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The centriole is a conserved microtubule-based organelle

essential for both centrosome formation and cilium bio-

genesis. Five conserved proteins for centriole duplication

have been identified. Two of them, SAS-5 and SAS-6,

physically interact with each other and are codependent

for their targeting to procentrioles. However, it remains

unclear how these two proteins interact at the molecular

level. Here, we demonstrate that the short SAS-5

C-terminal domain (residues 390–404) specifically binds

to a narrow central region (residues 275–288) of the SAS-6

coiled coil. This was supported by the crystal structure of

the SAS-6 coiled-coil domain (CCD), which, together with

mutagenesis studies, indicated that the association is

mediated by synergistic hydrophobic and electrostatic

interactions. The crystal structure also shows a periodic

charge pattern along the SAS-6 CCD, which gives rise to an

anti-parallel tetramer. Overall, our findings establish the

molecular basis of the specific interaction between SAS-5

and SAS-6, and suggest that both proteins individually

adopt an oligomeric conformation that is disrupted upon

the formation of the hetero-complex to facilitate the

correct assembly of the nine-fold symmetric centriole.
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Introduction

Centrioles are self-replicating cylindrical organelles with a

unique nine-fold symmetry. They are 0.1–0.5 mm long,

0.1–0.2 mm in diameter, and are essential for assembling

centrosomes and cilia in eukaryotic cells (Azimzadeh and

Marshall, 2010). Defects in centrosome and cilium assembly

or function have been linked to a broad spectrum of human

diseases (Nigg and Raff, 2009; Bettencourt-Dias et al, 2011).

Centrioles are usually composed of a cartwheel structure

and nine triplets of microtubules (MTs) (Preble et al, 2000;

Marshall, 2001). Exceptions are singlets in centrioles of

Caenorhabditis elegans sperm cells and early embryos

(Delattre and Gonczy, 2004). Centrioles in C. elegans show

a double-layered central tube, which is likely related to the

cartwheel structure seen in other species (Pelletier et al,

2006). Studies in a number of research groups have

uncovered five C. elegans centriolar proteins, namely the

polo-like kinase ZYG-1 (O’Connell et al, 2001), and the four

coiled-coil-containing proteins, SPD-2 (Kemp et al, 2004;

Pelletier et al, 2004), SAS-4 (Kirkham et al, 2003; Leidel

and Gonczy, 2003), SAS-5 (Dammermann et al, 2004;

Delattre et al, 2004), and SAS-6 (Dammermann et al, 2004;

Leidel and Gonczy, 2005). Homologues of these proteins have

been identified in flies and humans (Hung et al, 2000;

Andersen et al, 2003; Bettencourt-Dias et al, 2005;

Habedanck et al, 2005; Leidel et al, 2005; Basto et al, 2006;

Stevens et al, 2010a; Tang et al, 2011). Recently, it was

reported that the protein phosphatase PP2A also plays an

important role in centriole assembly by regulating SAS-5

recruitment and/or maintaining the structural stability of

SAS-5 and ZYG-1 (Song et al, 2011; Kitagawa et al, 2011a). In

green algae and humans, Cep135/Bld10 also participates in the

formation of the cartwheel structure during centriole assembly

(Hiraki et al, 2007; Mottier-Pavie and Megraw, 2009).

RNAi and mating-based assays in C. elegans have shown

that centriole duplication is a multistep process, with the five

centriolar proteins being recruited in a sequential manner

(Delattre et al, 2006; Pelletier et al, 2006; Dammermann et al,

2008). First, SPD-2 is brought close to the mother centriole.

The kinase ZYG-1, which is required for the subsequent

recruitment of the SAS-5/SAS-6 complex, is then incorporat-

ed into the nascent daughter centriole. SAS-5 and SAS-6

together form the initial central tube. Subsequently, SAS-4

is recruited to build an outer layer of the central tube. Finally,

nine singlet MTs are assembled around the central tube to

generate a daughter centriole that is identical to the mother.

The nine-spoked cartwheel is the first assembled structure

during centriole duplication in many organisms, and SAS-6

has been previously shown to ensure the nine-fold symmetry

of centrioles in green alga (Nakazawa et al, 2007). Recently,

crystal structures of the N-terminal head group of SAS-6 from

several organisms have been determined, which suggested

that SAS-6 could self-associate in vitro into assemblies akin to

the central hub of the cartwheel (van Breugel et al, 2011;

Kitagawa et al, 2011b). However, whether SAS-6 alone could

faithfully drive the formation of the strict nine-fold symmetry

of centrioles is still a matter of some debate (Cottee et al,

2011). Indeed, modelling the oligomeric assembly of SAS-6

using the crystal structures of the Chlamydomonas reinhardtii

and Danio rerio SAS-6 head groups results in spirals of

different orientations or a flat ring that fits into an eight-

fold symmetry (Cottee et al, 2011). Furthermore, the

oligomeric structure of recombinant Drosophila SAS-6
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(DSAS-6) is different from the in vivo structure of centrioles

(Gopalakrishnan et al, 2010). Similarly, overexpression of

DSAS-6 in Drosophila embryos resulted in de novo

formation of irregular tube-like structures that can be much

larger than the centriole; interestingly, overexpression of

other centriolar proteins such as SAS-4 and the polo-like

kinase SAK also generates such tube-like structures (Peel

et al, 2007). Intriguingly, although the binding affinity

between the head groups of C. elegans SAS-6 is comparable

to that of C. reinhardtii, H. sapiens, and D. rerio SAS-6,

recombinant C. elegans SAS-6 alone does not form a

cartwheel-like structure similar to that of non-nematode

SAS-6 proteins (Pelletier et al, 2006; van Breugel et al, 2011;

Kitagawa et al, 2011b). Notably, the head group interaction of

different SAS-6 proteins (dissociation constant (Kd)B60–

110mM) is relatively weak and has been thought unlikely to

be the driving force for forming the nine-fold symmetry

(Cottee et al, 2011). Taken together, these data suggest that

faithful duplication of the strict nine-fold symmetric

centrioles likely requires other symmetry-ensuring factors.

