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Abstract
Lung cancer patients with activating mutations in the epidermal growth factor receptor (EGFR)
kinase who are treated long-term with tyrosine kinase inhibitors (TKIs) often develop secondary
mutations in EGFR associated with resistance. Mice engineered to develop lung adenocarcinomas
driven by the human EGFR T790M resistance mutation are similarly resistant to the EGFR TKI
erlotinib. By tumor volume endpoint analysis, these mouse tumors respond to BIBW 2992 (an
irreversible EGFR/HER2 TKI) and rapamycin combination therapy. In order to correlate EGFR-
driven changes in the lung with response to drug treatment, we performed an integrative analysis
of global transcriptome and metabolite profiling compared to quantitative imaging and
histopathology at several time points during tumor progression and treatment. Responses to single
drug treatments were temporary, while combination therapy elicited a sustained response. During
tumor development, metabolomic signatures indicated a shift to high anabolic activity and
suppression of anti-tumor programs with 11 metabolites consistently present in both lung tissue
and blood. Combination drug treatment reversed many of the molecular changes found in tumored
lung. Data integration linking cancer signaling networks with metabolic activity identified key
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pathways such as glutamine and glutathione metabolism that signified response to single or dual
treatments. Results from combination drug treatment suggest that metabolic transcriptional control
through C-MYC and SREBP, as well as ELK1, NRF1 and NRF2, depends on both EGFR and
mTORC1 signaling. Our findings establish the importance of kinetic therapeutic studies in
preclinical assessment and provide in vivo evidence that TKI-mediated antiproliferative effects
also manifest in specific metabolic regulation.
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INTRODUCTION
Lung cancer is the leading cause of cancer-related deaths (1). Current screening methods for
early disease are ineffective at improving the 5-year survival rate, which is < 4% for
advanced non-small cell lung cancer (NSCLC)(2). For most cancers, including NSCLC,
traditional cytotoxic chemotherapy has limited efficacy, and patients develop resistance to
targeted inhibitors, indicating the need for identification of molecular networks operative in
disease and treatment response. In particular, effective preclinical systems are required for
guidance on patient stratification, therapeutic directives and response biomarkers. Such
needs are exemplified by the current status of NSCLC clinical management. Activating
mutations in EGFR, such as the L858R mutation, are effective predictors of response to
EGFR TKI therapy (3). While most patients initially respond to EGFR TKIs, the majority
relapse within 6-12 months, underscoring the importance of identifying therapies that
overcome or mitigate such resistance. Strikingly, a single secondary missense mutation in
the EGFR TK domain, T790M, is associated with >50% of acquired resistance cases (4).

Recent advances in the ability to globally assess molecular networks responsive to
biological and chemical perturbations in cancer have facilitated unbiased discovery in
disease mechanisms (5). Genetically engineered mouse (GEM) models can facilitate both
assessment of disease etiology from initiation through progression as well as treatment
responses within the organs/cells of interest (6). Mice engineered to develop erlotinib-
resistant lung adenocarcinomas driven by human EGFR L858R;T790M mutations (EGFR-
TL) (7, 8) respond to BIBW 2992 (afatinib, an irreversible EGFR/HER2 TKI currently in
clinical trial) and rapamycin combination therapy, based on tumor volume endpoints (9).
BIBW 2992 or rapamycin alone minimally inhibit tumor growth. To further assess responses
to single and combination therapies, and to gain insight into the optimal strategy for
preclinical evaluation in robust cancer models, we examined both transcriptional and
metabolic profiles in disease induction and therapeutic response with time. These studies
underscore the value of temporal well-powered evaluations and offer an opportunity to
identify surrogate markers for disease and treatment responses and for tailoring therapeutic
regimens.

MATERIALS AND METHODS
Tumor induction and sampling

Mice (see Supplementary Materials and Methods) were fed 200mg/kg doxycycline feed
from Research Diets. Blood was taken from the mandibular vein of bitransgenic EGFR-
L858R-T790M;CCSP-rtTA mice (E+R+) or mice carrying the CCSP-rtTA driver, but not
the EGFR transgene (E-R+) at 2 weeks (n=6 for both E-R+ and E+R+) and when tumor
growth required euthanasia of the mice (terminal at 6 to 8 weeks; n=8 for both E+R+ and E-
R+), and snap-frozen in an equal volume of 9 mM EDTA in PBS. Lung tissue was harvested
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and snap-frozen at 2 weeks and terminal stages, and age-matched control mice were taken at
the same time points post-induction (pi). For treatment studies, blood and lung tissue were
harvested after 1 (n=19), 2 (n=19), or 4 (n=40) weeks of daily treatment with drug vehicle,
BIBW 2992 (20 mg/kg/day, oral gavage), rapamycin (2 mg/kg/day, i.p.), or the combination
of both compounds starting at 4 weeks pi.

