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Identifying influential observations in
Bayesian models by using Markov chain
Monte Carlo
Dan Jackson,a*† Ian R. Whitea and James Carpenterb

In statistical modelling, it is often important to know how much parameter estimates are influenced by particu-
lar observations. An attractive approach is to re-estimate the parameters with each observation deleted in turn,
but this is computationally demanding when fitting models by using Markov chain Monte Carlo (MCMC), as
obtaining complete sample estimates is often in itself a very time-consuming task. Here we propose two efficient
ways to approximate the case-deleted estimates by using output from MCMC estimation. Our first proposal,
which directly approximates the usual influence statistics in maximum likelihood analyses of generalised linear
models (GLMs), is easy to implement and avoids any further evaluation of the likelihood. Hence, unlike the
existing alternatives, it does not become more computationally intensive as the model complexity increases. Our
second proposal, which utilises model perturbations, also has this advantage and does not require the form of the
GLM to be specified. We show how our two proposed methods are related and evaluate them against the existing
method of importance sampling and case deletion in a logistic regression analysis with missing covariates. We
also provide practical advice for those implementing our procedures, so that they may be used in many situations
where MCMC is used to fit statistical models. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Measures of leverage, influence and residuals are well-established tools in data analysis. Influence refers
to how sensitive inferences are to the presence of particular observations and has proved its usefulness
in maximum likelihood and least squares analyses.

It is therefore of interest to explore efficient algorithms for measuring influence in Bayesian analyses.
Our interest in this was motivated by examples such as the sudden unexpected death in infancy (SUDI)
analysis described in detail in Section 2. Here we wish to fit a standard model and examine the usual
diagnostics such as influence and residuals, but some observations have missing covariates. A natural
way to incorporate these observations into the analysis is to posit a model for the missing data and use
maximum likelihood, but this is computationally intensive in all but the simplest of situations. In partic-
ular, this type of approach becomes increasingly difficult as the dimension of the integrals with respect
to the missing data and the parameter space over which the maximisation is performed become large.

In order to overcome these difficulties, Markov chain Monte Carlo (MCMC) [1] can be used. MCMC
is a powerful but computationally intensive method for fitting Bayesian models. It has the nice feature
of yielding a random sample from the posterior distribution of the parameters of interest, from which
means and credible intervals can be readily calculated. Although relatively simple models present few
difficulties, the iteration times for complex and hence more realistic models may be long. If the mixing
is poor, many iterations can be required to obtain estimates to within an appropriate degree of Monte
Carlo error. Numerical estimation of influence by directly removing observations is therefore extremely
tedious at best.
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Here the simplest definition of influence will be taken as the difference between whole sample
parameter estimates and case-deleted estimates, where each case-deleted estimate can be obtained by
removing the observation in question and refitting the model [2]. Although alternative measures of influ-
ence are possible, such as distances between posterior distributions of parameters of interest and the
corresponding case-deleted distributions [3], these are not developed further here.

An established way to obtain influence statistics by using MCMC is importance sampling [3,4]. Here
we take advantage of the relationship between the full data posterior distribution and case-deleted poste-
rior distributions; their ratio is the likelihood of the removed observation. Hence, case-deleted posterior
summaries can be obtained from weighted summaries of the sampled values by using the importance
weight which is proportional to the reciprocal of the likelihood of the deleted observation evaluated at
the simulated parameter values. Although this procedure is effective in many situations, it has its limita-
tions. If the weights are very variable, then extremely large numbers of iterations may be needed; highly
unusual and hence influential observations can provide surprisingly volatile weights. Hence, the prob-
lem is that, if deleting an observation causes a big change in an estimate, then the importance sampling
influence statistic depends heavily on very few MCMC draws and sometimes only one. Perhaps the other
main difficulty is that importance sampling requires the repeated computation of the observations’ con-
tributions to the likelihood. This becomes particularly computationally demanding as the model becomes
more complex, and as a consequence importance sampling is unfeasible for very complicated models.
These concerns provided additional motivation for our work which provides influence statistics that do
not make any further likelihood-based computations and, in contrast to the alternatives, do not become
more computationally intensive as the model complexity increases.

The routine evaluation of influence statistics was firmly established in the context of linear regression
in Cook’s seminal paper [5]. As emphasised by Cook, ‘On the surface it might seem that any desirability
this measure [a standardised measure of influence] has would be overshadowed by the computations
necessary for the determination of nC1 regressions’. However, Cook shows how influence statistics can
be obtained using only quantities calculated from the original regression involving the complete sample,
and this also provides the foundation of approximate influence measures for the generalised linear model
(GLM) introduced by Pregibon [6] and Williams [7]. Hence, approximate case-deleted estimates can be
obtained for any GLM without the need to fit additional regressions. In particular, the case-deleted influ-
ence statistics for GLMs given by Williams provide the justification for the procedures for obtaining
these using MCMC developed here.

