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Summary
Comparative biogerontology evaluates cellular, molecular, physiological, and genomic properties
that distinguish short-lived from long-lived species. These studies typically use maximum reported
lifespan (MRLS) as the index against which to compare traits, but there is a general awareness that
MRLS is not ideal due to statistical shortcomings that include bias resulting from small sample
sizes. Nevertheless, MRLS has enough species-specific information to show strong associations
with many other species-specific traits, such as body mass, stress resistance, and codon usage. The
major goal of this study was to see if we could identify surrogate measures with better statistical
properties than MRLS but that still capture inter-species differences in extreme lifespan. Using
zoological records of 181 bird and mammal species, we evaluated 16 univariate metrics of aging
and longevity, including non-parametric quantile-based measures and parameters derived from
demographic models of aging, for three desirable statistical properties. We wished to identify
those measures that: 1) correlated well with MRLS when the biasing effects of sample size were
removed; 2) correlated weakly with population size; and 3) are highly robust to the effects of
sampling error. Non-parametric univariate descriptors of the distribution of lifespans clearly
outperformed the measures derived from demographic analyses. Mean adult lifespan and quantile-
based measures, and in particular the 90th quantile of longevity, performed particularly well,
demonstrating far less sensitivity to small-sample size effects than MRLS while preserving much
of the information contained in the maximum lifespan measure. These measures should take the
place of MRLS in comparative studies of lifespan.
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Introduction
Aging is a process that gradually impairs vigorous mature adults and renders them more
susceptible to a wide range of diseases and disabilities, leading to a progressive increase in
mortality risk. Maximum recorded lifespan (MRLS) is the standard comparative metric used
in experimental and observational research into the causes of aging (Comfort 1979; Austad
& Fischer 1991; Holmes & Austad 1995; Wilkinson & South 2002; Hulbert et al. 2007), and
it is often taken as the key endpoint in comparisons among species, genotypes, or groups
exposed to different environmental manipulations. Comparative biogerontologists have long
made use of MRLS as a surrogate for species-specific aging rate, and much effort has gone
into compiling tables of MRLS values for this purpose (Finch 1990; Carey & Judge 2000; de
Magalhaes & Costa 2009).

It is widely appreciated, however, that MRLS is a problematic indicator for several reasons.
First, MRLS is a downwardly biased indicator of extreme lifespan. As sample sizes increase,
expected MRLS values are expected to increase as well. Second, the sample variance
associated with estimates of population MRLS may be high, especially with small sample
sizes. These two issues may present serious problems in comparative studies involving rare
non-laboratory animals. Consequently, MRLS may differ across species owing to
differences in the number of species records used to determine longevity as well as to
inherent differences in the physiology and ecology of the species. Third, MRLS does not use
data effectively in situations where records are incomplete, which is often the case in many
observational studies where the terminal recorded event for an individual may not be death
(i.e., right-censoring). Lastly, it reflects lifespan of a single individual per species, grossly
overestimating the characteristics of other members of the species. Given the concern that
some record-breaking lifespans may be exaggerated (Steven Austad, pers. comm.), such
extreme dependence on single outliers is undesirable.

Other metrics have been introduced in attempts to improve upon MRLS by applying
multivariate demographic models of aging, such as Gompertz or Weibull functions, to
survival data (Promislow 1991; Wilson 1994; Ricklefs & Scheuerlein 2002). In some cases,
these parameters have been assigned controversial biological interpretations, as, for
example, when the slope of a Gompertz plot is interpreted as a measure of the rate at which
aging occurs (Finch et al. 1990; Pletcher et al. 2000; Bronikowski et al. 2011), and the
intercept of a Gompertz plot is interpreted as the inherent frailty of the members of the
population (Spencer & Promislow 2005; Maklakov et al. 2006; Flatt & Kawecki 2007). In
other cases, parameter estimates derived from these models are combined, for example by
multiplication, to arrive at a univariate summary of aging rates (Ricklefs 1998; Ricklefs &
Scheuerlein 2001). Non-parametric methods have also been proposed that summarize the
lifespan distribution of an elite subset of the population into quantiles and/or means (Wang
et al. 2004; Gao et al. 2008). One significant advantage of these alternative methods over
MRLS is that their application is not limited to the empirical distributions of complete
lifespans; they can benefit from the use of the Kaplan-Meier estimator, which allows the use
of censored data. Each of these estimators, and their combinations, has only an indirect
relationship to the underlying biological processes of aging, and it is unclear how well these
longevity metrics perform compared to MRLS as an index of differences of the pace of age-
related change among biologically interesting populations.

