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Synopsis How organisms adapt to the range of environments they encounter is a fundamental question in biology.

Elucidating the genetic basis of adaptation is a difficult task, especially when the targets of selection are not known.

Emerging sequencing technologies and assembly algorithms facilitate the genomic dissection of adaptation and popula-

tion differentiation in a vast array of organisms. Here we describe the attributes of Kryptolebias marmoratus, one of two

known self-fertilizing hermaphroditic vertebrates that make this fish an attractive genetic system and a model for un-

derstanding the genomics of adaptation. Long periods of selfing have resulted in populations composed of many distinct

naturally homozygous strains with a variety of identifiable, and apparently heritable, phenotypes. There also is strong

population genetic structure across a diverse range of mangrove habitats, making this a tractable system in which to study

differentiation both within and among populations. The ability to rear K. marmoratus in the laboratory contributes

further to its value as a model for understanding the genetic drivers for adaptation. To date, microsatellite markers

distinguish wild isogenic strains but the naturally high homozygosity improves the quality of de novo assembly of the

genome and facilitates the identification of genetic variants associated with phenotypes. Gene annotation can be accom-

plished with RNA-sequencing data in combination with de novo genome assembly. By combining genomic information

with extensive laboratory-based phenotyping, it becomes possible to map genetic variants underlying differences in

behavioral, life-history, and other potentially adaptive traits. Emerging genomic technologies provide the required re-

sources for establishing K. marmoratus as a new model organism for behavioral genetics and evolutionary genetics

research.

Introduction

The fish

The distribution of the mangrove rivulus,

Kryptolebias marmoratus tracks that of the red man-

grove (Rhizophora mangle) from the coastal regions

of central Florida south through the Caribbean and

extending to the eastern coasts of Central America

and South America (Costa 2006). Kryptolebias

marmoratus is an unusual vertebrate with a life his-

tory similar to that of Caenorhabditis elegans in

which the majority of individuals are hermaphroditic

with preferential self-fertilization (Harrington 1961).

Males exist in the wild at varying frequencies

(Lubinski et al. 1995; Mackiewicz et al. 2006c). To

date, there is no documentation of females existing

in the wild. As one of only two members of a fish

clade with evidence for internal self-fertilization, K.

marmoratus is uniquely suited to become a model

for genomic studies.

Self-fertilization (inbreeding) has resulted in natu-

rally homozygous individuals and the propagation of

isogenic lineages in the wild (Harrington and

Kallman 1968). While many wild-caught individuals

are homozygous, heterozygous individuals are also
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found, indicating that out-crossing is a relatively

common occurrence (Taylor et al. 2001), even in

populations in which males have not been directly

observed (Mackiewicz et al. 2006b; Tatarenkov et al.

2007). There is no current evidence of hermaphro-

dites fertilizing eggs from other hermaphrodites,

suggesting that outcrossing occurs primarily between

males and hermaphrodites. Primary and secondary

males have been described (Harrington 1967).

Recent microsatellite data of individuals genotyped

at 35 microsatellite markers confirms a varying

amount of heterozygosity in wild-caught individuals

(Mackiewicz et al. 2006b).

Since the fish can be reared easily, K. marmoratus has

been maintained in laboratories for �50 years

(Harrington 1961). Due to the preferential self-

fertilization, wild-caught lineages that are reared in the

laboratory for several generations quickly become

homozygous (Mackiewicz et al. 2006a). Over 250 dis-

tinct genetic lines are currently being maintained in

laboratories. Laboratory strains are highly homozygous

and, for the most part named stock lineages being main-

tained in laboratories internationally are very similar

(Tatarenkov et al. 2010).

Lineages of K. marmoratus, identified by their

sampling location, have a range of phenotypes that

have been measured under field and laboratory con-

ditions (Heuhner et al. 1985; Davis et al. 1990;

Dunson and Dunson 1999; Lin and Dunson 1999;

Earley et al. 2000; Taylor 2000; Hsu and Wolf

2001; Taylor et al. 2004; Grageda et al. 2005;

Martin 2007; Earley and Hsu 2008; Hsu et al. 2008;

Taylor et al. 2008; Molloy et al. 2011; Richards et al.

