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Abstract
As stochastic simulations become increasingly common in biological research, tools for analysis
of such systems are in demand. The deterministic analogue to stochastic models, a set of
probability moment equations equivalent to the Chemical Master Equation (CME), offers the
possibility of a priori analysis of systems without the need for computationally costly Monte Carlo
simulations. Despite the drawbacks of the method, in particular non-linearity in even the simplest
of cases, the use of moment equations combined with moment-closure techniques has been used
effectively in many fields. The techniques currently available to generate moment equations rely
upon analytical expressions that are not efficient upon scaling. Additionally, the resulting
moment-dependent matrix is lower diagonal and demands massive memory allocation in extreme
cases. Here it is demonstrated that by utilizing factorial moments and the probability generating
function (the Z-transform of the probability distribution) a recursive algorithm is produced. The
resulting method is scalable and particularly efficient when high-order moments are required. The
matrix produced is banded and often demands substantially less memory resources.
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1. Introduction
Stochastic simulations are becoming an increasingly popular tool in biological modeling and
simulation due to the tendency of such systems to lie far from the thermodynamic limit
(Kaznessis, 2006; Tuttle et al., 2005). This condition, common when only a handful of
reactants exist in a system, renders deterministic models inaccurate (Gillespie, 1992a). The
primary problem with stochastic simulations is the mathematical intractability of the
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govering equation, the Chemical Master Equations (CME), that makes analysis particularly
difficult (Jahnke and Huisinga, 2007). The motivation for the following work is to propose
and provide an efficient tool to be used in analysis of stochastic systems potentially without
the need of the costly kinetic Monte Carlo sampling employed by the Gillespie Stochastic
Simulation Algorithm (SSA) or its derivatives (Gillespie, 1992b; Li et al., 2008; Salis and
Kaznessis, 2005; Gibson and Bruck, 2000).

An analogue to the CME proposed initially by Mc-Quarrie, among others, is the use of time
differentials of the moments of the probablility distribution (McQuarrie et al., 1964). In
principle, this deterministic analogue allows for system analysis without the need for Monte
Carlo sampling. Such methods are in use, but predominantly in smaller systems like simple
transient gene activation (Zechner et al.). While the moment viewpoint has not been applied
to larger systems, the hope is that this work will facilitate this research by making matrix
construction a quick and simple step. In particular, because biological systems often contain
unknown or inaccurate kinetic constants, our hope is that this work can aid in more easily
fitting such constants to experimental output. Traditionally, these constants are fit by
running many Monte Carlo simulations and can take enormous computational time.

Complications arise when 2nd-order reactions are included in a chemical network. In such
cases lower-order moments explicitly depend on higher-order moments, necessitating an
infinitely large matrix (Gómez-Uribe and Verghese, 2007). The production and analysis of
closure schemes for these open systems is an active area of research across several fields
(Singh and Hespanha, 2006, 2011; Grima, 2012; Lee et al., 2009; Engblom, 2006). What is
not often considered is the generation of the moment equations necessary once a particular
closure scheme is chosen. Such sets of equations can become enormous considering that
reproducing probability distributions accurately for complex systems have been shown to
require as many as eight moments (Sotiropoulos and Kaznessis, 2011). Recent publications
provide analytical solutions for the moment equations (Sotiropoulos and Kaznessis, 2011;
Gillespie, 2009), but do not touch on the scaling problems or memory allocation of such
systems.

The current work focuses on the efficient generation of a concise set of moment equations
for arbitrary chemical networks. It should be noted that the method, as described, only works
with elementary rate laws with integer stoichiometry. The method utilizes factorial moments
(indicated by curly brackets {·}) instead of traditional polynomial moments (indicated by
angled brackets 〈 · 〉) to conserve memory allocation. Factorial and polynomial moment
formulation are entirely equivalent basis sets. The use of the probability generation function,
the Z-transform of a probability distribution, also allows for a recursive algorithm as the
moment equations are produced by the systematic differentiation of the Z-transformed CME
(Z-CME). The results demonstrate the reduced memory load, reduced bandwidth, and
computational efficiency in several example systems.

