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Human cerebral cortex develops extremely fast in the first year of
life. Quantitative measurement of cortical development during this
early stage plays an important role in revealing the relationship
between cortical structural and high-level functional development.
This paper presents a computational growth model to simulate the
dynamic development of the cerebral cortex from birth to 1 year old
by modeling the cerebral cortex as a deformable elastoplasticity
surface driven via a growth model. To achieve a high accuracy,
a guidance model is also incorporated to estimate the growth
parameters and cortical shapes at later developmental stages. The
proposed growth model has been applied to 10 healthy subjects
with longitudinal brain MR images acquired at every 3 months from
birth to 1 year old. The experimental results show that our proposed
method can capture the dynamic developmental process of the
cortex, with the average surface distance error smaller than 0.6
mm compared with the ground truth surfaces, and the results also
show that 1) the curvedness and sharpness decrease from 2 weeks
to 12 months and 2) the frontal lobe shows rapidly increasing
cortical folding during this period, with relatively slower increase of
the cortical folding in the occipital and parietal lobes.
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Introduction

The human cerebral cortex develops from the smooth neural

tube, but its folding pattern is extremely complex and variable

across different individuals (Talairach and Tournoux 1988).

Although the primary and secondary folding structures have

been developed before birth, the tertiary folding structures are

still undergoing rapid development (Toro and Burnod 2005),

together with the high-level function, after birth. On the other

hand, with the acquisition of more and more high-resolution

brain MR images from infants (Shaw et al. 2007; Dubois et al.

2008; Kaukola et al. 2009; Awate et al. 2010; Schumann et al.

2010; Shen et al. 2010), it becomes possible to partially reveal

the relationship between morphological and functional de-

velopment of the cerebral cortex in the first year of life (Dubois

et al. 2008; Awate et al. 2010) and to characterize certain brain

disorders that occur during this stage (Shaw et al. 2007;

Kaukola et al. 2009; Schumann et al. 2010) by analysis of

longitudinal cortical development.

For early brain development study, all images acquired at

different developmental stages need to be warped onto

a common space. This is generally achieved by image- or

surface-based registration methods (Woods et al. 1998; Shen

and Davatzikos 2002; Liu et al. 2004; Vercauteren et al. 2009).

However, these registration methods usually use intensity- or

feature-based similarity to locate correspondences, which may

lead to incorrect correspondence detection especially in the

flat cortical surface regions and thus eventually affecting the

accurate measurement of cortical development.

Accordingly, several computational mechanical models have

been proposed to study the mechanisms of the cortical folding

(Toro and Burnod 2005; Geng et al. 2009; Nie et al. 2010).

Specifically, in Toro and Burnod (2005), the dynamics of the

cortical folding was modeled by a 2D computational mechan-

ical model to study the fundamental mechanisms of the cortical

folding. In a recent study (Geng et al. 2009), a finite element

method was proposed to model the cortical folding (regulated

by tension forces) in which diffusion tensor imaging (DTI) data

of the fetal sheep brain was adopted as a cue to model the

tension forces that regulate the cortical folding. Recently, the

dynamics of the cortical folding was modeled by a deformable

computational mechanical model (Nie et al. 2010), in which

the cortex is modeled as a deformable surface deforming in the

3D space. The surface-based deformable mechanical model,

which we use for cortical development simulation in this

paper, is widely adopted for dynamic mechanical simulation,

such as cloth and paper (Grinspun et al. 2003), and thus

suitable for cortical growth since the cortex (with the

thickness between 1 and 5 mm) can also be considered as

a thin sheet (Van Essen and Maunsell 1980; Fischl et al. 1999;

Xu et al. 1999). By appropriate estimation of mechanical

parameters, the real dynamics of the cortical development

could be simulated. In particular, during the simulation, each

element of the cortex can be easily tracked, and its deformation

can be captured by the mechanical model. Thus, these

mechanical models can provide not only the dynamics of the

cortical development but also more accurate temporal corre-

spondences for the cortex across different brain developmental

stages.

In this paper, we present a novel computational growth

model for capturing human cortical development in the first

year of life. Specifically, a mechanical model is adopted to

describe the mechanical properties of the cortex, and also the

classic logistic growth function (Murray 1993) is adopted to

describe the growth of the cortex. To achieve an accurate

simulation, a guidance model is further incorporated into the

mechanical model to estimate parameters and guide the

simulation. Our proposed method has been tested on 10 healthy

subjects with longitudinal brain MR images acquired at every 3

months from birth to 1 year old. The experimental results show

that the simulated cortical surfaces are highly similar to the

individual’s cortical surfaces reconstructed from MR images at

different developmental stages (in terms of both shapes and

positions), and also our proposed method can provide a better
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way of measuring cortical correspondences at any time point in

the first year of life.