Histology/Pathology
Mice were euthanized at the indicated times and right lungs were inflated with formalin and
processed for immunohistopathological analysis. Immunohistochemistry experiments are
described in the Supplementary Data. H&E slides of lungs from drug and vehicle-treated
tumors were scored blindly by a board certified veterinary pathologist (PLM) according to a
grading scheme that was developed for this study (see Supplementary Data for details). All
tumors (4-10) of each experimental group (vehicle or drug-treated) were analyzed.

Automated image acquisition and quantification
Immunohistochemistry for Ki-67 was performed on lung sections from each mouse and
slides were scanned using the Ariol image scanning and analysis system (Applied Imaging
Corp., Santa Clara, California) at 20X. As the severity of lung disease was heterogeneous
between lung lobes, the percentage of Ki-67 positive cells was quantified in the lung lobe
that was most representative of the overall histopathological score. The Kisight image
analysis module was used to count the total number of nuclei in the lung section as well as
the total number of Ki-67 positive (Brown-DAB) nuclei and Ki-67 negative (Blue-
hematoxylin) nuclei. For each lung lobe approximately 30,000 to 125,000 nuclei were
counted.

Gene Expression Profiling
Preparation of RNA is described in the Supplementary Data. Hybridization to Mouse Gene
1.0 ST chips was performed following Affymetrix protocols (Affymetrix, Inc.). Hierarchical
clustering analysis was performed using pairwise complete linkage method with the Pearson
correlation distance measure employing the Genepattern genomic analysis platform.“Single
Sample” Gene Set Enrichment Analysis (10, 11) was used to determine the degree of
absolute enrichment of GO biological processes gene sets (12) in each sample within the
gene expression data set. Signature values for each sample were normalized using the entire
sample set. Standard GSEA was used to determine the enrichment of transcription factor
binding sites between classes. Gene sets sharing a cis-regulatory motif that is conserved
across the human, mouse, rat, and dog genomes (13), representing known or predicted
regulatory elements in promoters and 3′-UTRs, were obtained from MSigDB (see
Supplementary Data for details).

RESULTS
Temporal evaluation of tumor growth and treatment response reveals distinct dynamics of
single vs. combination therapy

To examine responses elicited during human EGFR L858R-T790M-driven lung
adenocarcinoma, as well as experimental treatment-induced regression, we measured
changes with time in lung disease severity and tumor burden. Bitransgenic EGFR-L858R-
T790M;CCSP-rtTA mice (designated E+R+) are engineered to develop lung
adenocarcinoma upon EGFR transgene induction by doxycycline. Mice carrying the CCSP-
rtTA driver, but not the EGFR transgene (E-R+) served as controls. E+R+ mice developed
lung tumors when continuously exposed to doxycycline (doxy), and consistent with previous
studies (7), adenomas were detectable by MRI and histology within 2-3 weeks pi,
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progressing to adenocarcinomas that often involved entire lobes at terminal stages. Induced
E+R+ mice were treated with BIBW 2992, rapamycin, or the combination daily for up to 4
weeks (Fig. 1A). In order to quantify histopathology response to drug treatment (or lack
thereof) in the tumors, severity of disease was scored based on extent and morphology
ranging from 0 (no lesions) to 5 (multifocal to coalescing adenocarcinoma) (Supplementary
Data and Supplementary Fig. S1). The histopathological severity grade increased over time
in the vehicle-treated group, and while each individual drug had some effect in suppressing
tumor growth, the combination treatment was most effective (score of 1.9 compared to 4.3
for vehicle-treated after 4 weeks, p = 0.002) (Fig. 1B). Thus, the present expanded study
agrees well with previous findings that used smaller cohorts (9). We also detected decreased
cellular proliferation (by Ki-67 staining) and decrease in overall tumor burden (by H&E and
confirmed by total EGFR staining) in both single and combination treatments. Combination
treatment resulted in the greatest decrease in total EGFR, phospho-EGFR, and Ki-67
staining, even after only 1 week of treatment (Supplementary Fig. S2). Automated
quantification of Ki-67 staining supports the hypothesis that the strongest effect on
proliferation is from BIBW 2992 and rapamycin dual treatment at all time points (Fig. 1C),
however, the Ki-67 data indicates an increase in proliferation after 4 weeks even in the
combination-treated mice. Immunoblotting confirmed phospho-EGFR or phospho-S6
reduction in lungs of BIBW 2992 or rapamycin-treated mice (respectively) at 4, 8, and 24 hr
post-single dose, as well as reduction of both in lungs of combination-treated mice
(Supplementary Fig. S3). By 24 hr, reduction of phospho-EGFR was more variable, even in
the combination-treated mice, indicating the need for continued treatment to achieve target
suppression.