Questions about the evolution of different aging rates and the cellular and molecular
processes that can lead to striking differences in longevity among related species are the
central arena for comparative biogerontology. Within orders of mammals, MRLS values
among species of rodents or primates can vary 4- to 8-fold. Many evaluations of hypotheses
about comparative aging among species have depended on MRLS as the index of inter-
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species differences in aging rate, despite the measure's well-known defects. Our goal in this
project was to make use of population data, obtained from zoo populations of nearly 200
bird and mammal species, to explore the sampling properties of various univariate aging and
longevity metrics. Some of these metrics have been proposed by others, but some have not
previously been applied to questions in the comparative biology of aging. We wished to
understand how well each measure indicates extreme lifespan across a phylogenetically
diverse range of species that differ in life history and data quality. In addition, we wanted to
understand how robust each metric is to sampling effects, namely sampling variance and
bias arising from small population sizes. A major goal of this study was to understand the
limitations of MRLS as a comparative longevity metric and, if possible, identify an
alternative measure for MRLS that minimizes the sampling issues and data-use restrictions
associated with that measure.

The datasets available to test hypotheses in the comparative biology of aging differ in the
proportion of missing values and in the extent of erroneous data. The data often combine
records from wild and captive populations that differ in environmental factors (housing
conditions, food availability, reproductive histories, predation and infection levels, etc.) that
can have strong effects on mortality risks through both age-dependent and age-independent
pathways. Although tables of MRLS values across species contain a good deal of
information critical to testing ideas about the biology of aging, there is a pressing need to
develop improved demographic endpoints for biogerontology.

Results
Onset of aging

Although it is not clear whether the aging process begins at any defined life history
transition (birth, puberty, age at first reproduction), we assume here that deaths at the earliest
ages, for example perinatal deaths and deaths of juveniles, are unlikely to be informative
about inter-population variances in aging rates. We therefore used two methods to determine
the age before which mortality should be ignored, and we report the results derived from
both methods. We analyzed the subset of individuals from each species with events (deaths
or last observations) that met or exceeded one of two species-specific truncation ages: 1) T1,
the age of reproductive maturity for that species, or 2) T2, the age at which the mortality rate
reaches a minimum (see Table S1 for species, relevant life history information, and T
estimates). Across the 163 species that had at least 50 adults defined by both threshold
definitions (T1 and T2), the truncation ages correlated reasonably well (ρ = 0.53, p < 0.0001,
Spearman's rank correlation; see Figure 1). Nearly two-thirds of the species with both T1
and T2 estimates had an age at minimal mortality that exceeded the age at reproductive onset
(108 of 163 species). This pattern is consistent with Promislow's (1991) earlier analysis of a
much smaller set of species records in which he showed T1 < T2 in 75% (18 of 24) of cases
where age at maturity and age at minimal mortality differed. More recent life history
analyses also show that the onset of aging tends to follow the timing of reproductive
maturity (Jones et al. 2008; Peron et al. 2010). The correlation between T1 and T2 estimates
strengthened slightly when the collection of species was reduced to include only the 125
species with 150 or more adults (ρ = 0.58, p < 0.0001). While the positive correlation was
encouraging, it seemed prudent to analyze the sampling properties of the various metrics
using each T-definition independently. As we show below, however, the choice of T-
definition had little effect on the sampling properties of the metrics.