Materials and Methods

Data Set and Preprocessing
Longitudinal T1, T2, and diffusion-weighted MR images of 10 healthy

subjects were acquired at every 3 months from birth to 1 year old, using

a 3-T head-only MR scanner. The imaging parameters for T1 images (with

160 axial slices) are as follows: time repetition [TR] = 1900 ms, time echo

[TE] = 4.38 ms, flip angle = 7, acquisition matrix = 256 3 192, and voxel

resolution = 1 3 1 3 1 mm3; the imaging parameters for T2 images (with

70 axial slices) are as follows: TR = 7380 ms, TE = 119 ms, flip angle =
150, acquisition matrix = 256 3 128, and voxel resolution = 1.25 3

1.25 3 1.95 mm3; and the imaging parameters for diffusion-weighted

images (with 60 axial slices) are as follows: TR/TE = 7680/82 ms, matrix

size = 128 3 96, 42 noncollinear diffusion gradients, and diffusion

weighting b = 1000 s/mm2. T2 image is linearly aligned onto the

respective T1 image of the same subject and further resampled to 1 3 1

3 1 mm3. Fractional anisotropy (FA) image is reconstructed from the DTI

image and then aligned onto the T1 image of the same subject and

further resampled to 1 3 1 3 1 mm3. For each set of the aligned T1, T2,

and FA images, the skull stripping is first performed to remove

noncerebral tissues, and also the cerebellum and brain stem are removed

by the in-house--developed tools (as shown at the first, second, and third

columns of Fig. 1). Since the delineation of the gray--white interface at 6

months of age is difficult due to low tissue contrast in the T1 and T2 MR

images (as shown in Fig. 1), the DTI images, especially the FA images, are

further adopted (as in Liu et al. (2007)) to improve the segmentation of

white matter (WM), especially for 6-month images. Specifically, the

combined T1, T2, and FA image information is used to segment the brain

image into gray matter (GM), WM, and cerebrospinal fluid regions (Wang

et al. 2011), as shown at the fourth column of Figure 1. The results in

Wang et al. (2011), which compare the automatic segmentation results

with manual segmentation results, show that the average Dice overlay

ratio of cortex is about 0.9 at 6 months, which is similar to the average

Dice overlay ratio of 0.9 at 3, 9, 12 months.

After topology correction of WM volume (Shattuck and Leahy 2001),

the inner cortical surface (i.e., the interface between WM and GM) at

different developmental stages can be reconstructed and represented

by the triangular meshes composed of a set of vertices and triangles (as

shown at the fifth column of Fig. 1). Since the transient subplate zone,

which is interposed between the immature cortical plate and WM, may

still exist at 2 weeks after birth, the inner cortical surface at 2 weeks is

defined as the interface between the cortex plate and WM zone

(including WM and transient subplate zone). Due to the effect of partial

volume in MR images, the outer surface is relatively hard to be

accurately reconstructed, especially in the deep sulcal regions (Fischl

et al. 1999; Xu et al. 1999). Thus, the inner cortical surface at birth is

used as the initial surface in our model to simulate the cortical

development in the first year of life, as detailed below.

Computational Growth Model
In our computational growth model, the cerebral cortex is represented

by its inner cortical surface and modeled by a deformable sheet with

elastoplasticity property. In this way, the cortical surface can be

deformed into dynamic shapes via mechanical forces and can also be

restored to its original shape (elasticity) or maintain the dynamic shape

permanently (plasticity). Specifically, the development of the cortical

surface is modeled by a growth model, which generates the driving

force by increasing the ‘‘rest’’ area of the cortical surface (here ‘‘rest’’

indicates the steady status of the cortical surface under no external

Figure 1. Longitudinal T1, T2, and FA images of the same subject along with its inner cortical surfaces reconstructed from tissue segmentation results.
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force). To reduce the simulation error, a guidance model is then

introduced to estimate both the growth parameters and the cortical

shapes at later developmental stages. Also, a volumetric constraint

model is adopted to prevent the cortical surface from deforming into

other brain tissues and self-collision. These models are finally

incorporated into a time-varying system and further solved by the

Newmark scheme (Newmark 1959).

In the following, we will use St0 , St1 , St2 , St3 , and St4 to denote the

inner cortical surfaces reconstructed from the longitudinal images

acquired at 2 weeks, 3, 6, 9, and 12 months old of each subject,

respectively. We also use fStk ;k=0; 1; 2; 3; 4g to represent them.

Note that our goal is to develop a growth model that can simulate the

continuous cortical development under certain mechanical constraints

and also approach all those given cortical surfaces at the known time

points.

Deformable Mechanical Model

The elastoplasticity model is adopted on each edge of the triangulated

inner cortical surface to model the mechanical properties of the

developing cortex. For each edge, both ‘‘elastic property’’ and ‘‘bending

elastic property’’ are introduced to restore it to its rest shape, and also

both plastic property and bending plastic property are introduced to

maintain the current shape. An illustration of elastoplasticity property is

shown in Figure 2. For each edge element (i, j) and its 2 neighboring

triangles Dpij and Dqij, after contracting and bending to a new shape

(Fig. 2b) from the original shape (Fig. 2a), the elastic forces are

generated on both the edge (i, j) and the virtual edge (p, q) to restore it

to its original shape (Fig. 2d), and the rest lengths of the edge (i, j) and

the virtual edge (p, q) are adapted to the current lengths by the plastic

property (Fig. 2c).