2. Theory
The traditional approach to chemical kinetic modeling is deterministic in nature. Stochastic
models reframe chemical kinetics to take into account the randomness inherent to systems
far from the thermodynamic limit. This viewpoint requires probability-based mathematics
developed by McQuarrie, Van Kampen, Gardiner, and Gillespie, among others (McQuarrie
et al., 1964; Gardiner, 1985; Gillespie, 1977; Van Kampen, 1992). The theory presented
here focuses on Markov processes, the CME along with its Z-transform analogue, and the
moment viewpoint of chemical reaction dynamics. The primary novel work is an alternative
formulation of the moment equations for arbitrary chemical networks, including the
unclosed matrices for systems with bimolecular reactions. The algorithm produces both the
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traditional and factorial moment equation matrix for either numerical or symbolic kinetic
reaction rates for any desired order of moments.

2.1. Markov Processes and the Chemical Master Equation
For a stochastic process to be a Markov process the current state, xn at time tn, must be fully
determined by the previous state, xn−1 at time tn−1. This condition is often called a
“memoryless” condition, where the memory of states prior to the current state have no effect
on the future dynamics. In the particular case of chemical kinetic systems the time scale is
considered continuous, but the state space can be either continuous or discrete. Herein, the
state space is considered to be strictly discrete by viewing the state X = [x0, x1, …, xn]′ as a
set of the number of molecules for each of the n chemical species. The state exists within a
volume, O, that is well mixed to eliminate diffusive effects.

For stochastic processes the state can be described by a probability distribution P (X; t) at a
given time t. This distribution is a continuous, bounded, n-dimensional, real-valued function.
Given the Markov condition, the change in the probability distribution in time can thus be
described generally by:

(1)

where X is the current state, X′ is any state that is not X, and T (Y|X) is the transition
probability from state X to Y as a Poisson distributed event. By rearrangement one can reach
what is known as the Chemical Master Equation (CME) for a discrete state space:

(2)

The transition probability is a catch-all for any event that may bring the system into or out of
a given state. In chemical kinetics these events will be reactions and thus the transition
probabilities are equivalent to reaction propensities. For the general reaction

 the propensity for a reaction event to occur is:

(3)

Here xA is the number of molecules of A in the system, and xB is the number of molecules
of B. Thus Equation 2 can be reformulated as a sum over the set of reactions in a chemical
network:

(4)

Here νμ is the stoichiometic vector for reaction μ. The CME is an equation which perfectly
describes the time dynamics of any stochastic chemical network given an initial condition.
The problem is that, except for a select few simple equations, analytically solving such a
system is mathematically intractable.
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To fully describe a system by probability states Equation 4 would form an infinite set of
ODEs. Analysis is predominately performed using the Z-CME, the CME in terms of the
probability generating function (Z-transform). The Z-transform is formed by a simple
change of variables:

(5)

The vector S = [s0, s1, …, sn]′ represents the continuous transform variables for an n-
component system. The Z-transform simplifies the system by transforming from discrete
space (X) to a continuous space (S).

The Z-CME is thus formed by mathematical manipulation of Equation 4:

(6)

Here kμ is modified since the differential creates permutations instead of combinations.

Thus kμ must be divided by the appropriate factorials. Also  refers to product

stoichiometries whereas  refers to reactant stoichiometries. Both are strictly positive
constants. This formulation may appear daunting, but is extremely simple to implement for
any arbitrary chemical system with polynomial reaction rates (not non-linear rates). To make

things clearer the Z-CME for a system with one general reaction  is:

(7)

The advantages of using the Z-CME will become clear after a brief discussion of different
types of moments available to form the full moment equation matrix.