Metric estimates
Using both threshold definitions, we estimated sixteen univariate longevity values (defined
in Table 1) for each of the 175 (T1) and 165 (T2) species, respectively, that had at least 50
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adult individuals (as defined by each T-definition) with recorded events (Supplement Tables
S2A and S2B). For a few cases of the T1 treatment, the Weibull function failed to converge.
This may have resulted from too few adult deaths in the dataset (Ricklefs 1998) or from
inclusion of part of the early age range typified by elevated mortality (by definition, this
would not be a problem using the T1 criterion).

Correlations among metrics
We correlated estimates across species using both truncation methods (Table 2) holding
population size constant (a full correlation matrix, in which sample size is not corrected for,
is presented in Table S3 of the Supplemental Information). In general, the nonparametric
measures of lifespan were highly correlated among each other (0.869 or better). Except for
the mean (e0) and median lifespan (Q50), the lowest partial correlations among non-
parametric estimators were between MRLS and Q90 (0.950 for T1 and 0.941 for T2). The
partial correlation between MRLS and Q95 was also 0.950 using the T1 criterion but higher
(.957) for T2. With the exception of the Weibull intercept, WA, and Ω (a function of the
slope and intercept of the Weibull model), parametric measures of mortality correlated
negatively with MRLS and the other nonparametric measures of longevity. This is to be
expected, because these are aging parameters, and aging and longevity are negatively
associated. Of these, only the Gompertz and Weibull intercepts (GA and WA) correlated
reasonably well with MRLS (-0.789 and -0.698 for GA and -0.928 and -0.938 for WA).
Slopes and intercepts were poorly correlated for both the Gompertz and Weibull models.
Independence between GA and GB estimates has been previously recently reported across
eight primate species (Bronikowski et al. 2011).

Correlations between metrics and population sizes
We correlated metric estimates with population sizes (n) using both T1 and T2 criteria
(Figure 2). In most cases, metrics that were estimated using T1 were less strongly associated
with n than those estimated using T2. As expected, we found positive correlations between n
and MRLS (+0.105 and +0.162). Positive correlations increased with increasing x in MxLS
(the mean lifespan of the x longest-lived individuals), reaching +0.276 and +0.312 with
M32LS. For these metrics, the T2 treatment yielded slightly greater correlations that the T1
treatment. With the exception of WA, parametric measures were very sensitive to the choice
of T. The Weibull and Gompertz slopes, as well as the Weibull omega measure, yielded
moderately negative correlations with n in the T2 treatment (-0.358, -0.480, and -0.480,
respectively). Using T1, however, these correlations remained negative but markedly
decreased in magnitude (-0.039, -0.127, and -0.089). The Weibull and Gompertz intercepts
were weakly and positively correlated with population size, except for GA estimated with
T2, which was the highest correlation that we observed (+0.313). Promislow et al (1999)
also report little association between Gompertz parameters and population size in simulated
populations using a defined age of onset (similar to our T1 treatment). The more extreme
quantile-based measures (Q90, Q95, e90, and e95) showed the weakest associations with
sample size (correlations ranged between -0.037 and +0.018). The measures of central
tendency (Q50 and e0) correlated weakly and negatively with n using T1 (-0.066 for both)
and correlated more strongly with T2 (-0.174 and -0.147). Correlations involving these
measures, and using either T1 or T2, most closely resembled those generated from the
extreme quantile-based measures.