Elastic property and plastic property. At the developmental stage

t, the elastic property fe on each edge (i, j) of the triangulated inner

surface is modeled as:

f i ;j
e ðt Þ=Ke

�
l
i ; j
0 ðt Þ – l i; jc ðt Þ

�

l
i ; j
0 ðt Þ

�
xi
cðt Þ –x j

c ðt Þ
�

l
i ; j
c ðt Þ

; ð1Þ

where i and j are the 2 ending points on the edge (i, j) as shown in

Figure 2a, l
i ;j
0 ðt Þis the rest length of the edge (i, j), l i ;jc ðt Þ= k xi

cðt Þ–xj
cðt Þ k

is the current length of the edge (i, j), and xi
cðt Þ and xj

cðt Þ are the

current coordinates of the vertices i and j, respectively. Ke is the elastic

constant that controls the elasticity of the edge (i, j). At the initial

stage (t = 0), we have l
i ;j
0 ðt Þ= k xi

cðt=0Þ–xj
cðt=0Þ k, where xi

cðt=0Þ and

xj
cðt=0Þare the original coordinates of vertices i and j on the inner

cortical surface St0 (as described above), respectively. Note that this

elastic property will drive each edge to restore to its rest length during

the cortical development, as shown in Figure 2d.

At the same time, the plastic property on each edge (i, j) (as shown

in Fig. 2c) for maintaining the developed length of the edge is modeled

as the adaptation of the rest length l
i;j
0 ðt Þto the deformed length l i ;jc ðt Þ:

dl
i ;j
0 ðt Þ
dt

=
1

se

�
l i ;jc ðt Þ – l i;j0 ðt Þ

�
; ð2Þ

where se is the time constant for the plasticity (Toro and Burnod 2005).

Bending elastic property and bending plastic property. To
model the rigidity of the cortex, the ‘‘bending’’ elastoplasticity property

is also defined on each edge (i, j), through a virtual edge (p, q) as

shown in Figure 2c, where p and q are the vertices that share the same

2 triangles with the edge (i, j). When the angle between the triangles

Dpij and Dqij changes, as shown in Figure 2b, the distance between

vertices p and q will change accordingly. Thus, similar to equation (1),

the bending elastic property fb on each virtual edge (p, q) is modeled

as:

f
p;q
b ðt Þ=Kb

�
l
p;q
0 ðt Þ – l p;qc ðt Þ

�

l
p;q
0 ðt Þ

�
xp
c ðt Þ – xq

c ðt Þ
�

l
p;q
c ðt Þ

; ð3Þ

where l
p;q
0 ðt Þis the rest length of the virtual edge (p, q),

lp;qc ðt Þ= k xp
c ðt Þ–xq

c ðt Þ k is the current length of the virtual edge (p,

Figure 2. Illustration of the elastoplasticity properties defined on each edge (i, j), and also the bending properties for the edge (i, j) defined on the virtual edge (p, q). (a) The
original shape of edge (i, j) and its 2 neighboring triangles Dpij and Dqij. (b) Edge (i, j) and its 2 neighboring triangles are deformed by, respectively, contracting the edge (i, j) and
rotating the 2 triangles. (c) The plasticity of the original lengths l i; j

0 and l p;q
0 under the current deformation. (d) The elastic forces on the edge (i, j) and the virtual edge (p, q) under

the current deformation.
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q), and Kb is the elastic constant that controls the bending elasticity of

the cortex. At the initial stage (t = 0), we have

l
p;q
0 ðt Þ= k xp

c ðt=0Þ–xq
c ðt=0Þ k, where xp

c ðt=0Þand xq
c ðt=0Þare the origi-

nal coordinates of vertices p and q on the cortical surface St0 . Similar to

equation (2), the bending plasticity property can be modeled as the

adaptation of the rest length l
p;q
0 ðt Þ to the deformed length lp;qc ðt Þ:

dl
p;q
0 ðt Þ
dt

=
1

sb

�
l p;qc ðt Þ – lp;q0 ðt Þ

�
; ð4Þ

where sb is the time constant for the bending plasticity property (Nie

et al. 2010).

Cortex Growth Model

Although most neuronal proliferation and migration have been

completed before birth (Brown et al. 2002), the volume of the cortex

and the size of the brain still keep developing until adolescence

because of the further postnatal growth of neuronal dendrites,

myelination, and gliogenesis and angiogenesis. Given the later de-

veloped surface area of the cortex AStk
, the cortex growth model at

time t can be described as the classic logistic growth function (Murray

1993; Toro and Burnod 2005):

dAcðt Þ
dt

=A cðt Þ � g �
 
1 –

A cðt Þ
AStk

!
; tk – 1 <t <tk ; k>1; ð5Þ

where Ac(t) is the current area of the cortex, and g is known as the

Malthusian parameter, and AStk
is the carrying capacity of the system

(Murray 1993), which is defined as the surface area of the later

developed cortex Stk . By changing the rest area of each triangle, the rest

lengths of the 3 corresponding edges on the triangle will also change

accordingly. Thus, the cortical growth will generate a mechanical stress

to partially drive the deformation of the cortical surface. At the initial

stage, we increase the rest length of each edge element according to

the cortical growth function, thus the initial stress could be calculated

according to the difference between the current length and rest length

of each element.

Guidance Model

Since we have reconstructed cortical surfaces from the later developed

stages fStk ; tk�1 <t <tk ;k>1g, these cortical surfaces can be used to

guide the cortical development in 2 aspects. First, the parameter in

equation (5) can be estimated based on the area of the surface Stk .

Second, the simulation to the realistic cortical shape and position can

be guided by the shape and position of the cortical surface Stk .

The initial cortical surface St0 is first warped into the space of the

target cortical surface Stk (i.e., the inner cortical surface at 3, 6, 9, and

12 months) by a high-dimensional nonlinear hybrid (volumetric/

surface) registration method (Shen and Davatzikos 2002; Liu et al.