2.2. Moments and Factorial Moments
Moments are expected values that describe properties of a probability distribution. The
common examples are the mean (first moment) and the variance (related to the second
moment). For a molecular system the distribution is defined on the positive integer line. The
polynomial moments are:

(8)

When more than one chemical species has an order greater than zero these are known as
joint moments. The order of the moment is defined by m = m1 + m2 + … mn. While many
distributions can be described primarily by low-order moments (m equals one or two), more
complex systems can require as many as eight or ten moments to adequately reproduce the
probability distribution (Sotiropoulos and Kaznessis, 2011).

The literature concerning moment equations and closure schemes has focused on the
traditional set of polynomial moments (Gillespie, 2009; Sotiropoulos and Kaznessis, 2011;
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Singh and Hespanha, 2011), but any moment basis set is valid when describing a probability
distribution. The following work utilizes factorial moments, an equivalent basis set. As will
be shown shortly this has to do with the relationship between the Z-CME and the moments
of a distribution. The factorial moments are defined as:

(9)

The form (xi)mi refers to the mi-permutation of the variable xi: (x1)2 = x1 (x1 − 1), (x1)3 = x1
(x1 − 1) (x1 − 2), etc. The Z-transform of a distribution relates to the factorial moments as
follows:

(10)

Using the factorial moment basis there is a simple way to obtain the full set of factorial
moment equations that has not been previously considered. By starting at the Z-CME
(Equation 6) and then systematically differentiating by the elements of the S vector then
setting S = 1 one can obtain the time derivatives for any factorial moment desired.

2.3. Matrix Equation Production
The analytical derivation of polynomial moment equations has been previously developed
by several authors (Gillespie, 2009; Sotiropoulos and Kaznessis, 2011). The novelty of the
following approach is that the described method lends itself to efficient regression. Higher-
order moments are formed by applying an additional differentiation to a lower-order
moment. In this way there is no need to re-derive information previously determined to form
lower-order moments, thus saving substantial computational time. What is often not taken
into consideration when producing a full analytical expression of moment equations is that it
is almost never the case where only a select few moments are required. Typically, a system
will require all moments up to a specific order (denoted as M throughout this paper).
Providing an analyical expression does not provide an efficient way to fill a matrix of
moment equations when all moments up to order M are necessary.

To expand on this last point a bit further, the available moment equation generation
techniques exclusively rely on and provide an analytical equation for general moment
equations (Gillespie, 2009; Sotiropoulos and Kaznessis, 2011). Sotriopoulos provided the
following equation:

(11)

where

(12)
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Here ak (X) is the propensity of reaction k given the current state X, and νik is the
stoichiometry of component i for reaction k.

There are three issues with this formulation. First, the summation is of indeterminate size.
When there are N components there are N summations. When building a matrix generation
program for any number of components not knowing how many for-loops are needed may

be a problem in implementation. Second, the propensity term, , does not have a
computationally friendly form. Rather, it is a complex equation with multiple binomial
terms and stoichiometric considerations (Equations 22 and 29 in Sotiropoulos and Kaznessis
(2011)). Finally, as mentioned above, there is information waste in construction of the
moment matrix that becomes costly as the number of components and moments increase.
Note that the analytical form is not recursive: there is no intutive way to construct the
higher-order moments from the moment equations previously determined. The proposed
method may not provide an analytical equation for the moment equations, but by utilizing
the Z-CME and factorial moments it does avoid this last problem in particular to produce an
efficient recursive algorithm.

Using the Z-CME differentials can produce the moment equations. A quick application to
Equation 7 illustrates this point. The left side of the equation is simple:

The full transformed equation before simplification is:

The reduced form then contains a single term:

(13)

Taking the middle expression above it is easy to then produce ∂t {A2} by applying a second
differential. The final expression would be:

(14)

This method is applicable to any arbirary set of chemical reactions.