Rank persistence
We next asked how finite population size affected the ranking of lifespan metrics across all
study species. Every population (for our purposes, a population was considered the
worldwide collection of animals of the same species, and we use species and population
interchangeably) was re-sampled ni times with replacement, where ni was each species’
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sample size, and each species was ranked in order of each longevity value (resulting in 16
metric-specific ranking vectors). For example, a MRLS vector may be ordered species A >
species B > species C > species D and a WA vector may rank species B > D > A > C. This
procedure was repeated, and each pair of metric-specific ranking vectors was analyzed for
stability. Rank persistence, as inferred by a low Spearman's Footrule Distance D and a high
Spearman's ranked correlation coefficient ρ, quantified how robust each measure was to
sampling variation. We investigated four population size treatments. The n ≥ 50 treatment
included all species populations with at least 50 observed adult deaths (nT1,50 = 175, nT2,50
= 165). We performed three other rank persistence analyses using the same resampling
approach, except that we made the minimal sample size requirement more stringent each
time. We considered species with n ≥ 150 (nT1,150 = 147, nT2,150 = 126), n ≥ 500 (nT1,500 =
66, nT2,500 = 56), and n ≥ 1500 (nT1,1500 = 15, nT2,1500 = 13). Note that the treatments
differed only in the choice of which species to use; any species chosen for a treatment had
all of its individuals included in the analysis. Rank persistence averaged over 1000
resampled population pairs is described in Table 3. For each treatment, robustness measure,
and T-definition, the five most persistent metrics are indicated in boldface and the five least
persistent metrics are shaded.

In general, the non-parametric estimators outperformed the parametric estimators in nearly
every treatment. The sole exception was that the Weibull intercept WA was a frequent top-
five performer. The Gompertz intercept GA performed well at the highest population size
treatment using the T2 definition. GB, WB, and Ω were always among the least persistent
metrics. Of the nonparametric estimators, the quantile-based approaches demonstrated the
most persistence. This was especially evident in the metrics that described central tendency
(e0 and, to a lesser degree, Q50). More extreme values of longevity, Q90 and e90, also
performed very well across all treatments. The M32LS method performed very well at low
sample sizes but less so at the n ≥ 500 and n ≥ 1500 treatments.

All of the metrics under consideration are subject to sample size bias. For this reason, we
reasoned that the species rankings reflected both inherent differences in the biology of
species as well as variation in the size of the pooled zoo animal population datasets provided
by ISIS. We note that datasets available for testing hypotheses about species differences in
aging and longevity are also likely to contain a preponderance of small populations, similar
in this way to the datasets available through ISIS. We attempted to remove the latter source
of variation from our rank persistence analysis by randomizing sample size. As before, a
rank persistence analysis was performed using populations with adult numbers of at least 50,
150, 500, and 1500 individuals. In this treatment, however, the resampling procedure was
changed. Instead of taking ni samples from each species i, the number of samples was
randomized; the exponential of some uniformly distributed number of samples xi were
drawn with replacement over the interval ln(50) ≤ ln(xi) ≤ ln(ni) (this sets the range at
between 50 and ni with most samples near the low end of the range). As before, adults were
those individuals with terminal events (deaths or last observations) defined by T1 or T2 and
rank persistence was quantified by D and ρ. Mean persistence values are shown in Table 4.

The randomized treatments demonstrated weaker rank persistence. This is what we would
expect if randomizing sample size eliminated that component of the fixed species rank
determined by population size. This was consistent with our goal of removing sample size as
predictor of longevity. In general, the quantile-based nonparametric estimators appeared to
preserve rank best, although the Weibull intercept WA again showed relatively high rank
persistence. Interestingly, the relative advantage of these nonparametric estimators over the
alternatives appeared to be greater with randomized population sizes. This finding suggests
that sample size variation has a greater effect on parametric measures of longevity than on
non-parametric measures. As before, WA and the more intermediate quantile measures, Q50
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and e0, performed best and Q90 and e90 performed next best. As a group, parametric
methods continued to appear to be the worst performers (excepting WA). At high sample
sizes, however, the Gompertz intercept GA performed relatively well, providing species
ranks that were roughly as persistent as the quantile-based measures. The largest change in
relative performance involved nonparametric measures M16LS and M32LS; these were
middling-to-good performers with fixed populations sizes but very poor performers when
sample sizes are randomized. It appeared that for metrics MxLS, increasing x made for
better metrics when samples sizes were fixed but worse metrics when sample sizes varied.
This makes sense when we consider that, in terms of population lifespan quantiles, MxLS
has different meanings as population size changes. Using unrealistically low population
sizes to illustrate this point, MRLS is Q95 in a population of 20 but equal to Q50 (the
longevity median) in a population of two.