2011; Turko et al. 2011). Importantly, behavioral and

life-history traits are reproducible within isogenic

lineages (Edenbrow and Croft 2011; Earley et al.

2012), suggesting that many of the traits are heritable

and have a genetic component. The naturally homo-

zygous strains present distinct phenotypes that seg-

regate between them, making this a tractable system

for studying differentiation within populations and

among populations. For example, Nakamura et al.

(2008) found that crossing two lineages with diver-

gent patterns of growth results in hybrid F2s with

intermediate phenotypes (Nakamura et al. 2008).

Males exist at varying frequencies, from 0% to

20%, in the wild and can be induced by temperature

in the laboratory (Harrington 1967). Therefore, it is

possible to generate crosses between lineages that ex-

hibit different phenotypes, which has been carried

out successfully in vitro (Harrington 1971;

Mackiewicz et al. 2006a; Nakamura et al. 2008).

Additionally, imaging tools have been developed to

utilize K. marmoratus for detailed embryological

studies (Mourabit et al. 2011). Mutagenesis via

N-ethyl-N-nitrosourea (ENU) has been established

for identifying zygotic mutants (Moore et al. 2012)

The selfing habits and mixed-mating system of the

mangrove rivulus provides genetic tractability that

rivals some invertebrate (e.g., C. elegans, Daphnia)

and plant (e.g., Arabidopsis) systems. This, coupled

with high levels of phenotypic diversity both within

and among populations, and the promise of crossing

homozygous lineages possessing divergent pheno-

types, make the mangrove rivulus a potentially

powerful system in which to study adaptive genomics

(Stapley et al. 2010).

The genomics

The dramatic reduction in sequencing costs and avail-

ability of next-generation sequencing technology

makes sequencing accessible to new communities of

researchers and allows the development of new

genetic/genomic model systems (www.genome.gov/

sequencingcosts). Sequencing technologies are contin-

ually being improved in terms of error rate and read

length (Metzker 2010). The performance of assembly

algorithms developed to handle various types of

next-generation sequence data varies depending on

the size, complexity, and similarity of the genome

to already sequenced genomes (Earl et al. 2011).

However, heterozygosity presents a formidable chal-

lenge to de novo assembly of the genome sequence

(Vinson et al. 2005). To remove heterozygosity from

de novo sequencing projects, significant effort is made

to create homozygous lineages or to obtain data from

haploids (Langley et al. 2011). Homozygosity

improves the assembly of contigs, continuous

stretches of DNA sequence created by overlapping

sequence reads. It also facilitates obtaining longer

scaffolds, which are sets of contigs separated by

gaps, often with known approximate lengths. The nat-

ural occurrence of entirely homozygous individuals of

K. marmoratus makes generating a high-quality de

novo assembly of the genome a reality. Given the ex-

isting microsatellite data (Mackiewicz et al. 2006c;

Tatarenkov et al. 2012), any differences detected

during sequencing a single individual are likely rare,

and result either from new mutations or, more prob-

ably, errors introduced during construction and se-

quencing of the library.

K. marmoratus is diploid with 24 chromosomes

(Scheel 1972). Using initial next-generation

sequencing data, we estimate the genome size of

K. marmoratus to be �900 Megabases (Mb); which

is larger than the medaka genome (700 Mb) (Takeda

2008). For a high-quality de novo assembly of
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a genome, multiple sequencing libraries must be used,

with different insert sizes, including small-insert and

large mate-pair libraries (Wetzel et al. 2011). We are

taking a multi-technology approach for this de novo

assembly to capitalize on different Ion Torrent and

Illumina sequencing strategies, entire fragment se-

quencing and paired-end sequencing, respectively;

the methods also have different read lengths and

error models.

Microsatellite divergence between isogenic lineages

and the homozygosity of such lineages in the

laboratory (Tatarenkov et al. 2010), means that

K. marmoratus is an attractive system for studying

the genetic basis for many of the already defined phe-

notypes, including behavioral phenotypes (Edenbrow

and Croft 2011; Earley et al. 2012). Whole-genome

sequencing of many lineages will reveal the amount

of shared and unique single nucleotides and the var-

iation in insertions and deletions between lineages.