Although the use of MCMC to fit models with missing data provides our motivation, our methods
may be used much more generally. We do however require that the likelihood dominates the prior,
so that Bayesian and likelihood-based analyses provide inferences that are in good numerical, but not
necessarily philosophical, agreement. This is to ensure that the established likelihood-based influence
statistics are similar to their Bayesian counterparts. Here we use models that either are a standard
single-level GLM or comprise a collection of connected GLMs, so we can ignore the prior specification
asymptotically. Many Bayesian models are specified in this way, and this type of approach is empha-
sised by the models typically fitted using WinBUGS [8] (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml). ‘Vague’ or ‘uninformative’ priors help to ensure that their role is negligible but, pro-
vided the sample size is sufficiently large and truly dogmatic priors are avoided, are not required by
the methods and models that follow. We return to the additional issues presented by more complicated
models, such as hierarchical and mixed effects models, in the discussion.

The paper is set out as follows. In Section 2, we analyse the SUDI data. In Section 3, we review
existing classical/frequentist methods for obtaining influence statistics for GLMs that lead us directly
to our first proposal for obtaining these. In Section 4, we develop a procedure for obtaining influences
using perturbed regression parameters, which, unlike our first proposal, does not require the form of the
GLM to be specified. In Section 5, we describe the results from a simulation study, and in Section 6, we
explain why our methods apply to models that comprise a collection of connected GLMs. In Section 7,
we apply our methods to our example and compare the results with importance sampling and direct case
deletion. We conclude in Section 8 with a discussion.

2. Sudden unexpected death in infancy

We will examine an illustrative analysis of a case control study exploring risk factors for SUDI in families
with a previous SUDI [9]. We have information for 137 Care of Next Infants (CONI) infants, of whom
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33 are cases. This was analysed using logistic regression with key matching variables as covariates.
WinBUGS [8], via the R package BRugs, was used to perform all MCMCs.

We found four variables to be especially good predictors of death in this sample by using a logistic
model: Income Deprivation Affecting Children Index (DEP; a low score indicates high deprivation),
mother’s age in years (MAGE), birthweight in grams (BWT) and the number of previous terminations
and miscarriages (TERMIN). All covariates were centred, and continuous variables were standardised,
so we fit the model

logit.p.death//D ˇ1C ˇ2.DEP� 9500/=9000C ˇ3.MAGE� 29/=6C (1)

ˇ4.BWT� 3000/=700C ˇ5.TERMIN� 0:9/:

From a standard complete case maximum likelihood analysis, we obtain the following (standard errors
in parentheses): Ǒ1 D �2:51 .0:55/, Ǒ2 D �1:22 .0:47/, Ǒ3 D �0:69 .0:29/, Ǒ4 D �1:09 .0:33/ and
Ǒ
5 D�1:80 .0:58/.
This complete case analysis discards 15% of the data: 21 observations have missing TERMIN values,

four of which also have missing MAGE; DEP and BWT are complete. To include the incomplete cases,
we fit model (1) jointly with models for the incomplete covariates. Specifically, we use a linear model
for MAGE conditional on DEP and BWT and a log linear Poisson model for TERMIN on DEP, BWT
and MAGE. We also use WinBUGS’ truncation command to truncate TERMIN at 20. Without this, a
few of the simulated TERMIN values can be unrealistically large, which has unfortunate implications
for the model fit.

We place uniform priors on all regression parameters and a Gamma (0.001,0.001) prior on the pre-
cision of the variance in the linear model for MAGE. We used a burn in of 103 iterations and a further
105 iterations to make inferences. This MCMC took around 10 min on a Windows Terminals Server
and provided Ǒ1 D �2:62 .0:54/, Ǒ2 D �1:10 .0:42/, Ǒ3 D �0:54 .0:28/, Ǒ4 D �1:09 .0:33/ and
Ǒ
5 D �1:91 .0:60/, where the estimates are given by the simulated sample means. This analysis adds

further weight to the conclusion that the four variables considered are good predictors of death. We also
obtained the correlation matrix of these estimates and therefore Var. Ǒ/. We use the notation Ǒ for both
Bayesian and maximum likelihood estimates because we assume that they are in good numerical agree-
ment. In particular, we use the hat notation to denote the posterior mean in all Bayesian analyses that
follow, where we obtain these quantities as the sample mean of the simulated values from the MCMC.

