels and 

apoptosis-related genes is important for Ca++ homeostasis in normal cells or imbalance 

during neuronal death and in the development of neurodegenerative diseases.
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6. Perspectives

Even with the progress described above, much remains to be learned about Ca++ control of 

alternative splicing and its role in cellular, particularly neuronal, functions and diseases. For 

example, what is the nature of the molecular link between CaMK IV and the trans-acting 

splicing factors that function through the CaRRE elements? What is the physiological 

impact of a specific stimulus through the regulation of a group of alternative exons? How 

important is this inducible alternative splicing in neuronal and whole brain functions such as 

learning and memory? Understanding the molecular basis of this regulation will help us to 

address these questions.

In addition to the traditional molecular, cellular, biochemical and genetic approaches for the 

examination of individual genes or proteins, several recent developments could be helpful in 

answering these questions. Firstly, large-scale proteomic approaches may help identify 

splicing factors and their posttranslational modifications induced by Ca++ signals. Secondly, 

whole genome RNA interference libraries have been developed recently and applied to 

whole genome loss-of-function screening of genes [215–222]. Screening for alternative 

splicing factors by RNAi has already been carried out in fly cells [215,216]. Hopefully, the 

now available mammalian RNAi libraries could also be applied for functional screening of 

genes essential in inducible alternative splicing. Thirdly, splicing-sensitive microarrays and 

whole genome exon arrays [64,78,82,83,223–225], combined with loss-of-functions of 

splicing factors (such as knockout or RNAi), will allow the identification of a group of 

exons/genes controlled by a particular factor during Ca++-regulation of splicing. Lastly, 

bioinformatics approaches with highly predictive RNA elements could also help identify a 

group of exons regulated by Ca++ signals, as has been demonstrated for the alternative 

splicing factor Nova-1 [62]. These recent developments will facilitate the study of Ca++-

regulated splicing and will allow a more accurate assessment of the physiological impact of 

a particular splicing factor/RNA element through regulating the alternative splicing of a 

specific functional group of genes.

In summary, Ca++ signal-regulated alternative splicing modulates the function of a variety of 

genes that have important roles in cellular, particularly neuronal, functions and diseases. 

Recent studies have identified downstream splicing factors and coupled Ca++ signals with 

pre-mRNA elements. Further detailed analyses of individual elements/exons using model 

systems shall help to bring the molecular basis of this regulation into focus. Future studies 

with genomewide coverage of alternative exons and splicing factors shall help in our 

understanding of the impact of splicing regulation on cellular functions and its role in the 

development of diseases.
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Fig. 1. 
Diagram of Ca++ signal-regulation of alternative splicing. Shown in the middle is a cassette 

exon (e2) with two flanking introns (a and b) and constitutive exons (e1 and e3), with exonic 

and intronic cis-acting pre-mRNA elements as splicing enhancers (green, +) or silencers 

(red, −) and trans-acting splicing factors (ovals) indicated. Without signal stimulation 

(above), the pre-mRNA is spliced in two pathways (I and II) with a given ratio leading to the 

inclusion (I) or exclusion (II) of the alternative exon e2 and the respective lariats. With 

signal induction, like Ca++ (below), one pathway (here for example, II, heavier arrows) over 

the other pathway (I) is favored in a particular cell to promote the production of one variant 

mRNA. Through this regulation, Ca++ signals will change the relative ratio of the variant 

mRNA or protein isoforms of different properties. (?: mostly unknown intermediate steps).
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Fig. 2. 
An example of the generation of diverse protein functions through alternative splicing of 

genes important in neuronal functions: complex alternative splicing patterns of the middle 

exons of the mammalian BK potassium channel gene Slo (GenBank accession #: U23767). 

In A, the exon/intron organization of the Slo gene and alternative splicing positions, exon 

(boxes) sizes and possible number of variant transcripts produced from each position are 

indicated above the gene, with the exon numbers below it. The total number of channel 

subunits produced from all possible combinations of alternative splicing is 

2×2×4×7×3×2=672, as indicated. Position of the STREX exon is indicated with an arrow. 