RNA-sequencing (RNA-seq) data will improve

genome assembly and annotation of the K. marmoratus

genome. RNA-seq is the shotgun sequencing of the tran-

scriptome (Wang et al. 2009; Ozsolak and Milos 2011),

and can be used to piece together genomic contigs or

scaffolds, for increasing the length of the scaffold and for

ordering and orienting contigs and scaffolds (Mortazavi

et al. 2010) (Fig. 1). Annotation is an integral part of the

genome assembly process (for a review see Yandell and

Ence [2012]). RNA-seq data play an important role in

the gene annotation of a de novo genome assembly.

RNA-seq data can be used to determine exon locations

and intro-exon boundaries for the transcripts expressed

in the tissues from which RNA is isolated, using the

program MAKER (Cantarel et al. 2008) or MAKER-2

(Holt and Yandell 2011). The programs rely on a com-

bination of evidence-based transcripts, ab initio predic-

tions and closely related species for training gene models

and making gene annotations. For the assembly of this

genome, RNA-sequencing is underway for multiple tis-

sues. We have generated RNA-seq libraries from poly(A)

tailed mRNA, to identify transcripts that will be trans-

lated into proteins, as well as from ribosomal

RNA-depleted mRNA, to identify non-translated tran-

scripts that have regulatory or other roles. We have

started to use RNA-seq data to identify and annotate

specific intron–exon boundaries. Additionally, we have

been able to scaffold two preliminary contigs with the

targeted approach of looking at the RNA-seq data (B. C.

Ring et al., unpublished data).

The improvement of sequencing technologies cou-

pled with the potential ease of assembly due to the ho-

mozygous nature of the fish means that a high-quality

draft assembly is possible in the near future and,

indeed, is currently being generated. Sequencing and

de novo genome assembly, coupled with gene annota-

tion, will propel research on K. marmoratus forward

and in new directions by providing a genetic founda-

tion to ask questions about adaptation, divergence, and

the genetic basis of traits of interest in K. marmoratus.

Next-generation sequencing techniques, both of

genomes and transcriptomes, provide tools for finding

the genes underlying traits of interest, especially for new

Fig. 1 Cartoon of how RNA-sequencing data and genomic contigs and/or scaffolds may be combined to increase scaffold length and

order contigs and/or scaffolds. Additionally, the annotation of an exon using RNA-sequencing data is shown.
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systems (Luikart et al. 2003; Stinchcombe and Hoekstra

2008; Gilad et al. 2009). These techniques have been

used to identify genes underlying phenotypic variation

between marine and freshwater populations of

sticklebacks (Hohenlohe et al. 2010; Jones et al.

2012), adaptation to serpentine soils by Arabidopsis

(Turner et al. 2010), and morphological differentiation

in lake trout (Goetz et al. 2010) and whitefish (Jeukens

et al. 2009). By having genomic information, re-

searchers will be able to query specific loci of interest,

as well as look at general patterns of diversity and

divergence in the K. marmoratus genome.

Conclusion

Kryptolebias marmoratus is an ideal organism to develop

as a genomic model for many phenotypes of interest.

For example, significant differences among lineages in

aggression and in responses to fighting experience

have been shown (Earley and Hsu 2008). Kryptolebias

marmoratus can survive for weeks out of water (Taylor

et al. 2008), with major physiological changes associated

with emersion, including major remodeling of the gills

(Leblanc et al. 2010). There has been considerable effort

put into studying the genes involved in tumorigenesis

and in the metabolism of toxins to develop

K. marmoratus as a model for tumor development

(Lee et al. 2008; Rhee et al. 2009). The opportunity

with K. marmoratus lies in the fact that lineages are

highly homozygous and highly differentiated, both

genetically (microsatellite markers) and phenotypically

(life-history and behavioral traits), which means that

crossing lineages to create F2 (or Fn) recombinant

inbred lines will facilitate understanding the genetic

basis of these traits and the manner in which they

segregate.
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