This analysis has successfully incorporated all data but makes it difficult to assess issues such as influ-
ence. With the additional assumptions made about the missing data, coupled with the fact that there is
a large amount of variation in the observed covariates, there is the natural concern that a few unusual
observations might be driving the inferences. We now turn our attention to methods for deriving influ-
ences using MCMC output and begin by considering the simpler case where there is just a single GLM
and no missing data.

3. Case-deleted estimates for generalised linear models

We condition inference on X , an n by p matrix of explanatory variables. The observations, denoted by
y, are an n by 1 vector of conditionally independent responses. We assume for now that the data are
complete but return to the possibility of missing data in Sections 6 and 7. Denote �i DEŒYi jXi �, where
�i depends on the i th row of X , XTi , through the linear predictor �i D g.�i / D XTi ˇ, where g.�/
denotes the link function and ˇ is the p by 1 vector of regression parameters. We assume that Yi is a
member of the exponential family with variance vi and dispersion parameter �. Fitting the model in a
Bayesian framework, and assuming that the likelihood dominates the prior, implies that the posterior
means, medians and modes will all be close to the maximum likelihood point estimates, obtained using
iterated weighted least squares [10, 11], with agreement as the sample size tends to infinity.

Williams [7] provides an approximation to the i th case-deleted maximum likelihood estimate, Ǒ.i/,
obtained by using the complete sample estimate Ǒ as an initial value and one step of the weighted least
squares algorithm:

Ǒ
.i/ � Ǒ �

r
wi

vi
.1� hi /

�1.XTWX/
�1
Xiri (2)
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where wi D v�1i .@�i=@�i /
2, W D diag.wi /, ri denotes the residual .yi ��i / and hi is the i th diagonal

element of the ‘hat’ matrixH DW 1=2X.XTWX/
�1
XTW 1=2; all terms on the right-hand side are eval-

uated at the complete sample estimates. Let �i denote the canonical parameter for the regression. The
density of yi is exp..b.�i /Cyi�i /=�Cc.yi ; �//, where �i D�b

0

.�i / and vi D��b
00

.�i /. Furthermore,
the matrix Var. Ǒ/ is approximately .XTWX/

�1
.

We suggest omitting the term involving hi in (2). The sum of the positive hi equals the number
of regression parameters p, and we assume that the sample size n is much greater than p. Hence,
although the relative magnitudes of hi play an important role in determining the observations’ lever-
ages, they are much less important when obtaining influence statistics using (2); .1 � hi / � 1 for
all i in large samples with no grossly outlying values. With this simplification and substitution of
@�i=@�i D @�i=@�i � @�i=@�i , where @�i=@�i D vi=�, Williams’ formula (2) becomes

Ǒ
.i/ � Ǒ �Var. Ǒ/

@�i

@�i

Xiri

�
: (3)

This further approximation is useful as we routinely obtain Ǒ and Var. Ǒ/ when fitting the model to the
full dataset. In particular, for the SUDI data, we have already obtained Ǒ and Var. Ǒ/ as described and
reported in Section 2.

Any procedure for obtaining the rest of the right-hand side of (3) may be used to provide approximate
case-deleted estimates. In particular, we can obtain influence statistics, Ǒ � Ǒ.i/, directly from (3). If the
canonical link is used, @�i=@�i D 1 and (3) simplifies further.

3.1. Our first proposal

Assuming a particular GLM, and that the impact of the prior specification is negligible, we propose
additionally defining and storing the simulated values of

ıi D
@�i

@�i

Xiri

�

when running the MCMC. The derivatives @�i=@�i can be evaluated in terms of �i and are unity if a
canonical link has been adopted. Hence, the ıi are easily computed in terms of the covariates, ˇ and
�. Replacing ıi with its estimate (the mean of the simulated values) from the MCMC in (3), and Ǒ

and Var. Ǒ/ with theirs, immediately yields an approximate influence for the i th observation. All of the
unobserved quantities that we define in this article are evaluated at every iterate of the MCMC, including
derivatives, and so all of these vary between MCMC draws, but only the estimates Oıi , Ǒ and Var. Ǒ/ are
used to compute influence statistics in (3) when using our first proposal. An assessment of the MC error
for Oıi is equally important, but just as straightforward, as for Ǒ when obtaining influence statistics in this
way.

4. Obtaining influence statistics using perturbations

Our first proposal avoids any further evaluation of the likelihood and so can be expected to be more
computationally efficient than importance sampling but requires the form of the GLM to be known. In
this section, we propose a second method based on perturbing the regression parameters. Although we
use the theory of GLMs to justify the procedure, ultimately we use just the variance/covariance matrix
of the complete sample point estimates and the posterior means of the perturbations.