A concern when producing moment matrices and moment closure schemes is a standardized
and efficient indexing scheme for moments. Here it is proposed that the ideal indexing will
achieve one main goal: keep the system as banded as possible. In the case of factorial
moments the easiest way to band the matrix is to keep the moments of order-m together. In
elementary chemical systems the stoichiometry of a chemical component in a reaction will
rarely exceed an absolute value of two. In these cases then the factorial moment equations of
order-m will only depend on the moments of order-(m−1), order-m, or order-(m+1). This
tends to create systems with lower bandwidths. The only other consideration would be to put
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chemical species which are not involved in any common reactions apart. Within each order
the moments are simply indexed in descending order for each of the components. For
example, with three components the third-order moments are ordered:

[ ].

The final point to make is how the factorial moment matrix produced here relates to the
polynomial moment matrix typically considered in the literature. The factorial moment
matrix essentially takes the form:

(15)

The form {·} represents a vector containing all factorial moments up to order M. The
number of moments up to order-M for N components is the same as the number of terms in
a general polynomial with N variables and up to order-M:

(16)

Therefore, a system with four components, as decribed above, with eight moments would
require 495 rows. The number of columns depends on the highest order reaction, but will be
at least as much. This matrix can be quite large, especially when there is a large number of
components involved in a system.

The polynomial matrix takes the same form and is the same size:

(17)

The polynomial moments and factorial moments are related through a similarity tranform.
This means they have the same eigenvalues, just in a different basis set:

(18)

The creation of this transform matrix T is rather simple and thus the programs provided are
able to produce Mf and M, whichever is preferred.

3. Results and Examples
In the following section three examples of varying complexity and size are presented to
show the primary advantages of the Z-CME approach. The algorithm used to produce the
matrices of interest is written in Matlab. The matrices can be output for both numerical and
symbolic kinetic constants. The main advantages claimed for the algorithm is speed,
especially when producing high-order moments, and a reduced bandwidth and memory load
in most cases. The three examples will be a simple reversible dimerization (2A ↔ B), a
Michaelis-Menten system (S+E ↔ S : E → E + P), and a gene regulatory network model (9
components, 10 reactions). In all cases the matrices provided will utilize symbolic kinetic
constants. In order to provide a better estimate of computational efficiencies, generation
times are provided for these three matrices for the recursive algorithm, an equivalent non-
recursive algorithm, and for the python code described by Gillespie (Gillespie, 2009). These
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represent a non-analytic recursive algorithm, a non-analytic non-recursive algorithm, and an
analytic algorithm, respectively. We should stress that a direct comparison could not be
rigorously developed and is of limited use, but we present these CPU times only to provide a
sense of the computational efficiencies gained.

3.1. Reversible Dimerization
In reversible dimerization two monomers (A) combine in a second-order monomolecular
reaction to form a dimer (B). This dimer can then split apart to reform the monomer bases.
This reaction network is one of the simplest nonlinear systems available with only two
reactions and two components. The network and Z-CME are as follows:

(19)

Table 1 and Table 2 show Mf and M respectively for the moment equations up to order-2.
For the recursive algorithm the generation time for eight moments is on average 0.0502
seconds. This is compared to 0.962 seconds for the non-recursive version and 18.3 seconds
for the code provided by Gillespie (Gillespie, 2009). Figure 1 highlights the non-zero entries
in the factorial moment matrix compared to the polynomial moment matrix for 8 moments.
In all cases the factorial moment matrix will have at most as many non-zero entries as the
polynomial moment matrix. Here there are 179 non-zero entres for the factorial moment
case and 846 non-zero entries for the polynomial moment case. The factorial moment matrix
will also have a smaller bandwidth in all cases. The bandwidth for the factorial moment
matrix is 16 (7 left bandwidth, 9 right bandwidth), and for the polynomial matrix is 52 (43
left bandwidth, 9 right bandwidth).

It should be noted that the system as described has a single degree of freedom since 2 · B = 2
· B0 + A0 − A, and thus the matrix could be reduced to include only the moments of A as a
simplification.