Results were largely unaffected by our choice of T-definitions and persistence metric (D or
ρ). In no case did altering these choices change a top-five performing metric (in terms of
rank persistence) into a bottom-five performer. Ranked correlations between D and ρ values
were very high in all population size treatments and using both T-definitions, with ranked
correlation coefficients among persistence measures ranging between 0.941 and 0.988
(Table 5, “fixed” and “D and ρ” headings; “fixed” refers to the condition of this treatment
where population sizes are preserved and not randomized, as in the following treatment).
Likewise, persistence values were highly correlated across T-definitions. Ranked
correlations ranged from 0.950 to 0.994 (Table 5, “fixed” and “T1 and T2” headings) in the
three treatments with lowest population sizes. In the highest population size treatment, n ≥
1500, the ranked correlations ranged somewhat lower, 0.721 and 0.812.

Discussion
A wide range of bird and mammal species have evolved that differ widely in life histories,
including variation in the rate at which aging leads to increased risks of mortality due to
disease and infirmity. This rich set of related species could, in principle, be used to generate
and evaluate hypotheses about the cellular and physiological factors that time the aging
process, factors that make it very unlikely that a particular mouse will survive 5 years, a dog
survive 20 years, and a human survive 110 years. Lifespan is a convenient, if flawed,
surrogate for addressing hypotheses about the biological basis for aging rates because many
factors besides age change can lead to death, and because aging leads to many consequences
in addition to changes in mortality risk. Ideally, hypotheses about the distribution of aging
rates and age-dependent changes across species could be tested by a database in which
multiple age-sensitive traits had been tested in hundreds of individuals across a wide range
of diverse species. In practice, however, physiological data of this kind are available only for
a handful of species, and for most species the only available data relevant to questions of
comparative aging rate are in the form of survival tables. The obvious problem is to
determine the best way to summarize these population–specific tables and provide a
comparative metric that preserves relevant biological information relating to lifespan while
disregarding the effects of extraneous or confounding factors, such as population size.

Despite the widespread appreciation of its statistical association with population size, the
maximum recorded lifespan (MRLS) is favored by comparative biologists because it is
believed to measure an individuals’ intrinsic potential for long life. The degree to which the
other metrics measured this maximum, without regard for the biasing effects of small
sample size, is quantified by the partial correlations between candidate metrics and MRLS,
holding population size constant. Population size bias is addressed more directly by the total
correlation between sample size and metric value. Ideally, the best measures of extreme
lifespan are those with the greatest magnitude of partial correlations with MRLS and the
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least magnitude of the total correlation between the measure and sample size. By these
criteria, the best are those that nonparametrically define some well-defined elite fraction of
the population: Q90, Q95, e90, and e95. Given that adult lifespans are typically right-skewed,
we expected that measures of central tendency should be affected least by sample size.
Instead, we found negative correlations between these measures and n that were slightly
stronger than those obtained from Q90, Q95, e90, and e95. Good evidence has been collected
to suggest that animal size and lifespan are positively associated. If zoos favor larger
collections of smaller animals (a feasible expectation given resource limitations), then these
negative correlations between n and mean and median lifespans may reflect true associations
between intrinsic aging and population size and not simply bias. Such associations would
cause effects that act in opposition to the effects of sample size bias on MRLS estimates. Put
differently, maximum recorded lifespan would be more sensitive to n than reflected by our
correlation estimate. We note, however, that regardless of whether we choose the ideal
correlation to be zero or slightly negative, Q90, Q95, e90, and e95 still appear to best satisfy
these criteria for best longevity metrics.