We will define an n by p random matrix � of ‘perturbations’ and replace the j th regression coefficient
in the model, for the i th observation, by ˇij D ˇj C �ij . The entries �ij are to be given independent (of
each other, ˇ and �) normal priors with mean 0. Otherwise, the regression is to be fitted using MCMC in
the usual way. This essentially introduces a random effect component (over observations) on the regres-
sion parameters. By making the prior precisions of the random perturbations extremely large, we obtain
approximately the same estimates Ǒ and Var. Ǒ/ as in the usual perturbation-free regression model. We
use the quantities �ij to denote the prior standard deviations of �ij .

We next show in the case of a GLM that the posterior distributions of the �ij relate to influential
outcomes in the model. The intuition is that, if an observation is directly influential for a particular
parameter, then the corresponding posterior �ij distribution will move further from zero than its less
influential counterparts, reflecting the ‘pull’ or influence that this observation exerts on the fitted model.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1238–1248
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4.1. The mathematical consequences of introducing the perturbations

Let �Ti denote the i th row of the perturbation matrix. With the assumption that each of the n observa-
tions, conditional on all �ij , ˇ and �, are independent (equivalent to assuming that they are exchangeable
in the original model),

P.�1; �2; � � � ; �n; ˇ; �jy// P.ˇ; �/

nY
iD1

fP.�i /P.yi j�i ; ˇ; �/g (4)

Note that we include the prior P.ˇ; �/ for completeness, but we assume that its role is negligible in
practice. We show in the Appendix that, provided the prior perturbation variances (denoted by �2ij ) are
made sufficiently small, the posterior mean of �ij is given by O�ij , where

O�ij

�2ij
�
@�i

@�i

Xij .ri � si /

�
; (5)

si D
@�i

@�i

XTi �ivi

�
;

Xij denotes the j th entry of XTi , and all quantities are on the right-hand side of (5) are evaluated at their
posterior modes.

4.2. An approximation

We assume that the magnitude of the posterior mode of si is small in relation to that of ri . We can check
this, provided that the form of the GLM is known, as shown for our example in Section 7. As �2ij ! 0,
si ! 0, and we can ignore si . Hence,

O�ij

�2ij
� ıij (6)

where ıij is the j th entry in ıi and is evaluated at full sample estimates in exactly the same way as in
Williams’ approximation for case-deleted estimates. For models where the variance vi is unbounded,
extra care must be taken to ensure that si is small in relation to the residuals because si is linear in vi .
For example, for datasets with large Poisson counts, very small �2ij may be required to ensure that we
can ignore si in this way.

We can therefore obtain the term Oıi � f@�i=@�ig.Xiri=�/ using MCMC by adding the perturbations
and monitoring the simulated �i or equivalently by defining the random variables ıij D �ij =�

2
ij and

monitoring the ıi . With the combination of (6) and (3), the case-deleted estimates are

Ǒ
.i/ � Ǒ �Var. Ǒ/ Oıi

from which we can obtain the influences, Ǒ � Ǒ.i/.

4.3. Implementation and Monte Carlo error

A practical issue is that, although it is possible to implement this method in a single stage as presented
above, this is computationally demanding and frequently results in ‘trap errors’ in WinBUGS. We sug-
gest a two-stage procedure that avoids these difficulties in practice. In the first stage, the original model
is fitted without perturbations in the usual way in order to obtain Ǒ, O� and Var. Ǒ/.

In the second stage, to simplify the MCMC algorithms, we suggest constraining ˇ and � to their esti-
mates from the first stage and then introducing the perturbations. With ˇ and � fixed in this way, the
posterior for the � vectors becomes (4) with P.ˇ; �/D 1 and P.yi j�i ; ˇ; �/ replaced by P.yi j�i ; Ǒ; O�/,
and a similar Oıi is obtained. This simplification is made purely for computational convenience because
suitable Oıi are evaluated regardless of whether a one-stage or a two-stage procedure is adopted.

Now that ˇ and � are to be held fixed in this second stage, the only observation which is used to
update the prior of �i , and therefore ıi , is yi . Hence, we can add the �i to a single observation (but to all
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regression coefficients) at a time, providing yi as the only observation, and run n additional analyses. In
practice, we found it convenient and computationally efficient to add the perturbations in this manner,
so that �2

k;j
D 0 for all k ¤ i when obtaining the i th influence statistic. It is then a very simple task to

update the vector �i en bloc using a Gibbs’ sampler, and, because there are no other random variables,
we simulate directly from the posterior �i jyi and the simulated �i , and hence ıi are independent. The
resulting MCMC mixes and converges extremely rapidly.