To attain another quantitative measure of treatment effects, baseline MRI measurements
were compared with post-treatment tumor scans (Fig. 1D, E and Supplementary Data). In
this model, signals on MRI reflect not only tumor burden, but also associated inflammation.
After 1 week of treatment, BIBW 2992 alone resulted in tumor regression compared to
baseline, whereas in the cohort treated for 2 weeks, tumor growth was inhibited by BIBW
2992 relative to vehicle, but regression was not observed. However, BIBW 2992 treatment
together with rapamycin resulted in substantial tumor regression compared to baseline,
evidenced by both 2 and 4 week post-treatment times.

Taken together, these results indicate that although BIBW 2992 successfully inhibits its
primary target in vivo and elicits a short-term tumor regression response, it does not produce
a sustained pathway and growth response unless combined with rapamycin. Importantly,
maximal response for either single agent occurs early, with rebound apparent within a few
weeks despite continous treatment. The kinetics of such responses are thus critical in
evaluating therapeutic efficacy. During the course of treatment, some tumor regions
responded to drug and thus overall tumor burden decreased, which is reflected in the MRI
measurements (note that Fig. 1E is an example of the maximum regression response
observed). However, as discussed above, at the histopathology level small areas of the
affected lungs (below the resolution level of the MRI scan) were observed that were either
refractory to treatment or developed resistance as detected by pathology score and Ki-67
data. Endpoint tumor size in this case measures the sum of treatment responses and
emerging resistant growth, underscoring the importance of temporal assessment in
preclinical models for accurate response measurements.

Gene expression reflects changes in oncogenic signaling in response to therapy over time
To further explore the mechanism(s) of synergy in combination treatment, lungs from
control E-R+, tumor bearing E+R+ induced mice, and drug-treated E+R+ mice were
analyzed for transcriptome changes. Gene expression data was subjected to supervised
hiererarchical clustering to compare profiles of untreated tumor-bearing mice to drug-treated
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for 1 or 4 weeks (Fig. 2A). As expected, vehicle-treated E+R+ samples had expression
profiles similar to those of untreated E+R+ lung samples. The 1-week treated samples
showed an almost universal suppression of gene expression compared to untreated or
vehicle-treated E+R+ animals that did not distinguish between responders and non-
responders by pathology score (Fig. 2A). However, after 4 weeks there were clearly several
samples in which the profile more closely matched the normal gene expression profile (E-R
+ control). These lungs also had lower (less severe) pathology scores than the comparable
vehicle-treated or untreated samples. Although most of the combination drug-treated tumors
responded at the phenotypic level as seen by MRI scans and histopathology, not all of the
samples appeared to be responders at the transcriptome level, indicating some heterogeneity
within the tumors as discussed above. These data also point to the variability within
treatments due to the mixed tumor cell population.

A single-sample Gene Set Enrichment Analysis (GSEA) of Gene Ontology (GO) terms was
performed as a first step to reveal the biological functions that differentiate normal (E-R+)
from tumor-bearing (E+R+) lung and vehicle- from drug-treated tumors. Among others, GO
terms involved in cell metabolism, mitosis and DNA replication were differentially affected
in EGFR tumors (Fig. 2B). We chose four genes in the signature (BUB1, TOP2A, CCNB2,
and PLK1) for validation by qPCR (Supplementary Fig. S4). Of note, in a study of gene
expression markers in human NSCLC, CCNB2 and TOP2A were part of a 187-gene
signature set distinguishing normal tissues from malignant NSCLC (14). All four genes were
downregulated after treatment with BIBW 2992 or rapamycin, and the drug combination
caused a further decrease in gene expression levels. Fold-change levels compared to vehicle-
treated controls were consistently greater after 1 week compared to 2 weeks of drug
treatment, again indicating an greater early treatment response on average. The 4-week gene
expression data was a more accurate indicator of which individual tumors exhibited a
sustained response. We conclude that multiple time points during the course of treatment are
crucial to profiling the in vivo activity of cancer drugs.

Tumor induction and drug response result in contrasting metabolomic alterations
To evaluate additional biological changes accompanying tumor induction and treatment that
may correlate to gene expression responses, we performed metabolic profiling of blood and
lung tissue from induced E-R+ and E+R+ mice at various time points and from E+R+ mice
treated with the described drug regimen for 4 weeks. Using a high-throughput small-
molecule analytical platform (Metabolon, Inc.; see Supplementary Materials and Methods),
a total of 457 biochemicals were detected in lung, and 324 were detected in blood, including
238 compounds common to both lung and blood, 219 compounds unique to lung, and 86
compounds unique to blood (Supplementary Tables S1 and S2). Statistical comparisons
were used to identify biochemicals whose relative levels differed between experimental
groups (Supplementary Table S3 and Supplementary Materials and Methods). In lung tissue
there were extensive metabolomic alterations consistent with tumor development within two
weeks of induction of the EGFR transgene, which were typically stronger at the terminal
time point (data summarized in Fig. 3A). These changes were characterized by a shift to
high anabolic activity, including diversion of glucose oxidation to the pentose phosphate
pathway, elevated amino acid and nucleotide pools, higher levels of polyamines,
glycerolipids, and long-chain fatty acids.