Because MRLS observations depend upon the identification of single individuals, it seemed
reasonable to expect that estimates would suffer from high sampling error. Indeed, our re-
sampling analysis indicated that MRLS had a larger sampling variance than the quantile-
based measures at all sample sizes. The difference intensified when species were
disassociated from population sizes, suggesting that small sample bias may contribute to the
sampling error for MRLS. Most parametric estimates suffered from high sample variance.
The quantile-based measures produced the most reliable estimates, especially when
population sizes were allowed to vary. Excluding those that describe the central tendency,
we see that the least extreme measures Q90 and e90 are the least variable.

The 90th quantile of adult lifespan, Q90, and the average of the top 10th percentile of adult
lifespan, e90, appear to be the best alternatives to using MRLS as a comparative metric for
extreme lifespan. Both correlate well with MRLS when sample size is corrected for,
correlate weakly with population size, and demonstrate relatively little sampling variance.
Furthermore, both can accommodate right-censored data. Neither measure seems to have a
clear advantage over the other based upon the sampling characteristics analyzed here.
However, one may prefer Q90 over e90 if extreme lifespan exaggeration was considered to
be a problem, because Q90 is expected to be more robust to this effect than e90. We
recommend that future aging studies consider using the 90th quantile lifespan as a
comparative metric.

The metrics that took the average of a set number of elite individuals (MxLS) performed
poorly as candidate metrics for extreme lifespan. Not surprisingly, MxLS measures
correlated extremely well with MRLS when population size was held constant. However,
the positive correlation between the measure and population size increased for this family of
measures. Our rank persistence analysis illustrated problems inherent in the use of MxLS as
a comparative metric. When population sizes were not randomized, MRLS and the closely
related M4LS performed well, as indicated by high rank persistence to resampling. Similar
methods that correlate well to MRLS (M16LS and M32LS) also performed well under these
conditions. However, when population sizes were randomized to decouple the effects of
biology and animal collection size, these performed very poorly compared to other
measures. The reason for this is evident if we recognize that MxLS is the mean of the top 1
– (n-x)/n percentile of the population. Because the threshold for inclusion is sensitive to
population size, variation in population size varies the lifespans of the individuals included
in the measure.
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Judged as univariate descriptors of longevity, measures based upon parameterized
demographic models performed poorly as a group, with the exception of the Weibull
intercepts, WA. Estimates of these metrics seemed to be more sensitive to our choice of
method for delineating the aging and non-aging segments of each species life history. These
metrics correlated poorly with MRLS, holding population size constant. With respect to the
Weibull-based omega values, our results (using T1 as our definition of adulthood, the partial
correlation was -0.238 and the total correlation was -0.464) contrast sharply with a full
correlation between and MRLS of -.83 across 150 captive vertebrate species recently
reported by Ricklefs (2010b). At least two reasons may account for this discrepancy. First,
our analytical methods differ: Ricklefs uses least-squares regression to fit a three-parameter
Weibull model to death records at all ages (we use maximum likelihood to fit a two
parameter model to adult events) and he does not consider right-censored observations (we
do). Second, the numbers of animal records per species tend to be far greater in our study. If
small sample sizes upwardly bias estimates of omega (this is speculation on our part), then
the variance in sample size across species (such as both studies find) will generate excess
negative correlations between omega and MRLS. The results from the rank persistence
analyses suggested that the demographic parameters, especially those that describe the
slopes of mortality functions, are subject to high sampling variance. The Weibull intercept,
however, demonstrated high partial correlations with MRLS and low sampling variances.
Our only reason for not recommending this measure is that it correlated more strongly with
population size, which suggests that it is a more biased measure than some of the
nonparameteric alternatives.