Monte Carlo error is inherent in the influences obtained using equation (6), which is a little more dif-
ficult to assess because of the indirect manner in which influence statistics are obtained when using
the perturbations. The error in Oıi is approximately normally distributed, centred at the origin with
Var. Oıi /� .mdiag.�2i //

�1
, where �2i is the vector of �2ij associated with observation i , andm is the num-

ber of iterations. This is because ıi has a prior variance of .diag.�2i //
�1

, and in the two-stage approach,
the simulated ıi are independent as explained above; the posterior variance of ıi is therefore very similar
to its prior. Hence, the Monte Carlo error of the influence of the i th observation, obtained as Var. Ǒ/ Oıi , is
approximately Ei D Var. Ǒ/.diag.�2i /

�1
/Var. Ǒ/=m, so that a good indication of this Monte Carlo error

can easily be obtained. Small values of �2ij , which improve the accuracy of the approximations, also
increase Monte Carlo error of the influence statistics, and some kind of tradeoff is needed in practice. If
the perturbations are made quite large in this Monte Carlo error/approximation tradeoff, then they do not
affect the primary analysis because this is performed in the first ‘perturbation free’ stage. Large entries
of Var. Ǒ/ also have an unfortunate implication for the Monte Carlo error, so we suggest centring data
before fitting models to reduce the variance of intercept terms.

Although an advantage of this approach is that we merely require the model to be some (unspecified)
GLM, the form of the GLM does have implications for how small the perturbations’ variances have to
be, which in turn has implications for m. In practice, it may be desirable to use a variety of small �ij
and large m in order to determine if reliable influence statistics have been obtained. Alternatively, and
if known, the properties of the GLM in question can be examined and suitable criterion chosen. Despite
this, the difficulties associated with choosing appropriate values of �ij and m, so that both the approx-
imations are accurate and the MC error is small, are a disadvantage of this method. Our first proposal
may therefore be considered preferable in situations where the form of the GLM is known.

5. A simulation study

In order to assess the accuracy of the two proposed methods, we performed a simulation study.
Here we simulated 100 datasets, each with n D 100 observations, by using the linear model Y �
N.ˇ0 C ˇ1x1 C ˇ2x2; 1/, where ˇ0 D 0, ˇ1 D 1 and ˇ3 D 3. Burn ins of 103 iterations were used.
A further 105 iterations were used when implementing our first proposal, and m D 106 iterations were
used when obtaining influences using the perturbations to ensure that these had stabilised.

By using normally distributed data, exact frequentist influence statistics [5] can be obtained which pro-
vide a ‘gold standard’ to compare our methods with. Because we used a linear model with a canonical
link, our simulation study does not assess the accuracy of the approximations described in the Appendix;
rather, it assesses how well our proposals work when these approximations are valid. Flat priors over very
wide ranges were used for the ˇ parameters, and a Gamma (0.001,0.001) prior was used for the precision
of the variance.

Perturbations with �ij D min.0:05=jXij j; 1/ were used. These values have been found to ensure
as large perturbations as possible are used, without compromising the accuracy of any approximation,
when a canonical link is used in either a linear (with variance of around 1 or greater) or logistic regres-
sion involving a moderate number of parameters. For a GLM with a canonical link, the approximations
described in the Appendix only require that values of XTi �i are small and the posterior modes of the si
are small in relation to the residuals ri ; si D XTi �i for a standard linear regression. For example, for
p D 6 as in our main example, using jXij j�ij D 0:05 ensures that XTi �i � N.0; 0:015/, so that prob-
able values of XTi �i are small on the log odds scale. Numerical difficulties (‘trap errors’ in WinBUGS)
can, however, be obtained if instead �ij D 0:05=jXij j is used because this results in very large �ij if
covariates are close to zero and hence potential numerical instability. We suggest considering the use of
�ij Dmin.a=jXij j; b/ in practice and have found aD 0:05 and b D 1 to be suitable for our examples.

By combining the influence statistics across all simulated observations and datasets, we have
100 � 100 D 10 000 exact frequentist influence statistics for each regression parameter to compare

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1238–1248
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our methods with. Both our proposed methods provided influence statistics that were in good agreement
with these standard influence statistics. To give an indication of this, the coefficients of the least squares
regression lines of the proposed influence statistics on the standard frequentist influence statistics are
given for each parameter in Table I, where the correlations between the proposed and standard influence
statistics are also shown. The correlations are given to five decimal places so that they are distinguish-
able. The gradients of the regression lines are all between 0.95 and 0.99 suggesting that, compared with
the exact frequentist influences, the proposed methods have a slight tendency to understate the influence
of observations in this simulation study, but the overall picture is that all three methods are in good
agreement. This tendency can be explained by the omittance of the .1 � hi / terms in (2), so this will
lessen in larger samples.