Lipid pathway metabolites were upregulated as a result of tumor induction, including fatty
acids (utilized in cell membrane construction, energy metabolism, and as substrates for
signaling molecules), and phospholipids (essential for membrane biosynthesis) (Fig. 3A).
For example, CDP-choline and intermediates to CDP-choline synthesis (choline and
choline-phosphate) were increased in tumor tissue compared to control lung and decreased
upon rapamycin or combination drug treatment. MTORC1 was recently shown to directly
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induce lipid biosynthesis (15) therefore decrease in these metabolites may indicate effective
inhibition of mTOR by rapamycin.

Treatment with either BIBW 2992 or rapamycin tended to reverse the metabolic shifts
observed during tumor induction in lung tissue; however, rapamycin (or the combination)
caused a more dramatic reversal for the vast majority of metabolites than BIBW 2992 alone
(Fig. 3A). The majority of metabolomic alterations were in pathways affected downstream
of mTOR, for example amino acid synthesis. Individual amino acid pathway metabolites
significantly altered in lung tumors as compared to control lung were plotted as Z-scores
(Fig. 3B) to examine specific effects of the individual versus the combination treatments.
The overall pattern of response is similar in all three treatment regimens, not unexpected as
both drugs target nodes in the EGFR signaling pathway. Notably, citrate, an intermediate in
the TCA cycle, is significantly increased in BIBW 2992 and BIBW 2992 + rapamycin
combination-treated lung tumors but not by rapamycin alone. As citrate is also an
intermediate in fatty acid and phospholipid synthesis, it is possible that the general decrease
in lipids upon drug treatment correlates to less diversion of citrate from the TCA cycle to
membrane biosynthetic processes.

Thus this lung cancer model reflects the abnormal metabolism expected in cancer cells,
including aberrant nutrient uptake and increased macromolecular synthesis. Moreover,
treatment with drugs targeting the EGFR signaling pathway results in reversal of these
effects, highlighting the importance of identifying specific metabolites involved in the
response.

Key metabolite signature observed in blood and tissue samples during lung tumorigenesis
and treatment

In addition to lung tissue, we sampled blood from tumor-bearing animals to determine
whether there were metabolic changes that could be used as potential biomarkers indicating
the presence of a tumor. Blood was sampled from E-R+ and E+R+ mice at 2 weeks and at
terminal stages pi for metabolic profiling. The unbiased screen recovered 26 metabolites
with statistical significance of p≤0.05. The changes after 2 weeks were more profound,
possibly due to wasting at the terminal stages. Relative fold-changes were much lower in
blood than tissue, most likely due to the dilution of organ-specific effects by the entire blood
volume as well as the homeostatic mechanism, which changes or removes many compounds
as they enter the bloodstream. Therefore, we performed a validation study with a larger
cohort size and compared blood markers from 15 control mice with 15 E+R+ mice at 2
weeks post-induction. Overall, the relative levels of biochemicals that were identified in
blood samples from the first study exhibited similar trends to levels measured in samples
collected for the validation study. We identified 11 metabolites from both studies that were
significantly changed in blood as well as in the induced lung tissue (Table 1).

Evidence of elevated amino acid pools observed in lung were reflected in blood. The
branched-chain amino acid conjugates propionyl-carnitine and deoxycarnitine were
significantly increased in E+R+ blood and lung tissue compared to control E-R+. These
intermediates of valine, leucine, and isoleucine catabolism are indicative of oxidative stress
or a shortage of coenzyme A and can build up when the pathway proceeds at rates in excess
of downstream capacity to use metabolites in the TCA cycle. The amino acids glutamine,
threonine, serine, arginine, and tryptophan were also increased (Table 1), suggestive of
increased amino acid synthesis or enhanced protein turnover due to muscle wasting during
cancer development. Unlike the other amino acids, aspartate was upregulated in lung and
downregulated in blood. Using LC-MS/MS quantification, we verified that glutamine,
tryptophan, and arginine were elevated in E+R+ blood and tumors compared to E-R+
control samples induced for 2 weeks, while aspartate was upregulated in lung only (Table 1;
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MS targeted assay). In addition, we detected the levels of these amino acids in induced,
tumor-bearing lungs after 2 weeks of BIBW 2992, rapamycin, or combination drug
treatment (Supplementary Fig. S5). As expected, drug treatment reversed the higher levels
of the metabolites observed in the vehicle-treated tumors, though in some cases (aspartate,
glutamate) the combination treatment did not decrease the levels beyond the individual
treatments. This could be due to the natural variation in a smaller number of samples, or a
difference in the 2 week treatment compared to the original analysis after 4 weeks of
treatment. The amino acids identified are members of key pathways affected in the treatment
response (see below) underscoring the potential significance of small changes in their
relative quantities.