While much attention in comparative biogerontology focuses on measures of extreme
lifespan, investigators might consider using measures of central tendencies instead. There
are at several reasons for doing so. First, as we show here, mean adult lifespan exhibits the
least amount of sampling variance. It is the most repeatable measure that we investigated.
Second, compared to MRLS, there is far less association between population size and metric
estimates. As we have argued, there is reason to believe that mean lifespan should be the
measure that is least biased by small sample size. Third, mean lifespan is highly correlated
with MRLS (correcting for population size), with a partial correlation coefficient of between
0.91 and 0.93. Other measures, such as Q90, may perform better in this respect, but it
appears that a great deal of the biological information that is parameterized by maximum
lifespan is also expressed by the mean lifespan of those animals that live at least as long as
the ages measured by T1 and T2. Last, the most familiar definitions and predictions of the
evolutionary change of phenotypes from one generation to the next are expressed as changes
in the means (Robertson 1966; Price 1970; Price 1972; Lande & Arnold 1983). In
evolutionary biology, it is changes in the means, and occasionally the variances, of
phenotypes that are nearly always the subject of study. We note, though, that the means and
medians used for our calculations are for samples that exclude perinatal and a high
proportion of juvenile mortality, and cannot be used to evaluate issues related to life
expectancy at birth or proportions of offspring surviving to reproductive age.

Ultimately, the choice of whether to compare means or extremes may depend upon the
nature of the comparative question that is under study. We recommend, however, that this
decision is made explicit and justified by each study. Comparative biogerontologists have
prepared extensive compilations of MRLS data, and for many meta-analyses MRLS may,
unfortunately, be the only available measure currently available. Compilation of similar lists
of Q90 values and mean lifespans of animals surviving at least to T1 or T2, would be a
worthwhile project for field biologists and zoo consortia to tackle as a service to aging
research, and we recommend that such statistics be routinely included in reports about
lifespan and aging in wild, captive, and experimental populations. In this respect, our study
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makes an important contribution by providing these estimates for nearly 200 bird and
mammal species.

Experimental procedures
Obtaining animal records

We obtained records for 200 species of captive-born birds and mammals from the
International Species Information System (ISIS), an international non-profit membership
organization of zoos and aquariums. ISIS maintains an extensive database derived from over
800 zoological institutions in 77 countries, including life history information on over 2.4
million individual animals, of which over 1.5 million have exactly recorded birthdates. ISIS
data has contributed to previous studies of demographic parameters related to lifespan
evolution (Ricklefs 2000; Ricklefs 2010a; Ricklefs 2010b), in which the absence of
predation in zoological settings was believed to be an advantage in determining intrinsic
mortality rates. Because information in the ISIS database differs greatly among species in
the number of individuals, the degree of right censoring, the extent of missing data, and the
pooling of information from zoos of varying size and environmental characteristics, these
data provide an excellent opportunity to compare statistical estimates of extreme longevity
in a realistic context.

Animal records included sex, birth dates and death dates (or last recorded observations).
Animals with unknown or estimated birth dates were removed from the analysis. We also
removed all animals with life-spans that exceeded 120% of the maximum recorded lifespan
as reported by AnAge (de Magalhaes & Costa 2009). We chose this value to allow for the
possibility that the ISIS records included valid ages of animals that exceeded the AnAge
values (many record-breaking individuals were identified), but we did not want to include
records of animals that were suspiciously old. We used two methods (explained below) to
determine the initial age of our analysis of aging (T) for each species. Most (181 species)
had 50 or more individuals (n ≥ 50) with ages at death that exceeded T –values determined
by one or both methods. These species (Supplemental Table 1) were chosen for further
analysis.

Determining T
Populations from the ISIS datasets exhibited U-shaped mortality functions of age. The close
monitoring of individual animals in the zoological setting, especially starting with birth or
hatch, generates data on early mortality. As we were only interested in the distribution of
lifespans that are associated with senescence, we discarded deaths that occurred before the
onset of aging (T). This age was determined in two different ways: First, we ignored all
deaths that occurred before the age of first reproduction as determined by the literature (see
Table S1 in the Supplemental Information). When sex-specific ages of first reproduction
were available and different, we took the greater of the two ages to be the truncation age
(T1) for both sexes.

The second method found the age at which mortality was minimized (T2). For each reduced
population, we used a simple iterative routine to find T2:

1. We calculated LX values using the ‘Survival’ package in R 2.11.0 (R Development
Core Team 2011; Therneau & Lumley 2011). Individuals with known death dates
(complete) and dates of last observation (right-censored) were used. We binned the
population into groups of similar lifespans, defined by regular age intervals. The
bin number is defined by the “Sturges” algorithm (Sturges 1926), where the
number of classes is a function of sample size, N = 1+log2(n). This function is
commonly used to construct histograms.
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2. The age mid-point of the class with the lowest mortality value was the provisional
T2 value.