6. Obtaining influences for models comprising a collection of connected generalised
linear models and in situations where there are missing data

The above analysis assumes a single GLM (with complete data), but as explained in the introduction,
Bayesian models are commonly defined as a collection of connected GLMs. For example, the model
for the SUDI data is such a collection of three GLMs, where the logistic regression of death on all the
covariates is of real interest. There are also some missing data, which motivated our methods as we
explained in the introduction.

Our methods are, however, immediately applicable to any GLM component within the full model.
When implementing our first proposal (Section 3.1), we simply define ıi D f@�i=@�ig.Xiri=�/ for the
GLM for which influences are desired and combine these with the resulting regression estimates, Ǒ and
Var. Ǒ/, for this same GLM. Neglecting any prior dependence between regression parameters that might
have been specified, and if there is no missing data, the parameter estimates for each GLM are indepen-
dent, and hence, the standard theory described in Section 3 ensures that influence statistics are obtained
from our methods.

There is, however, the issue of missing covariates, which is ignored in the above argument. This is
in fact of little concern provided the fraction of missing data is not too severe because our procedures
average the influences over the posterior distributions of any missing data, and hence, suitable influences
are obtained. This way of handling missing data may be considered an advantage of our methods. We
may therefore handle missing data by entering them as ‘NA’ in the usual way when using WinBUGS,
for example.

The perturbations are justified as they obtain ıi in a different way and hence are also appropriate. Here
we constrain all parameters to their estimated values after fitting the model comprising a collection of
connected GLMs in the first stage and then add the perturbations to the GLM in question and monitor
the simulated ıi in the same manner as before.

7. Influence statistics in the sudden unexpected death in infancy analysis

We used the proposed methods, and the alternatives, to estimate the influences in the SUDI analysis.
Our first proposal is suitable because the form of the model of interest (the logistic regression for the
probability of death) is known, but our second proposal will also be used so that the results can be
compared.

There are some missing covariates, but otherwise model (1) is a standard logistic regression. We there-
fore also monitored si � pi .death/.1�pi .death//XTi �i when adding the corresponding perturbation to

Table I. Some results from the simulation study: c1 and m1 denote the intercepts and gradients of the least
squares regression lines of influence statistics from our first proposal (Section 3.1) on the frequentist influ-
ence statistics; 	1 denotes the correlation between these influence statistics. c2, m2 and 	2 denote these same
quantities for influences obtained using perturbations.

Parameter c1 m1 	1 c2 m2 	2

ˇ0 0.0000 0.9832 0.99979 0.0002 0.9761 0.99978
ˇ1 0.0000 0.9648 0.99964 0.0000 0.9578 0.99963
ˇ2 0.0000 0.9726 0.99962 �0:0001 0.9655 0.99957
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ensure that the role of si is negligible in (5). The average absolute posterior mean of Osi was just 0.0006,
and its maximum was 0.0024. These are small values in relation to the residuals resulting from logistic
regression, and we are reassured that approximation (6) is accurate. A burn in of 103 iterations was used.
A further 105 iterations were used to obtain influences using our first proposal, and the influences from
the perturbations-based method appeared to stabilise (small MC error) using m D 106. Perturbations
with jXij j�ij D 0:05 were initially used, but some numerical difficulties were encountered for the three
data points where the mother’s age was 29 years; this corresponds to a covariate of zero in the regression
as written above and, hence, with the decision to use jXij j�ij D 0:05, an infinite �ij . In fact, covariates
were centred at exact means rather than the approximate ones given above, but the three very large �ij
arising from this strategy presented problems. Following the procedure used in the simulation study to
avoid these problems, �ij was therefore reduced to unity when used in conjunction with the mother’s
age covariate for these three observations.