3.2. Michaelis-Menten Network
The Michaelis-Menten reaction system is comprised of three reactions. First a substrate (S)
complexes with an enzyme (E) to form a complex (S:E). Then the complex either degrades
back to its original components or a product is formed (P). The network has four
components and three reactions:

This system has only two degrees of freedom. Using the following relations the system is
reduced to two components (S and E): S + E : S + P = ST and E + E : S = ET. Using these
relations the reduced Z-CME can be determined to be:

(20)
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Table 3 and Table 4 show Mf and M respectively for the reduced Michaelis-Menten system
up to order-2. For the non-reduced set of reactions the recursive algorithm generation time
for eight moments is on average 0.126 seconds. This is compared to 21.9 seconds for the
non-recursive version and 37.2 seconds for the code provided by Gillespie (Gillespie, 2009).
Figure 2 highlights the non-zero entries in the factorial moment matrix compared to the
polynomial moment matrix for 8 moments. There are 244 non-zero entires for the factorial
moment case and 762 non-zero entries for the polynomial moment case. The bandwidth for
the factorial moment matrix is 26 (16 left bandwidth, 10 right bandwidth), and for the
polynomial matrix is 54 (44 left bandwidth, 10 right bandwidth).

3.3. Gene Network Model
While the previous two examples effectively show the memory conserving and bandwidth
reducing advantages of the method, both were simple enough to require little time to
complete. To demonstrate the final advantage, an ability to produce large matrices quickly, a
larger network was chosen, that of a single gene model. The network consists of ten
reactions involving nine components presented in Table 5.

A two-moment matrix for nine components requires 55 rows and 194 columns. For the non-
reduced set of reactions the recursive algorithm generation time for four moments is on
average 0.251 seconds. This is compared to 12.8 seconds for the non-recursive version and
152.6 seconds for the code provided by Gillespie (Gillespie, 2009). For eight moments, the
non-recursive and Gillespie’s code both run out of memory, but the recursive algorithm
takes 105 seconds to complete. The Z-CME and two-moment matrix are not shown for size
considerations. Figure 3 shows the non-zero entries for 8 moments. The factorial moment
matrix is a 24310 by 48355 matrix, a staggeringly large matrix that pushes the memory
limits of Matlab when produced. The program takes about two minutes to produce the
symbolic matrix on a desktop computer The transform matrix is larger (48355 by 48355)
and takes three minutes to produce. The number of non-zero en tires in the factorial moment
matrix is 237299, whereas for the polynomial matrix there are 1439085 non-zero entries
This matrix is far larger than what would be feasable for any type of computational method
utilizing the moments of a stochastic simulation.

4. Discussion
The first two reaction networks presented (Dimerization in Figure 1 and the Michaelis-
Menten system in Figure 2) demonstrate advantages in bandwidth and memory allocation
for the factorial moment matrix, Mf, compared to the polynomial moment matrix, M, present
in the literature. In the dimerization system the factorial matrix is banded with three main
bands corresponding to the (m−1)-order, m-order, and (m+1)-order moments. The
polynomial moment matrix is nearly lower-triangular in nature and contains over five times
as many non-zero entries. Similarly the Michaelis-Menten system has four main bands in the
factorial moment matrix. The fourth band is an (m−2)-order moment resulting from the
reduction using the conservation equation E + E : S = ET. The polynomial moment matrix
has about three times as many non-zero entries and is nearly lower triangular. Both systems
take a negligible amount of time to produce up to order-eight moments. The important point
is that the resulting matrix will have at most the same number of non-zero entries and
bandwidth as the polynomial matrix, never more. As far as memory allocation and
bandwidth reduction are concerned the factorial moment equations are unequivocally better
than traditional polynomial moment equations in all elementary chemical networks.
Although it would be obviously useful, we do not have a rigorous mathematical means for
providing scaling arguments that show precisely how much sparser the factorial moment
matrix is compared to the polynomial moment matrix or to what degree these matrices can
take advantage of sparse algorithms.
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The final system (Gene network, Figure 3) demonstrates the most impressive aspect of the
method presented, its efficiency. The matrix produced is massive with over 109 entries in the
system, pushing the limit of memory allocation in many programs. The production of such a
set of moment equations takes less than five minutes in total and shows that even in this
extreme case the system does not require a prohibitively long period of time to run.