3. A new population was defined by individuals from this class and those from either
of the flanking classes.

4. We repeated steps 1-3 using the new population until age bins appeared with no
deaths or until the Sturges function no longer returned more than two classes.

5. The estimate of the mortality minimum was the last meaningful T2 value (Table
S1).

Estimating metrics
We estimated longevity using the post-T (aging) populations. Longevity metrics were of two
types. Non-parametric estimates were functions of longevity quantiles, based upon survival
curves generated from the survival analysis described above. Parametric estimates derived
from functions of Gompertz or Weibull parameters fit to each aging population. Model
fitting was accomplished using the ‘Survomatic’ package in R 2.11.0 (Bokov & Gelfond
2010; R Development Core Team 2011). Metrics are described in detail in Table 1, and
estimates are presented in Supplemental Table S2.

Rank persistence
We were interested in discriminating between populations represented by their longest-lived
individuals. One way to evaluate the merits of candidate metrics is to perform rank
persistence analyses of re-sampled species-specific populations. We began with a collection
of P species, each of size Np. We re-sampled each species twice with replacement, taking Np
draws from each population p. For each metric m, there was a ranking sequence specific to
each sample set. For example, the MRLS rankings for five sample species (p = 1 to 5) may
have been

In this case, species 1 always has the longest-lived individual and species 5 always has the
lowest maximum aged individual. Species 2, 3, and 4 exchange rank. Using the same re-
sampled data, a metric other than MRLS might return rankings that are more persistent:

We can quantify rank persistence using two slightly different measures. The first measure is

Spearman's Footrule Distance: , where i and j are R1 and R2, x is the
rank and k is the population. For the examples above, DR1R2 (MRLS) = 4 and DR1R2 (X) =
2. Persistence increases with decreased D (low values are superior to high values). The
second measure is rij, the rank correlation across the samples, which increases with rank
persistence (high values are superior to low values). In our example, rR1R2 (MRLS) = +0.7
and rR1R2 (X) = +0.9. Note that the measures are very similar; the only fundamental
difference between the two measures is that r weights changes in rank by the square of the
change and D scales the changes linearly. By both measures, the rankings derived using
metric X would seem to more robust to changes in the populations resulting from re-
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sampling. In terms of rank persistence alone, we would conclude that X is a superior
longevity metric to MRLS.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two methods of determining age of onset
shows the joint distribution between 1) the oldest of the two sex-specific values for the first
age of reproduction and 2) age at minimal mortality for 163 species with 50 or more adults
(as defined by both definitions). The line defines the T2 = T1 relationship.
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Figure 2. Correlations between longevity metrics and population size
illustrates the correlations between candidate metrics and population size. Correlations are
sensitive to the definition of adult (T) used to estimate the measures. For each measure, bars
connect the T1 and T2-derived estimates. Long bars indicate high sensitivity of the
correlation to the choice of T.
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Table 1

Univariate longevity metrics

Parametric? Details

MxLS no Mean lifespan of the x longest-lived individuals x=1,4,8,16, 32 (where M1LS represents MRLS)

GA yes intercept of the maximum likelihood Gompertz model (μ = AeBx)

GB yes slope of the maximum likelihood Gompertz model

WA yes intercept of the maximum likelihood Weibull model (μ = AxB)

WB yes slope of the maximum likelihood Weibull model

Ω yes Omega index based upon a Weibull model Ω = A1/(B+1)

QX no The xth lifespan quantile x = .5, .9, .95

e x no The mean lifespan above the xth lifespan quantile x = 0, .9, .95
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Table 3

Rank persistence analysis (fixed population size)
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Table 4

Rank persistence analysis (randomized population size)
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