7.1. Comparison of methods

A gold standard influence analysis was performed by removing each of the 137 observations in turn.
Only 20 000 iterations were used to obtain estimates for each case-deleted sample to reduce the time
taken (to around 5 h). The resulting case-deleted influences were standardised (divided by the stan-
dard error of the corresponding complete sample parameter estimate) and are shown as solid points in
Figure 1 for the first 20 observations, where standardised influences for ˇ2 and ˇ3 are shown in the top
two panels and those for ˇ4 and ˇ5 are shown in the bottom two panels. The 95% intervals describ-
ing Monte Carlo uncertainty, from normal approximations, are only slightly wider than the solid points
which can thus be taken to be accurate. Hollow circles show the corresponding estimates obtained by
importance sampling [3, 4]; triangles show these from our first proposal (Section 3.1), and diamonds
show influences obtained using perturbations (our second proposal).
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Figure 1. Standardised influence statistics for the first 20 observations. The top two panels show influences for ˇ2
and ˇ3, whilst the bottom two panels show these for ˇ4 and ˇ5. Solid points show the influence statistics obtained
by case deletion; hollow circles show the corresponding estimates obtained by importance sampling; triangles
show these using our first proposal (Section 3.1); and diamonds show influences obtained using perturbations.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1238–1248

1245



D. JACKSON, I. R. WHITE AND J. CARPENTER

All three approximations perform least well for the more influential observations but are generally
effective in obtaining influences. It is to be expected that large influences are obtained with the least
precision, as these provide the biggest challenge to Williams’ approximation (which two of the methods
are based on) and the most volatile weights for importance sampling. Very similar results were obtained
for the remaining 117 observations. Note in particular that all methods successfully detected the influ-
ential observation 12 for ˇ2. It is not surprising that observation 12 is influential; this has the highest
DEP score of the cases and one of the oldest MAGE values. Cook [5] suggests, in the context of linear
regression, that if removing an observation results in an estimate at the edge of 50% of the whole sample
confidence region, then this ‘may be cause for concern’. Observation 12 can therefore be interpreted as
being worryingly influential for ˇ2 but not excessively so.

Because all the procedures were successful, it is perhaps the additional computational burden required
to obtain influences that determines which is to be recommended in practice. Importance sampling dou-
bled the overall simulation time (from around 10 to 20 min). Using our first proposal only required an
extra 5 min. Even for this relatively simple example, our first proposal was much faster than impor-
tance sampling. This relative efficiency will increase as the model complexity, and hence the difficulties
associated with evaluating the observations’ contributions to the likelihood, also increases.

The perturbations-based method required around 30 s for each observation, so that around an hour
of computing time was needed to obtain influence statistics. Nevertheless, this method has the advan-
tage that computation time does not increase with model complexity in the way it does with importance
sampling and may prove useful for models where the precise form of the GLM cannot be specified.
Indicative WinBUGS code for performing the analysis is available from the first author on request.

8. Discussion

This paper has developed novel ways of approximating established influence statistics, as used in clas-
sical methods, so that they can be used in the context of Bayesian analyses using MCMC. The two
new approaches involve storing additional quantities and then use standard MCMC output to recover
Williams’ influence statistic. The type of analysis performed provided the motivation for this work,
which can be applied much more generally. We have not, however, attempted to answer the much more
difficult question of whether or not removing particular observations changes the conclusions qualita-
tively. Furthermore, we have not asked the even more difficult question of what we should do if we
discover that an observation is very influential.

Direct case deletion, although easily implemented, is not a feasible option unless models can be fitted
extremely quickly; even for the relatively simple model considered here, with just over a hundred obser-
vations, this took several hours. Importance sampling is a generally viable but fairly computationally
intensive method for the type of models we have considered but becomes computationally prohibitive as
the model becomes more complex and the repeated computation of the likelihood becomes less feasible.
Even for our relatively simple example, the computational advantages of our first proposal are apparent.
If any of the procedures that avoid direct case deletion highlight extremely influential observations, and
an accurate indication of their influence is desired, it is necessary to remove the offending observations
and refit the model. This is because all the approximate influences are less accurate for more influen-
tial observations. All that is typically needed in practice, however, is the identification of influential
observations, and an indication of the extent of this influence and our procedures can be used for these
purposes.

We have assumed that the model is a collection of connected single-level GLMs. Our methods might
also be considered when the part of the model of interest is either known to be such a GLM or, at the
very least, thought to behave similarly to one when using the perturbations. Bayesian Hierarchical mod-
els, where unobserved random effects present further issues [12], do not fit directly into our framework,
however. Despite this, Hodges’ [13] proposals for the assessment of case influence for hierarchical mod-
els, in his Section 4.4, bear some similarities to ours. Extensions or variations of our methods might be
especially useful in this context and may form the subject of future work.

In particular, because the perturbations have the intuition that influential observations will exert more
‘pull’, it would be especially interesting to see if these are also useful for these and other types of statis-
tical model. A difficulty in using the perturbations in practice is that we must ensure that all the various
approximations used are appropriate. For models where the variance is unbounded, extra care must be
taken to ensure that si is small in relation to the residuals because this is linear in vi . Furthermore, if
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a canonical link has not been used, we have a further criterion that must be satisfied in terms of the
derivatives of the canonical parameter and the linear predictor.