This final network also illustrates one of the drawbacks of utilizing the moments matrix in
stochastic simulation for complex systems. Some systems will require four, six, or even
eight moments to produce accurate results. For systems with, say, nine components this
obviously becomes prohibitive in the analytical sense. The number of equations in
deterministic systems scale O (N) where N is the number of components. On the other hand,
the number of equations in stochastic systems will scale O (NM) where M is the maximum
order of moments. The work as presented shows that analysis using moment equations will
have to take into careful consideration the number of components and valid moments
necessary to produce accurate results.

5. Conclusion
The results provided in the previous section illustrate two main points: 1) The factorial
moment basis produces a lower bandwidth and less memory intensive set of equations than
the polynomial moment basis and in many cases should be preferentially chosen for
analysis; 2) The use of the transforms of the CME (here the Z-CME, but other transforms
could also be used) allow for efficient equation production through application within a
recursive algorithm. These results show that for simple systems, and ignoring the closure
problems still present in moment-based formulations, production of the set of equations
necessary for analysis is not a time-consuming step.

Moment closure is the primary problem in the way of using such systems for stochastic
analysis, and there is ongoing research in the area. The results as presented facilitate
exploration of higher-order closure schemes. Such schemes are likely necessary in the case
of complex probability systems, like bimodal systems, that are impossible to duplicate with
anything less than six moments. Currently, it is not possible to compare the performance of
polynomial moment matrices to the equivalent factorial moment matrices. Even with the
proper algorithm, since current closure schemes are predominantly lower-order, there would
likely not be significant improvement. We are working on a general purpose closure scheme
that can be applied at any order and on arbitrary chemical networks that should facilitate the
comparison of factorial moment matrices to their polynomial counterparts in the future.
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Highlights

• We show a method to efficiently generate Chemical Master Equation moment
equations.

• The method uses a Z-transform of the Chemical Master Equation.

• The moment equations in the form of matrices of three example cases are
generated.

• Very large matrices are produced quickly and the resulting matrix is banded.

• The method opens up avenues for research into high-order closure methods.
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Figure 1.
Matrix Form For Reversible Dimerization
Comparison of the matrix form for the factorial moment equations and polynomial moment
equations for reversible dimerization up to eight moments. The non-zero entries present in
both matrices are represented by red empty circles, while the non-zero entries present only
in the polynomial matrix are represented by black dots.
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Figure 2.
Matrix Form For a Michaelis-Menten Network
Comparison of the matrix form for the factorial moment equations and polynomial moment
equations for a Michaelis-Menten network up to eight moments. The non-zero entries
present in both matrices are represented by red empty circles, while the non-zero entries
present only in the polynomial matrix are represented by black dots.
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Figure 3.
Matrix Form For a Nine-Component Gene Network
Comparison of the matrix form for the factorial moment equations and polynomial moment
equations for a nine component gene network up to eight moments. The non-zero entries
present in both matrices are represented by red empty circles, while the non-zero entries
present only in the polynomial matrix are represented by black dots.

Smadbeck and Kaznessis Page 15

Chem Eng Sci. Author manuscript; available in PMC 2013 December 24.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Smadbeck and Kaznessis Page 16

Ta
bl

e 
1

M
om

en
t M

at
ri

x 
fo

r 
D

im
er

iz
at

io
n 

- 
Fa

ct
or

ia
l

{A
}

{B
}

{A
2 }

{A
B

}
{B

2 }
{A

3 }
{A

2 B
}

0
0

0
0

0
0

0

0
2k

2
−

2k
1

0
0

0
0

0
−

k 2
k 1

0
0

0
0

0
2k

2
−

2k
1

4k
2

0
−

4k
1

0

0
0

0
−

k 2
2k

2
k 1

−
2k

1

0
0

0
0

−
 2

k 2
0

2k
1

Chem Eng Sci. Author manuscript; available in PMC 2013 December 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Smadbeck and Kaznessis Page 17