Integration of metabolite and gene expression data highlights pathways essential to drug
response

While the examination of gene expression or metabolic signatures was informative, we
speculated that combining the datasets could reveal the most significant changes. To test
this, we performed pathway enrichment analysis on metabolic and transcriptomic signatures.
Gene expression and metabolite data from control E+R− mice, induced E+R+ mice and
mice treated with the drug combination were mapped together onto KEGG pathways
(Supplementary Fig. S6). Each dataset alone did not show significant enrichment in most
pathways, but merging the two datasets points to key pathways in cancer cell energy
production such as the pentose phosphate pathway, glutathione metabolism, and glycolysis
and gluconeogenesis, that are differentially regulated in untreated versus treated tumors.
There were 46 significantly enriched pathways that are upregulated in E+R+ tumors
compared to E-R+ and of these, 29 were reversed in direction by drug treatment. Two of the
pathways, “alanine, aspartate and glutamate metabolism” and “glycolysis and
gluconeogenesis” are also of note as, in a study of gene expression profiles in tumor samples
from patients with lung adenocarcinoma, gene sets representing those pathways were
enriched in patients with poor outcome (11).

Individual pathway maps are informative to highlight the concordance between the
metabolites altered in key energy pathways and changes in expression of the enzymes that
control production of individual metabolites. For example, both oxidized (GSSG) and
reduced glutathione (GSH), as well as amino acids used to synthesize them, were elevated in
tumor development (Fig. 4A). Antioxidant enzymes related to glutathione synthesis and
coordinately regulated through antioxidant response elements (AREs) and NRF2 binding
such as -GCS, glutathione reductase and glutaredoxin were correspondingly upregulated in
tumors (Fig. 4A). The glutathione pathway is involved in protection from oxidative stress, a
characteristic of rapidly growing cells, by providing a substrate for neutralization of reactive
oxygen species (ROS) (16). ROS production and subsequent oxidative stress have been
implicated specifically in carcinogenesis driven by oncogenes such as KRAS (17) and
EGFR (18). Alternatively, ROS production can occur due to intratumoral hypoxic
conditions, leading to oxidative stress which causes the cells to oxidize GSH to GSSG and
results in the activation of glutathione synthesis (19). A hypoxia-related gene signature was
overexpressed in E+R+ vs. E-R+ lung (Supplementary Fig. S7). For example, GLUT1, a
target of hypoxia-inducible factor HIF-1 and mediator of glucose uptake (20), was
upregulated in tumors reflecting hypoxic conditions and correlated to an increase in
glycolytic metabolites and other glycolytic enzymes (Fig. 4B). After treatment with the drug
combination, oxidized and reduced glutathione as well as the HIF-1 target gene signature
were downregulated (Fig. 4B, Supplementary Fig. S7), indicating a decrease in energy needs
in the tissue.

Glutamine levels were significantly lowered by BIBW 2992 treatment or BIBW 2992 +
rapamycin, but not by rapamycin alone (Fig. 4A). Glutamine is the major nutrient consumed
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by cancer cells besides glucose and is a precursor of glutathione as well as a source of TCA
cycle intermediates. Glutamine metabolism is increased by C-MYC, and downstream gene
targets of C-MYC like the glycolytic enzyme enolase (ENO), are upregulated in tumor
versus control samples and reversed in drug-treated samples (Fig. 4B and see below).

Several markers of high glucose mobilization, including glucose-6-phosphate, glucose-1-
phosphate, and UDP-N-acetyl-glucosamine, which is an important precursor for protein
glycosylation and polysaccharide synthesis, were present in higher levels in E+R+ tumor
tissue vs. E-R+ control lungs (Fig. 4B). While glucose itself is lower in tumor tissue, it is not
a good indicator of tumor glucose levels as it may simply indicate binding of glucose to
dead cells. The phosphorylated products fructose-6-phosphate (F-6-P) and fructose-1,6-
bisphosphate (F-1,6-BP) are higher in tumors and phosphofructokinase (PFK), which
catalyzes the conversion of F-6-P to F-1,6-BP, is correspondingly upregulated. There was
also strong evidence for activation of the pentose phosphate pathway (PPP), which provides
precursors for growth as well as the NADPH needed for various anabolic reactions (Fig.
4B). For example, expression of transketolase (TKT), which catalyzes the formation of
sedoheptulose as well as the conversion of xylulose-5-phosphate back to F-6-P in the PPP,
was oppositely regulated in tumors versus combination-treated lungs.