In conclusion, we have proposed two new methods for estimating the influence of observations when
fitting models by using MCMC. We have shown how these are related and given practical guidance. Both
proposals have been shown, in an example, to give accurate measures of influence. Both proposals avoid
any further computation of the likelihood and so can be used in some situations where the complexity of
the model renders case deletion and importance sampling unfeasible.
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Appendix

We assume a GLM so that the observations yi follow distributions from the natural exponential family
with canonical parameter �i , so P.yi j�i / / exp..b.�i /C y�i /=�/. With the perturbations and an arbi-
trary link function, we have �i D f .XTi ˇCX

T
i �i /, where f .�/ is a strictly increasing function; if this is

the identity function, then we have assumed the canonical link. We also have the standard results

@

@˛
b.˛/D�EŒYi j�i D ˛�D��i : (7)

and

@2

@˛2
b.˛/D�

@

@˛
EŒYi j�i D ˛�D�

1

�
VarŒYi j�i D ˛�D�

vi

�
: (8)

Using independent normal priors for the �ij , and noting that all � prior distributions are independent,
gives

P.�i //

pY
jD1

exp.��2ij =2�
2
ij / (9)

The distributional assumptions of the GLM, with the perturbations introduced, gives

P.yi j�i ; ˇ; �// exp..b.f .XTi ˇCX
T
i �i //C yif .X

T
i ˇCX

T
i �i //=�/: (10)

The product of (9) and (10) gives the posterior density of �i to within a constant of proportionality.
Taking the logarithm of the resulting density and differentiating with respect to �ij gives

@

@�ij
log.P.�ij jy//D��ij =�

2
ij CXijf

0

.XTi ˇCX
T
i �i /.yi C b

0

.f .XTi ˇCX
T
i �i ///=� (11)

where Xij denotes the j th entry of XTi ; f
0

.�/ D @�i=@�i and b
0

.�/ are the derivatives of functions f .�/
and b.�/. In order to obtain the posterior distribution of �ij , a series of approximations are required.

Approximation 1

We use the linear approximation f
0

.XTi ˇCX
T
i �i /� f

0

.XTi ˇ/CX
T
i �if

00

.XTi ˇ/ and note that this is
exact if a canonical link is used and valid as �2ij ! 0 for all j D 1; � � � ; p. Hence, f

0

.XTi ˇCX
T
i �i /�

@�i=@�i CX
T
i �i@

2�i=@�
2
i where the partial derivatives are evaluated at �i D XTi ˇ. We further assume

@�i=@�i >> abs.XTi �i@
2�i=@�

2
i /. Again as �2ij ! 0, this criterion is satisfied, and this is exact if a

canonical link is used. Assuming sufficiently small perturbations, we approximate f
0

.XTi ˇCX
T
i �i /�

@�i=@�i in (11).
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Approximation 2

We use two linear approximations, firstly for the function f .�/, taken around XTi ˇ, and
then for b

0

.�/, taken around f .XTi ˇ/, to approximate b
0

.f .XTi ˇCX
T
i �i //� b

0

.f .XTi ˇ//C

XTi �if
0

.XTi ˇ/b
00

.f .XTi ˇ//. From (7) and (8), this is equivalent to � .�i C .XTi �if@�i=@�igvi /=�/,
where the partial derivative and the moments of Yi are evaluated at �i D XTi ˇ. The first of these linear
approximations requires small XTi �i , and the second requires small XTi �i@�i=@�i . For a canonical link,
these requirements are the same, and the first linear approximation is exact. The second linear approxi-
mation is exact for a linear model and canonical link. All these approximations are justified for any GLM
as �2ij ! 0, however.

An approximate derivative

Upon making approximations 1 and 2, (11) becomes

@

@�ij
log.P.�ij jy//��

�ij

�2ij
C
Xij @�i=@�i .ri � si /

�
(12)

where ri denotes the residual .yi ��i /, and si D .XTi �if@�i=@�igvi /=�. We obtain the posterior mode
by setting derivatives (12), j D 1; � � � ; p, to zero. Hence, denoting (for the moment) the posterior mode
of �ij using the ‘hat’ notation, we obtain (5). A linear approximation for b.�/ in (3) further shows that
the posterior of the �i are also approximately normal. Hence, the ‘hat’ notation in (5) can be taken to
refer to any conventional measure of location, so we take this to indicate the posterior mean.
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