Ta
bl

e 
2

M
om

en
t M

at
ri

x 
fo

r 
D

im
er

iz
at

io
n 

- 
Po

ly
no

m
ia

l

〈A
〉

〈B
〉

〈A
2 〉

〈A
B
〉

〈B
2 〉

〈A
3 〉

〈A
2 B
〉

0
0

0
0

0
0

0

2k
1

2k
2

−
2k

1
0

0
0

0

−
k 1

−
k 2

k 1
0

0
0

0

−
4k

1
4k

2
8k

1
4k

2
0

−
4k

1
0

2k
1

−
2k

2
−

3k
1

2k
1 

−
 k

2
2k

2
k 1

−
2k

1

−
k 1

k 2
k 1

−
2k

1
−

2k
2

0
2k

1

Chem Eng Sci. Author manuscript; available in PMC 2013 December 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Smadbeck and Kaznessis Page 18

Ta
bl

e 
3

T
w

o 
M

om
en

t M
at

ri
x 

fo
r 

M
ic

ha
el

is
 M

en
te

n 
Sy

st
em

 -
 F

ac
to

ri
al

{1
}

{S
}

{E
}

{S
2 }

{S
 · 

E
}

{E
2 }

{S
3 }

{S
2  

· E
}

{S
 · 

E
2 }

0
0

0
0

0
0

0
0

0

E
T
k 2

0
−

k 2
0

−
k 1

0
0

0
0

E
T
 (

k 2
 +

 k
3)

0
−

k 2
 −

 k
3

0
−

k 1
0

0
0

0

0
2E

T
k 2

0
0

−
2k

2
0

0
−

2k
1

0

E
T
k 2

E
T
 (

k 2
 +

 k
3)

(E
T
 −

 2
) 

k 2
0

−
k 1

 −
 k

2 
−

 k
3

−
k 2

0
−

k 1
−

k 1

0
0

2(
E

T
 −

 1
)(

k 2
 +

 k
3)

0
0

−
2k

2 
−

 2
k 3

0
0

−
2k

1

Chem Eng Sci. Author manuscript; available in PMC 2013 December 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Smadbeck and Kaznessis Page 19

Ta
bl

e 
4

T
w

o 
M

om
en

t M
at

ri
x 

fo
r 

M
ic

ha
el

is
 M

en
te

n 
Sy

st
em

 -
 P

ol
yn

om
ia

l

〈1
〉

〈S
〉

〈E
〉

〈S
2 〉

〈S
 · 

E
〉

〈E
2 〉

〈S
3 〉

〈S
2  

· E
〉

〈S
 · 

E
2 〉

0
0

0
0

0
0

0
0

0

E
T
k 2

0
−

k 2
0

−
k 1

0
0

0
0

E
T
 (

k 2
+

 k
3)

0
−

k 2
 −

 k
3

0
−

k 1
0

0
0

0

E
T
k 2

2E
T
 k

2
−

k 2
0

k 1
 −

 2
k 2

0
0

−
2k

1
0

E
T
k 2

E
T
 (

k 2
 +

 k
3)

(E
T
 −

 1
)k

2
0

k 1
 −

 k
2 

−
 k

3
−

k 2
0

−
k 1

−
k 1

E
T
 (

k 2
 +

 k
3

0
2(

E
T
 −

 1
)(

k 2
 +

 k
3)

0
k 1

−
2k

2 
−

 2
k 3

0
0

−
2k

1

Chem Eng Sci. Author manuscript; available in PMC 2013 December 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Smadbeck and Kaznessis Page 20

Table 5

Gene Network Model

DNA + RNAp → DNA:RNAp

DNA:RNAp → DNA + RNAp

DNA:RNAp → DNA + RNAp*

RNAp* → RNAp + mRNA

mRNA + rib → mRNA:rib

mRNA:rib → mRNA + rib

mRNA:rib → mRNA + rib*

rib* → rib + Product

mRNA → ∅

Product → ∅
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