Of note, pyruvate and lactate, the oxidation product of pyruvate, were higher in tumor tissue,
as was lactate dehydrogenase A (LDHA) gene expression. This is consistent with previous
observations made in tumor tissue, in which pyruvate is converted to lactate (Warburg
effect) avoiding energy-producing oxidative phosphorylation. Pyruvate was lowered only by
the combination drug treatment, indicating that full suppression of the pathway may be
necessary to inhibit glycolysis.

Oncogenic transcription factor activity may be responsible for downstream alteration of
key metabolic pathways

Recent studies have suggested that oncoproteins can directly reprogram tumor cell
metabolism, and several oncogenes and tumor suppressors have been linked to the
regulation of downstream metabolic processes through transcription factor activity (21). To
identify candidate transcription factors downstream of oncogenic EGFR activation in our
model, we used GSEA and a library of gene sets containing genes with a cis-regulatory
element and conserved DNA motifs, representing known or predicted regulatory elements in
promoters and 3′-UTRs (13). This bioinformatic methodology was used to identify
overrepresented transcription factor binding sites (TFBS) that were present in the promoters
of the genes included in gene expression profiles of tumors from untreated E+R+ mice, and
vehicle, BIBW 2992, rapamycin or BIBW 2992 plus rapamycin-treated E+R+ mice. Our
analysis revealed a cluster of 12 transcription factors that were significantly enriched (FDR
value < 0.05) in EGFR tumors compared with normal lung, for example MYC and SREBP1
(Fig. 5A). In contrast, after the first week of drug treatment, the targets of some of these
transcription factors were underrepresented, for example NRF1 and NRF2.

To identify metabolic genes that drive the enrichment for each transcription factor gene set,
we ran a leading edge analysis of GSEA results described above. By grouping those leading
edge genes (i.e., genes with the highest enrichment scores in EGFR tumors) included in
TFBS gene sets that were significantly underrepresented after drug treatments (GABP,
NRF1, NRF2, SREBP, ELK1 and C-MYC), we were able to categorize them into metabolic
processes. As shown in Fig. 5B, the strongest downregulation of metabolic genes activated
in EGFR-TL tumors appeared to be after only 1 week of treatment, particularly in response
to the combination of BIBW and rapamycin. Key genes such as HK2 and LDHA
(glycolysis), and GPX1 and GSS (glutathione metabolism) were affected. After 4 weeks of
treatment, the single drug regimens were unable to repress most of the metabolic genes
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included in the analysis. Only the drug combination reduced gene expression levels more
consistently, suggesting that transcriptional control of metabolic pathways through C-MYC
and SREBP, as well as ELK1, NRF1 and NRF2, depends on both EGFR and mTORC1
signaling.

DISCUSSION
Presently, human clinical trials employing BIBW 2992 (afatinib) and rapamycin
combination are ongoing (22, 23). The unbiased profiling approach described here
highlights the utility of GEMs in rapidly identifying clinically testable hypotheses that might
immediately impact the analysis of these ongoing clinical trials, and the design of
subsequent human studies. To that point, we observed that several of the prominent
pathways modulated during EGFR-driven tumorigenesis were reversed upon combination
drug treatment, revealing possible reasons for increased efficacy.

Due to their controlled genetics and environment, mouse models represent ideal tools for the
identification of candidate biomarkers. Recent work comparing the plasma proteome of
mouse ovarian cancer models with human ovarian cancer cell lines and tissue samples from
patients resulted in promising biomarker candidates (24); another study in a mouse
pancreatic cancer model revealed proteins that could discriminate human pancreatic cancer
sera from controls (25); and protein signatures have been found that distinguish between
different types of lung cancer in the mouse (26). We previously identified metabolomic
changes in a mouse model of serous epithelial ovarian cancer that overlapped with findings
obtained from tissue of human patients with metastatic ovarian cancer (27, 28). As energy
metabolism has long been known to be aberrant in cancer, in this study we conducted
metabolomic profiling in the EGFR-TL mouse model to identify biochemical processes that
might be perturbed both in tumor development and by drug treatment. By comparing tissue
and blood metabolomic changes during tumor progression we identified disease-associated
changes. Several of the same metabolites have recently been shown to be altered in human
lung cancer tissue and sera from patients with squamous cell carcinoma and small cell lung
cancer as well as adenocarcinoma (29), indicating fidelity of the mouse models in
mimicking the human condition. Furthermore, they demonstrate that the molecular
interactions between the tumor and host may be similar in these two species. Since the
dilution factor represented by the movement of a compound from the tumor to blood is
large, and at the same time other organs may be acting to clear or modify the compound, the
ability to validate the blood markers by correlation to lung tumor tissue metabolites in the
mouse model is crucial.