2004). Thus, for each vertex i with the position xi
cðt=0Þ on the initial

cortical surface St0 , a rough corresponding vertex
�
xi
k

�#
can be found

on the target cortical surface Stk . Then, the guidance force f i
g can be

modeled as:

f i
g ðt Þ=w

��
xi
�#ðt Þ –xi

cðt Þ
�
; ð6Þ

where w is the weight of the guidance force varying at different

cortical regions, and the setting of w will be detailed later. And

ðxi Þ#ðt Þis the attraction point determined by the later developed

cortical surfaces and computed as:

�
xi
�#ðt Þ=bðt Þ �

�
xi
k

�#
+ ð1 –bðt ÞÞ �

�
xi
k + 1

�#
; tk – 1 <t <tk ; ð7Þ

where
�
xi
k

�#
and

�
xi
k+1

�#
are the correspondences of vertex i at time

points k and k + 1 determined by the registration method, respectively;

and ðxiÞ#
is a linear combination of these 2 correspondences weighted

by b(t) as defined below:

bðt Þ=

8><
>:

1
AStk

–Acðt Þ
AStk + 1

–AStk

>bth

1
bth

� AStk
–Acðt Þ

AStk +1
–AStk

AStk
–Acðt Þ

AStk + 1
–AStk

<bth

; ð8Þ

where bth is a threshold controlling when the surface Stk+1 could be

involved into the guidance model. Specifically, when comparing to the

area difference between the next 2 target surfaces
�
AStk+1

–AStk

�
, if

the area of the current surface ðAcðt ÞÞ is much smaller than the area of

the next target surface
�
AStk

�
, only the next target surface Stk will be

used to guide the simulation (b(t) = 1). Otherwise, if the current

surface area is close to the next target surface area (i.e.,
AStk

–Acðt Þ
AStk+1

–AStk

<bth),

the correspondences on the surface at time k + 1 could also be involved

to further guide the simulation. In this way, the corresponding vertex

ðxi Þ#ðt Þ will smoothly change across different time points.

Since the correspondences in the flat cortical region with low

curvature value, such as sulcal wall, determined by the hybrid

registration method (Liu et al. 2004) is usually not as accurate as those

in the highly bended cortical region with high curvature value, such as

gyral crest and sulcal bottom (Li et al. 2009), the weight of the guidance

force should be set larger at the highly bended region. Therefore, the

weight of the guidance force w is defined as:

w=w1 +w2tanh
�
a �
�
max

�
jCi

max

��; jCi
minj
�
–Cm

��
; ð9Þ

where w1, w2, and a are the weight values, Ci
max and Ci

min are the

maximum and minimum principal curvatures of the vertex i, and Cm is

a curvature constant. Thus, the guidance model would be smooth

during the simulation. Since the force f i
g is an artificial force that does

not truly exist, the weights w1 and w2 are both set as small values

during the simulation.

Constraints

To prevent the cortical surface from self-collision and deforming into

other brain tissues, such as the skull, basal ganglia/thalami, and

cerebellum, these tissues and the current deformed cortical surface

are first rasterized into a volumetric model (Nie et al. 2010). Then, the

deformation of each cortical vertex is prevented from self-collision and

deforming into these tissues in this volumetric model.

For each vertex with the current position xi
cðt Þ, when it’s being

deformed to a new position xi
cðt+Dt Þ, 2 conditions should be

checked: 1) The new position xi
cðt+Dt Þ cannot be inside of the

developing skull or other brain tissue volume as mentioned before

and 2) The deformation of the current vertex should not cause its

neighboring triangles to intersect with the rasterized surfaces in

other neighborhoods. If any of the 2 conditions is violated, a new

deformed position x̃ i
c ðt+Dt Þ is identified as the closest valid position

to xi
cðt+Dt Þ on the straight line between xi

cðt Þ and xi
cðt+Dt Þ as defined

below:

x̃ i
c ðt +Dt Þ=hxi

cðt Þ + ð1 – hÞxi
cðt +Dt Þ; h 2 ½0; 1�: ð10Þ

Note that, after updating the position of a vertex, its neighborhood is

re-rasterized.

Model Solver

Since we are applying a mechanical model on the cortex, the dynamics

of the cortical surface can be formulated as Newton’s laws:

ẍ=M – 1F
�
x; _x

�
; ð11Þ

where x, _x, and ẍ are the position, velocity, and acceleration of all n

vertices on the cortical surface, respectively. M is a 3n 3 3n diagonal

mass matrix with diagðMÞ=ðm1;m1;m1;m2;m2;m2; . . . ;mn ;mn ;mnÞ;
wheremi is the mass of the vertex i, calculated as the sum of one thirds

of the masses of all one-ring triangles around the vertex i. F ðx; _xÞ is the
force vector that combines all forces on vertices. For the vertex, i,

F iðx; _xÞis calculated as:

F i ðx; _xÞ= +
j2N i

f i ;j
e ðt Þ + +

ðp=iÞ;q
f
p;q
b ðt Þ + f i

g ðt Þ; ð12Þ

where N i is the one-ring neighboring vertices of the vertex i, and

+ðp=iÞ;q f
p;q
b ðt Þ is the sum of all bending forces involved on the vertex i.