The length (nt) bar is for exon sizes. In B, positions where the alternative exons are inserted 

relative to the protein domains are indicated with arrows. S: transmembrane (or putative) 

domains. P: channel pore. Black oval: Ca++ bowl. The S4 voltage-sensitive domain is 

labelled with “+”s. (C) A channel heterotetramer of four different variant subunits a, b, c and 

d, with the total number of such heterotetramers indicated above the channel (see text for 

calculations). (D) Diagram of an action potential with depolarization, repolarization and 

afterhyperpolarization phases indicated. BK channels participate in the last two phases 

(arrows).
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Fig. 3. 
Coupling of Ca++ signals with pre-mRNA elements that are sufficient to mediate Ca++-

regulated alternative splicing. Shown is a diagram of the pathway from membrane 

depolarization to the CaRRE and the UAGG motifs. In several neuronal or endocrine cells as 

indicated, membrane depolarization induces Ca++ signals through L-type Ca++ channels, 

likely activating CaMK IV, which targets pre-mRNA elements CaRRE1 and 2, probably also 

the UAGG motif, to control the inclusion of the exons, for example, STREX exon of Slo or 

exons 5 and 21 of NMDAR1. The changed exon compositions will later translate into 

proteins with different electrical properties (STREX, exon 5) or subcellular localizations 

(exon 21) to incorporate into the ion channels in cell membranes, to impact cellular 

electrical properties. In the pre-mRNA, the branch point (A), polypyrimidine tract (Yn) and 

3′ AG (ag), and the exons (boxes) and introns (lines) are indicated. The CaRREs or the 

UAGG motif is shown as red bars. CaRRE1 was found in the upstream intron of the STREX 

exon and the NMDAR1 exon 5, and CaRRE1, 2 and UAGG motifs in the NMDAR1 exon 

21. hnRNPA1 and the unknown factors are as red ovals. The “?” next to the hnRNP A1 

pathway is to reflect the fact that this regulation requires CaM kinases but an effect by 

CaMK IV is not demonstrated yet.
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Fig. 4. 
Speculations on the impact of Ca++-regulated splicing on protein and neuronal functions. 

(A) On the fine-tuning of the Ca++ sensitivity of ion channels (for example, the BK 

channels). With Ca++ sensitivities between 0 to 100 μM (top), and increasing number of 

different ion channels (right) available through alternative splicing, the spectrum of the Ca++ 

sensitivity is becoming increasingly refined with narrower intervals (suppose the Ca++ 

concentration intervals are even). For simplicity, only the effect of up to 1000 variant 

channels is shown, with more indicated by “… …”. (B) Modulation of splice variant ratios 

beyond cell-specific expression of a limited number of variants by cell signals such as Ca++. 

Shown are two splice variants expressed in a cell with n% for variant 1 and (100-n)% for 

variant 2 when there is no signal. This relative percentage can be shifted smoothly if varying 

strengths of Ca++ stimuli are applied to modulate the splicing resulting in a spectrum of 

variant percentages ranging from 0% to 100% for each variant. (C) Diagram of the possible 

contribution of Ca++/CaMK IV-regulated alternative splicing to changes in neuronal 

electrical properties during electrophysiological memory. Changed electrical firing during 

the 1st and 2nd round stimulations is indicated with a different amplitude and frequency. 

This change requires gene expression through CaMK IV. The control of alternative splicing 

of ion channels by CaMK IV to either promote or repress the inclusion of certain exons is 

expected to contribute to the changes in ion channel subunit compositions and therefore the 

firing properties.
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Table 1

List of alternative exons regulated by Ca++ signals

The list is according to gene name/description in alphabetical order, followed by other properties including exon, stimuli, inhibitor, protein 
function, reference, etc. PPase: protein phosphatase. NA: not available. For species, c: chick, h: human, r: rat, m: mouse. For more exons, see Xie et 
al., RNA’05 [107], Lee et al., Plos Biol.’07 [105] and An et al., Plos Biol.’07 [84].
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Table 2

An alphabetical list of pharmacological agents/treatments referred to in this paper

Chemical/treatment Effect on Ca++ signalling

Acetylcholine Agonist of acetylcholine receptor, increase Ca++ influx

AP5 Antagonist of NMDA receptor, reduce Ca++ influx

BAPTA-AM A cell permeable Ca++ chelator, reduce cytosolic Ca++

CdCl2 A voltage-sensitive Ca++ channel blocker

FK506 A calcineurin inhibitor

Glutamate Agonist of glutamate receptor, increase Ca++ influx through ionotropic glutamate receptors

Ionomycin Ionophore, increase intracellular Ca++

Ischemia increase intracellular Ca++

Kainate Ionotropic glutamate receptor agonist, increase Ca++ influx

KCl (25–50 mM) Induce Ca++ influx through Ca++ channels

KN62 CaM kinase inhibitor

KN93 CaM kinase inhibitor

MK-801 Antagonist of NMDA receptor, reduce Ca++ influx

Nifedipine L-type calcium channel blocker

Nimodipine L-type calcium channel blocker

NMDA Agonist of NMDA receptor, increase Ca++ influx

Pilocarpine Agonist of muscarinic acetylcholine receptor, induce seizure, increase Ca++

Thapsigargin Inhibitor of the sarco/endoplasmic reticulum Ca++ ATPase, elevate cytosolic Ca++

Verapamil L-type calcium channel blocker
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