As seen in patients (29), murine lung cancer tissue contained higher levels of most amino
acids compared to normal lung tissue, including higher levels of glutamine and tryptophan.
It is remarkable that high levels of glutamine are maintained although large amounts of
glutamine are consumed in cancer cells through glutamine metabolism. Notably, treatment
with BIBW 2992 and the combination of BIBW 2992 and rapamycin downregulated the
levels of glutamine in the lung tissue, indicating the potential importance of this key source
of energy in maintaining cancer cell growth. This could also offer a clue to the synergistic
effects of the drug treatment with rapamycin, as glutamine depletion can cause apoptosis in
lung cells by affecting pathways that do not require mTOR activity; instead they are MYC-
regulated (30). Glutamine can also maintain the TCA cycle when glucose levels are limiting.
Growth factor signaling through the PI3K-Akt-mTOR pathway in EGFR-overexpressing
mice may be further activated by higher glutamine levels, resulting in increased protein
translation (31).
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MTORC1, the target of rapamycin and a key regulator of cell growth and proliferation
downstream of oncogenic signaling pathways, including EGFR, has been linked previously
to cellular metabolism regulation through the transcriptional control of metabolic genes (32,
33), and other recent studies have also linked metabolism to specific oncogenic signaling
pathways (34, 35). In our analysis, relating transcriptional control elements from the gene
expression data to metabolic processes revealed functional connections between known
oncogenes and metabolite changes in the lung tumors. After the first week of drug treatment,
binding sites for several transcription factors enriched in tumor samples were
underrepresented, for example NRF1 and NRF2. Both BIBW 2992 and rapamycin
treatments result in a decrease in the target genes for NRF2 after 1 week, but after 4 weeks
only the dual treatment suppresses expression of those genes. NRF2 is a transcriptional
activator of cytoprotective enzymes including those involved in glutathione synthesis, and
has increased activation in lung cancer tissue and cell lines (36). Therefore, NRF2 activation
of glutathione metabolism may be a previously unappreciated mediator of oncogenesis
which is inhibited by the combination drug regimen used here.

It was recently observed that mTORC1 signaling increases flux through the pentose
phosphate pathway in some measure through activation of SREBP1 (15). SREBP1 is a
transcriptional regulator of genes involved in de novo lipid and sterol biosynthesis and is
itself regulated by mTOR (32). Interestingly, although rapamycin alone can inhibit mTOR,
the SREBP1 gene target set is underrepresented in rapamycin-treated lungs only after 4
weeks of treatment, and even more significantly in the combination treated samples. Targets
of C-MYC, a key transcription factor driver in metabolic processes in cancer, are enriched in
E+R+ tumors and underrepresented in rapamycin and combination-treated lungs after 1 or 4
weeks of drug treatment.