The explicit Newmark scheme (Newmark 1959) is adopted to solve

the above dynamic model. Using the position and velocity given in the

previous time t, the developed cortical surface at the next time t+Dt
can be estimated as:
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_xðt +Dt Þ= _xðt Þ +Dt ẍðt Þ; ð13Þ

xðt +Dt Þ=xðt Þ +Dt _xðt +Dt Þ +Dt 2

2
ẍðt Þ; ð14Þ

where Dt is the time step. Note that, before estimating the cortical

surface at new time, the rest lengths of each edge and each virtual edge

are updated by equations (3--5).

Longitudinal Cortical Folding Measurement
With the proposed cortical growth model, we can measure and study the

longitudinal changes of the cortical folding. Several quantitative methods

for measuring cortical folding have been proposed in the literature. For

example, the traditional gyrification index was firstly proposed in Zilles

et al. (1988) to measure the cortical folding in a 2D slice and recently

extended to the 3D local gyrification by measuring the cortical surface

area in a sphere (Schaer et al. 2008; Toro et al. 2008). Meanwhile,

curvature-based methods have also been proposed to measure the

complexity of the cortical folding especially in the developing brain

(Rodriguez-Carranza et al. 2007; Pienaar et al. 2008). Recent comparison

on the curvature-based measurement and the gyrification index

(Rodriguez-Carranza et al. 2007) also shows that these 2 types of

measurements perform similarly on the inner cortical surfaces.

In this paper, 2 curvature-based measures, for example, the curved-

ness (Koenderink and van Doorn 1992) and sharpness (Pienaar et al.

2008), are adopted to characterize the local change of the cortical

folding:

c i ðt Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ci
maxðt Þ

�2 + �Ci
minðt Þ

�2
2

2

s
; ð15Þ

siðt Þ=
�
Ci
maxðt Þ –Ci

minðt Þ
�2
; ð16Þ

where Ci
maxðt Þ, Ci

minðt Þ, c iðt Þ, and si ðt Þ are the maximum principal

curvature, minimum principal curvature, curvedness (Koenderink and

van Doorn 1992), and sharpness (Pienaar et al. 2008) of vertex i at time

t, respectively. The sharpness si ðt Þ which emphasizes the difference

between 2 principle curvatures is suitable to reveal the large primary

folds of the cortex, while the curvedness c iðt Þ can reveal small bumps

and ridges of the cortex (Pienaar et al. 2008).

To measure the changes of curvedness and sharpness in cortical

regions, the cortical surface is parcellated into a set of regions of

interest (ROIs) by an atlas-based warping method (Shen and Davatzikos

2002), and the relative curvedness and sharpness changes in each ROI

are defined, respectively, as:

RCROIðt Þ=
+

i2ROI
c i ðt Þ

+
i2ROI

c i ðt0Þ
; ð17Þ

RSROIðt Þ=
+

i2ROI
siðt Þ

+
i2ROI

si ðt0Þ
; ð18Þ

where t0 is the initial time of the cortex development in the cortical

growth model, RCROIðt Þ and RSROIðt Þ are, respectively, the average

curvedness and sharpness in one ROI, normalized by their initial values

at time t0 (in order to account for the initial differences among

subjects).

Since the curvature decreases with the increase of the cortical

surface area even in the case of linear cortical growth, the change of

cortical surface area should be normalized in order to measure the

cortical folding relatively. Therefore, the normalized relative curved-

ness and sharpness changes in each ROI can be defined as below:

NRCROIðtk ; tk – 1Þ=
+

i2ROI
c iðtkÞ

+
i2ROI

c i ðtk – 1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AROIðtkÞ
AROIðtk – 1Þ

s
; ð19Þ

NRSROIðtk ; tk – 1Þ=
+

i2ROI
si ðtkÞ

+
i2ROI

si ðtk – 1Þ
� AROIðtkÞ
AROIðtk – 1Þ

; ð20Þ

where AROIðtkÞ is the area of ROI at time tk , NRCROIðtk ; tk–1Þ and

NRSROIðtk ; tk–1Þ are the normalized change rate of curvedness and

sharpness between times tk and tk–1, respectively.

Results

The performance of our proposed cortical growth model is

evaluated both qualitatively and quantitatively on 10 healthy

subjects (each with longitudinal images collected at 2 weeks, 3,

6, 9, and 12 months old) and is further compared with

a high-dimensional nonlinear hybrid (volumetric/surface)

registration algorithm (Liu et al. 2004). In our method, we

use the inner cortical surfaces at 6 and 12 months old to help

build our cortical growth model and then use the inner cortical

surfaces reconstructed at 3 and 9 months old as the ground

truth to evaluate the prediction power of our model. Note that,

after building our cortical growth model, given any time in the

first year, we can immediately estimate its corresponding

cortical surface, that is, at 3 or 9 months old. Similarly, for the

hybrid registration algorithm, we can also build its respective

brain growth model by registering the 2-week-old image to the

6-month-old image and then to the 12-month-old image. In this

case, the brain image at 3 or 9 months old can be estimated by

resampling the estimated deformation fields by constraining

the respective cortical surface area to be the same as that in the

ground truth 3- or 9-month-old cortical surface. It is worth

noting that this cortical surface area information is not used in

our model when estimating cortical surfaces at 3 and 9 months.

In all experiments, the same parameters are used, that is,

Ke = 0.1, se = 50, Kb = 0.1, sb = 50, g = 0.01, w1 = 0.006,

w2 = 0.004, bth = 2.0, Cm = 0.7, a = 3.0, and Dt = 0.05. We use 240

iterations in building the cortical growth model for the first

year, thus the real-world unit for time in our implementation is

month (each with 20 iterations). Our model takes about 4 h to

build the cortical growth model for each subject on a PC with

Inter Xeon 2.26 Ghz CPU and 4 GB memory.

Visual Inspection of the Accuracy

Figure 3 gives a comparison between the cortical surfaces

predicted by our model (red color) and the ground truth (light

blue color) reconstructed at 3, 6, 9, and 12 months old. Note

that the ground truth surfaces are set to be transparent for

better visual inspection. With the cortical surface guidance at 6

and 12 months old, our predicted cortical surfaces have the

similar shapes and positions to the ground truth at the

respective time points, as shown in Figure 3b,d, respectively.

Also, at other time points without any guidance, our predicted

cortical surfaces still have the similar shapes and positions to

the ground truth, as shown in Figure 3a,c.

Quantitative Evaluation of the Accuracy

To quantitatively evaluate our model and further compare its

performance with the hybrid registration algorithm (Liu et al.

2004), we measure the surface distance error between the

predicted surface and the ground truth surface at each time

point (from 3 to 12 months old) on all 10 subjects. Note that

the surface distance is symmetrically computed between the 2

surfaces under comparison. Figure 4 shows a comparison of

surface distance errors between our method and the hybrid

registration method on one subject at 4 different time points. It

can be observed that the surface distance errors between the

cortical surfaces predicted by our model and the ground truth

cortical surfaces at 3, 6, 9, and 12 months old, as shown in

Figure 4a--d, respectively, are much smaller than the surface

distance errors between the cortical surfaces predicted by the

hybrid registration algorithm and the ground truth cortical
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surfaces at 3, 6, 9, and 12 months old, as shown in Figure 4e--h,

respectively.

The comparison of the averages and standard deviations of

surface distance errors of 10 subjects between our model and

the hybrid registration algorithm at 4 time points (from 3 to 12

months old) is shown in Figure 5. With the surface guidance at

6 and 12 months old, the average surface distance for all

subjects is smaller than 0.25 mm by both our model and the

hybrid registration algorithm, which also use the 6- and

12-month-old images and surfaces to guide the registration.

For the time points without surface guidance such as at 3 and 9

months old, the average surface distances for all subjects are

0.48 ± 0.10 and 0.24 ± 0.06 mm by our model, respectively, and

0.68 ± 0.10 and 0.61 ± 0.10 mm by the hybrid registration

algorithm, respectively. Considering the small brain size in the

first year of life, this improvement is significant for early brain

development study. This experiment demonstrates that our

proposed model can predict more accurate cortical surfaces

with use of the mechanical models compared with the hybrid

registration algorithm that considers only the image- and

surface-derived information in the registration.

Smoothness and Consistency of Cortex Growth on Vertices

We further visually evaluate the smoothness and consistency of

the longitudinal cortical surfaces predicted by our model, by

Figure 3. Comparison between the cortical surfaces predicted by our model (red colors) and the ground truth cortical surfaces (light blue colors) at 3, 6, 9, and 12 months old,
as shown from (a) to (d), respectively.

Figure 4. Comparison of surface distances errors (mm) of one subject at 4 time points from 3 to 12 months old. (a--d) are the surface distance errors between the cortical
surfaces predicted by our model and the ground truth cortical surfaces at 3, 6, 9, and 12 months old, respectively. (e--h) are the surface distance errors between the cortical
surfaces predicted by the hybrid registration algorithm and the ground truth cortical surfaces at 3, 6, 9, and 12 months old, respectively. The color bars are shown on the right.
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comparison with those by the hybrid registration algorithm. As

shown in Figure 6a, the trajectories of vertex growth (red

curves) predicted by our model along 5 time points (from 2

weeks to 12months) aremuch smoother even in the flat cortical

surface regions compared with those (blue curves) produced by

the hybrid registration algorithm that registers the 2-week-old

image/surface to images/surfaces at other 4 time points. To

quantitatively compare the performance, we first perform the

linear regression on the trajectory of each vertex and then show

the histogram of the residual errors in thewhole cortical surface.

As shown in Figure 6b, our method gives smaller residual errors

than the hybrid registration method.

We also measure the smoothness and consistency between

neighboring vertices. The relative local area RAiðt Þ and

relative edge length RLiðt Þ of each vertex i at time t are

defined as:

RAiðt Þ=
+

j2T i A
j
triðt Þ

+
j2T i A

j
triðt 0Þ

; ð21Þ

RLiðt Þ=
+

j2N i l
i ; j
c ðt Þ

+
j2N i l

i ; j
c ðt 0Þ

; ð22Þ

where T
i is the one-ring neighboring triangles of vertex i, N i is

the one-ring neighboring vertices of vertex i, and A
j
triðt Þ is the

area of triangle j at time t. Thus, RAiðt Þ is the sum of triangular

areas around vertex i normalized by the initial area, and RLiðt Þ
is the sum of vertex distances between vertex i and its

neighboring vertices normalized by the initial distance. We

compute RAiðt Þ and RLiðt Þ, respectively, from the cortical

surfaces predicted by our model from 2 weeks to 12 months

and also by the hybrid registration algorithm that registers the

2-week-old image/surface to images/surfaces at other 4 time

points. In Figure 7a,b, the respective results by the 2 methods

on 20 randomly selected vertices are shown, with red for our

model and blue for the hybrid registration. Compared with the

Figure 5. Comparison of the averages and standard deviations of surface distance
errors of 10 subjects between our model (red bars) and the hybrid registration
algorithm (blue bars) at 4 time points from 3 to 12 months old.