In summary, this study combines transcriptional and metabolic analyses of a complex in
vivo model system to examine temporal responses after drug treatment. Examination of lung
tumor progression in EGFR-overexpressing TKI-resistant mice as well as a drug regimen
known to result in tumor regression revealed marked changes in gene expression and
biochemical pathways during tumor growth that were in many cases reversed when
treatment was effective, and were different depending on the specific treatment and duration
of treatment. These studies can be used to guide future analyses of drug combinations for
human disease with targeted agents aimed at resistance by simultaneous blockade of
relevant pathways.
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Fig. 1. Quantification of tumor progression in CCSP-rtTA; EGFR-L858R-T790M mice and
response to treatment with BIBW 2992 and/or rapamycin
(A) Schematic of dosing regimen, blood sampling and imaging for the tumor progression
and treatment study. Note that necropsies prior to the treatment start date are for the tumor
progression component only. Blood collection for the treatment study was 24 hr post-last
dose. (B) Histopathological scoring on H&E stained lung tumor samples from treated mice.
The average score is plotted for each treatment after 1, 2, or 4 weeks of treatment. (C)
Automated Ki-67 quantification of vehicle vs. drug-treated lungs at 1, 2 and 4 weeks. The
percentage of Ki-67 positive nuclei was quantified using the Ariol Scanning System for the
most severely affected lung lobe. 30,000-120,000 cells per lobe were counted. (D) MRI
quantification was performed as described in the Methods. Each bar represents the percent
change of post-treatment vs. baseline lung scan intensity. (B-D) The asterisk indicates p <
0.05 compared to the average change in vehicle-treated lungs. Error bars represent standard
error of the means. (E) Examples of MRI scans of lungs from doxycycline-induced control
mice as well as baseline and post-treatment MRI for vehicle-treated and combination BIBW
2992 + rapamycin-treated mice. “Pre-treatment” corresponds to 3 weeks of induction time
and “post-treatment” to 4 weeks of treatment time pi. White areas indicate tumor obstruction
of the airways, which increases over time in vehicle-treated mice.
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Fig. 2. Supervised clustering shows correlation between tumor status, treatment, and pathology
score and pathways
(A) Gene expression profiles of normal lung, lung tumors (2 and 4 weeks pi) from untreated
EGFR-TL mice, and vehicle, BIBW 2992, rapamycin or BIBW 2992 plus rapamycin treated
mice at indicated time points. At the bottom of the heat map are the corresponding
pathology scores for each lung sample. (B) Single sample gene set enrichment analysis
(ssGSEA) scores of samples from (A). A positive enrichment score (in red) indicates a
positive correlation between genes in the gene set and the tumor sample expression profile; a
negative enrichment score (in blue) indicates the reverse (see also Materials and Methods).
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Fig. 3. Widespread metabolomic alterations consistent with tumor development are found within
two weeks of induction of the EGFR transgene and are reversed upon treatment
(A) Metabolite group means in lung tissue from control (E-R+: 2 weeks (2w) and terminal
(T)), tumored untreated (E+R+: 2 weeks (2w) and terminal (T)) as well as tumored treated
mice (E+R+: vehicle-treated (V) and BIBW 2992 (B), rapamycin (R), or BIBW 2992 +
rapamycin-treated (B+R)). The heat map colors display each group mean level relative to
the median for that compound, such that white represents the median, saturated red
represents a two-fold increase relative to the median, and saturated blue is one-half the
median value. (B) Z-score plot of amino acid pathway only, from (A). Each point represents
one metabolite in one sample, expressed as the number of standard deviations from the mean
of the CONTROL group for that comparison and colored by type (left panel: control E-R+
lung, yellow; tumored E+R+ lung, red; right panel: vehicle-treated lung tumors, yellow,
BIBW 2992 + rapamycin-treated tumors, pink). For clarity, the plot was truncated at 20
standard deviations above the mean of the control and vehicle-treated samples, respectively.
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Fig. 4. Metabolic pathway maps highlight correlation between changes in gene expression and
metabolite levels
Metabolites and genes that are upregulated in induced E+R+ lung tissue vs. induced E-R+
tissue are shown in red (genes are outlined). Metabolites and genes that are downregulated
in E+R+ mice are shown in green. An asterisk indicates that the molecule is regulated in the
opposite direction in lungs treated with the BIBW 2992 + rapamycin combination. Box plots
represent results for individual metabolites. The Y-axis is a scaled intensity value that
represents the ratio between E-R+ and E+R+ lungs at 2 and 8 weeks pi with doxycycline, or
on the right side of the plots, the ratio between vehicle-treated (V) and BIBW 2992 (B),
rapamycin (R), or BIBW 2992 + rapamycin (B+R)-treated lung samples after 4 weeks of
treatment. The + inside box represents mean value, bar inside b represents median value, the
upper bar represents maximum of distribution, the lower bar represents minimum of
distribution, and the circles represent extreme data points. (A) Glutathione metabolism. GPX
is unchanged in E+R+ vs. E-R+ lungs but is downregulated in treated lungs. γ–GCS:
gamma-glutamylcysteine synthetase; GS: glutathione synthetase; GSR: glutathione
reductase; GPX: glutathione peroxidase; GLRX: glutaredoxin; GST: glutathione S-
transferase; ROS: reactive oxygen species. (B) Glycolysis and pentose phosphate pathways.
HK2: Hexokinase 2; PFK phosphofructokinase; LDHA: lactate dehydrogenase; ENO:
enolase 1; ALDOC: aldolase C; PKM2: pyruvate kinase M; PGM1: phosphoglucomutase;
PGD: phosphogluconate dehydrogenase; TKT: transketolase.

Weaver et al. Page 16

Cancer Res. Author manuscript; available in PMC 2013 November 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 5. Oncogenic transcription factor activity is linked to downstream alteration of key
metabolic pathways
(A) Gene set enrichment analysis of transcription factor-binding sites (TFBS) in expression
profiles from normal lung, lung tumors from untreated EGFR-TL mice, and vehicle, BIBW
2992, rapamycin or BIBW 2992 plus rapamycin treated EGFR-TL mice. Heat map shows
significant enrichments of TFBS across indicated comparisons. Color scale depicts the
logarithm of P value (red, overrepresentation; blue, underrepresentation). (B) Leading edge
analysis of metabolic genes that have TFBS in their promoters, in normal lung, lung tumors
from untreated, and vehicle, BIBW 2992, rapamycin or BIBW 2992 plus rapamycin treated
EGFR-TL mice. Heat map shows relative expression levels of genes annotated to KEGG
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metabolic pathways across sample set. Black boxes (middle panel) represent the presence of
an indicated TFBS in the promoters.
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