Figure 6. Comparison of the smoothness of vertex growth by our cortical growth model (red colors) and the hybrid registration algorithm (blue colors). (a) Trajectories of vertex
growth by 2 methods. (b) The distribution of residual errors after performing linear regression on each trajectory by 2 methods.

Figure 7. The growth of the relative local area (a) and the relative edge length (b) on 20 randomly selected vertices from 2 weeks to 12 months, by our model (red) and the
hybrid registration method (blue).
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Figure 8. The changes of cortical features on 20 cortical ROIs from 2 weeks to 12 months. (a) Relative ROI area. (b) Relative ROI edge length. (c) Relative ROI curvedness. (d)
Relative ROI sharpness. Red and blue curves represent the results by our model and the hybrid registration method, respectively.

Figure 9. The changes of average relative curvedness on 5 major gyral ROIs of the 10 subjects by our cortical growth model (red curves) and the hybrid registration method
(blue curves), from 2 weeks to 12 months.
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hybrid registration, our method can predict much smoother

growth for the relative local area and the relative edge length

from 2 weeks to 12 months.

Smoothness and Consistency of Cortex Growth on ROIs

To further compare the smoothness and consistency in larger

cortical regions, an atlas with 90 labeled ROIs (Tzourio-Mazoyer

et al. 2002) is warped onto the subject image space to label the

subject cortical surface into a set of ROIs. For each ROI, the relative

cortical area RAROIðt Þ and the relative edge length RLROIðt Þ are

respectively defined as:

RAROIðt Þ=
+

j2TROI
A

j
triðt Þ

+
j2TROI

A
j
triðt 0Þ

; ð23Þ

RLROIðt Þ=
+

j2LROI
l
j

edgeðt Þ
+

j2LROI
l
j

edgeðt 0Þ
; ð24Þ

where TROI and LROI are the set of triangles and edges in the

ROI, respectively, l
j

edgeðt Þ is the length of edge j at time t,

RAROIðt Þ is the area of the ROI normalized by its initial area, and

RLROIðt Þ is the sum of all edge lengths in the ROI normalized by

its initial value. In Figure 8a,b, the results on 20 randomly

selected cortical ROIs (from 90 ROIs) are given for our method

(red) and the hybrid registration (blue). As we can see, our

model shows much more consistent growth results.

To quantify the smoothness and consistency of cortical folding

features, the relative curvedness RCROIðt Þ and the relative

sharpness RSROIðt Þ are also measured from the cortical surfaces

predicted by our method (red) and the hybrid registration (blue)

on 20 ROIs in Figure 8c,d. As we can see, both curvedness

RCROIðt Þ and sharpness RSROIðt Þ are decreasing smoothly in most

ROIs with the growth of the brain according to our model, while

they are bumpy by the hybrid registration method.

We also show in Figure 9 the changes of the relative

curvedness on 5 major gyri, including the precentral gyrus,

postcentral gyrus, superior temporal gyrus, superior occipital

gyrus, and superior frontal gyrus, on the 10 subjects by the 2

methods. Although both methods show the consistent de-

creasing trend of curvedness on all 5 gyral ROIs, the results

from our method show much smoother results for all subjects.

Figure 10. ROI-based average curvedness changes on the 10 subjects from 2 weeks to 12 months old. The changes from 2 weeks to 3 months, 3--6 months, 6--9 months, and
9--12 months are shown from the first to the fourth row, respectively. The color bars are given on the right. In each row, both side views and top view are displayed.
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Cortical Folding Pattern from 2 Weeks to 12 Months

Since the above results have already demonstrated the

accuracy, smoothness, and consistency of our proposed

method, we apply it to measure the cortical folding changes

from 2 weeks to 12 months. Note that we use the inner cortical

surfaces reconstructed from images at all 5 time points to help

build our cortical growth model in this experiment.

Since the primary and secondary folding structures have been

developed before birth, the simple increasing of the cortical

surface area will reduce the averages of curvedness and sharpness

from 2 weeks to 12 months as shown in Figure 8c,d, respectively.

The normalized changes of curvedness NRCROIðtk; tk–1Þ and

sharpness NRSROIðtk; tk–1Þ from 2 weeks to 12 months on the 10

subjects are illustrated in Figures 10 and 11, respectively.

As we can see, though the normalized changes of curvedness

and sharpness are continuously increasing during the first year,

the cortical folding shows different changing patterns in

different lobes. For example, the frontal lobe shows rapidly

increasing cortical folding during this period, which corre-

sponds to high-level function development in this lobe, as

indicated by red arrows in both Figures 10 and 11. While in the

occipital and parietal lobes, the cortical folding is increasing

relatively slower as indicated by blue arrows in both Figures 10

and 11. And in the temporal lobe, the folding changes are even

more complex on the 3 major gyri. Specifically, in the first 3

months, the curvedness of the inferior temporal gyrus

increases faster than the middle temporal gyrus and increases

slower after 3 months as indicated by green arrows in Figure 10.

On the contrary, the folding changing speed of the superior

temporal gyrus continues to increase during the first year as

indicated by purple arrows in Figure 11.

The cortical folding also shows different patterns in different

time periods. For example, in the frontal lobe, the curvedness

and sharpness increase fast in the first 3 months and then slow

down from 3 to 9 months, as indicated by red arrows in both

Figures 10 and 11. The average sharpness in both pre- and

postcentral gyri increases consistently during the first year after

birth, although the precentral gyrus shows stronger increasing

folding patterns from 2 weeks to 6 months, as indicated by

orange arrows in Figures 10 and 11.

Certain hemispheric asymmetry could also be observed in

Figures 10 and 11. For example, the left hemisphere shows

Figure 11. ROI-based average sharpness changes on the 10 subjects from 2 weeks to 12 months old. The changes from 2 weeks to 3 months, 3--6 months, 6--9 months, and
9--12 months are shown from the first to the fourth row, respectively. The color bars are given on the right. In each row, both side views and top view are displayed.

2281Cerebral Cortex October 2012, V 22 N 10



faster increase of sharpness on precentral gyri as indicated by

light orange arrows in Figure 11 from 2 weeks to 6 months,

while the right hemisphere shows faster increase of curvedness

on inferior temporal gyrus as indicated by purple arrows in

Figure 10 from 2 weeks to 6 months.

Since the number of subjects (only 10 subjects in our

results) is limited in our experiment, the statistical significance

of curvedness and sharpness changes is measured by the

P value in nonparametric permutation tests (Nichols and

Holmes 2002) on each ROI with the null hypothesis that the

mean values of and are greater than 1, and the results are

shown in Figures 12 and 13, respectively. These results show

similar pattern as in Figures 10 and 11. However, it is very

interesting that during the period from 6 to 9 months, most

cortical ROIs show no significant increase of curvedness,

especially in the right hemisphere as indicated by red arrows in

Figure 12. And during the first 3 months, the increase of

sharpness in the most areas of occipital and temporal lobe is

not significant as indicated by red arrows in Figure 13.

Discussion and Conclusion

Due to lack of information in the smooth and flat cortical

regions, traditional deformable registration method is limited to

correctly estimate tissue deforation over time in these regions

as shown in our result. Even though longitudinal regulations

could be added to partially compensate for this lack of

information and also generate longitudinal smooth and

consistent deformation to some degree, our model that takes

into account the physical properties of the growing brain is

expected to perform better than the registration method that

simply assumes smoothly varying deformations.

By coupling longitudinal image analysis with physical models

of the cortical growth, we have presented a computational

growth model for cortical development in the first year of life.

Experimental results show its good performance in predicting

cortical surface development at unknown time points in the

first year, with the help of mechanical modeling. These results

also demonstrate that the features of cortical surfaces, such as

curvedness and sharpness, are much more smoothly and

Figure 12. P values of ROI-based curvedness changes on the 10 subjects, from 2 weeks to 12 months old. The results from 2 weeks to 3 months, 3--6 months, 6--9 months, and
9--12 months are shown from the first to the fourth row, respectively. The color bars are given on the right. In each row, both side views and top view are displayed.
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consistently estimated by our proposed model than those by

the hybrid registration method. Certain interesting develop-

mental patterns of cortical folding in the first year of life are

also reported in our results: 1) the curvedness and sharpness

decrease from 2 weeks to 12 months; 2) the frontal lobe shows

rapidly increasing cortical folding during this period, while the

cortical folding increases relatively slower in the occipital and

parietal lobes; 3) during the first 3 months, the curvedness of

the inferior temporal gyrus increases faster than the middle

temporal gyrus and increases slower after 3 months, whereas

the folding changing speed of the superior temporal gyrus

continues to increase during the first year, and 4) the cortical

folding of the frontal lobe also seems to develop fastest during

the first 3 months and after that slows down. Due to the

complex neurobiological processes involved in the cortex

development during this stage, such as WM myelination,

synapse development, and neuron dendritic projection, our

growth model is not complex enough to cover all possible

developing factors currently. For example, we currently use the

spatially uniform growth function in our growth model since

we do not know the spatial distribution of growth rate. And

since the axon tension could also have effect on cortical folding

(Van Essen 1997), it is possible to incorporate the axon tension

into our model by making use of DTI data sets. In the future

study, a more advanced and sophisticated model further

involving WM and functional development will be developed

to simulate this procedure.

Sinceonlytheinnercortical surfaceisadoptedinourmethodto

represent thegeometryof thecortexcurrently,certain important

features of the cortex could not be easily measured from our

results, such as the cortical thickness (Fischl and Dale 2000) and

gyrification index(Zilles et al. 1988),whichareusuallydefinedon

the outer cortical surface. However, our current model can still

provide abundant information regarding thecortexdevelopment

from different levels and aspects. In the future, we will carry out

more experiments and measurements to further evaluate our

cortical growth model and apply it to a large early brain

development study.

Figure 13. P values of ROI-based sharpness changes on the 10 subjects, from 2 weeks to 12 months old. The results from 2 weeks to 3 months, 3--6 months, 6--9 months, and
9--12 months are shown from the first to the fourth row, respectively. The color bars are given on the right. In each row, both side views and top view are displayed.
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