It was shown previously that, although overexpression of

DSAS-6 alone resulted in an irregular tube-like structure, co-

overexpression of DSAS-6 with Ana2, the putative Drosophila

orthologue of SAS-5, generated a highly ordered tubular struc-

ture, the SAS tubule. This structure looked the same as the

in vivo cartwheel structure, suggesting that Ana2 assists SAS-6

in Drosophila centriole assembly (Stevens et al, 2010b).

Similarly, STIL, the putative vertebrate orthologue of SAS-5,

regulates centrosome integrity (Castiel et al, 2011), and

depletion of either SAS-6 or STIL made the other protein fail

to target to the procentriole, indicating that SAS-6 and STIL in

vertebrates are mutually dependent for centriolar localization

(Tang et al, 2011; Arquint et al, 2012; Vulprecht et al, 2012).

Earlier experiments carried out in worms revealed that SAS-5

and SAS-6 physically interact with each other for their

codependent centriolar localization and that centriole

duplication failed in embryos with a sas-5-mutant that fails to

interact with SAS-6, indicating that SAS-5 works synergistically

with SAS-6 in C. elegans centriole assembly (Leidel et al, 2005).

Altogether, these findings suggest that the SAS-5/Ana2/STIL

family of proteins is likely the extra factor needed for SAS-6 to

generate the nine-fold symmetry of centrioles.

It was previously reported that SAS-5 binds to the SAS-6

coiled coil and that SAS-6 fails to interact with the sas-

5(t2079) mutant, which corresponds to a C-terminal single-

residue mutation of SAS-5, R397C (Leidel et al, 2005). Studies

of centriole duplication in C. elegans indicate that the SAS-5/

SAS-6-based central tube is the first observable structure in

procentrioles, which grows wider upon the recruitment of

SAS-4 (Pelletier et al, 2006). However, it remains elusive what

the molecular mechanism of SAS-5 and SAS-6 interaction is

and how the central tube of C. elegans centrioles is formed.

In this study, we determine the crystal structure of the

C. elegans SAS-6 coiled coil and establish the molecular basis

for SAS-5/SAS-6 interaction using structure-based mutagen-

esis studies. We further show that purified SAS-5/SAS-6

complex assembles into semicircular or arc-like structures

with a diameter similar to that of the central tube of

C. elegans centrioles and that their interaction disrupts the

autoinhibitory oligomerization of both SAS-5 and SAS-6.

Based on our findings and previous reports, we propose a

molecular mechanism for centriole duplication in C. elegans.

Results

The C-terminal domain of SAS-5 is both necessary and

sufficient for interaction with SAS-6

Previous studies using yeast two-hybrid assays showed that

the interaction between SAS-6 and SAS-5 was undetectable

when using SAS-5 corresponding to the sas-5(t2079) mutant

allele (Leidel et al, 2005). Since this mutation (R397-C) is

located close to the C-terminus of SAS-5 and as the last 15

residues of SAS-5 are predicted to form an a helix, we

wondered whether this C-terminal helix alone is sufficient

for binding SAS-6. To test this, we carried out in vitro

pull-down experiments using five truncations of SAS-5 in

addition to the full-length protein (Figure 1A). In order to

increase yield and to better visualize the smaller fragments,

we added maltose-binding protein (MBP, MwB42 kDa) as a

fusion tag to the N-termini of all six constructs (Figure 1B).

Our in vitro pull-down results showed that the SAS-5 CTD

(residues 390–404) is both necessary and sufficient to bind

SAS-6 (Figure 1C). In a control experiment, we used MBP-

loaded Ni-NTA beads to pull down SAS-5, which shows no

bound SAS-5 (Figure 1D), indicating that the determined

interaction between SAS-5 and SAS-6 is specific. Notably,

during purification of SAS-6 we consistently observed two

degraded fragments on SDS–PAGE gels (Figure 1C, asterisks).

Using N-terminal amino-acid analysis, we found that the two

fragments correspond to sequences starting at residues 225

and 239, respectively. This indicates that this neck region of

SAS-6 (in reference to the head group and the coiled-coil tail),

approximately spanning residues 220–240, is flexible and

prone to proteolysis.

The C-terminal domain of SAS-5 binds specifically to the

central part of the SAS-6 coiled coil

It was previously reported that SAS-5 binds specifically to the

coiled-coil domain (CCD) of SAS-6 (residues 180–415) (Leidel

et al, 2005; Boxem et al, 2008). Our results in Figure 1C show

that only the last 15 residues of the SAS-5 CTD are required

for SAS-6 interaction. As this CTD is much smaller in size

compared with the SAS-6 coiled coil, we anticipated that

only a small segment of the SAS-6 coiled coil would be

involved in the interaction. To locate the SAS-5-binding site,

we generated six truncations of SAS-6 (Figure 1E), which

were all expressed and soluble in solution (Figure 1F). We

then carried out in vitro binding assays using amylose beads

preloaded with the MBP-tagged SAS-5 CTD to pull down SAS-

6 protein. The SAS-5 CTD specifically bound to the central

region of the SAS-6 coiled coil, spanning residues 248–303

(Figure 1G). In a control assay we used MBP alone as the bait

to pull down SAS-6 and no significant binding was detected

(Figure 1H), showing that the interaction between the SAS-5

CTD and the SAS-6 coiled coil is specific. In a reciprocal

binding experiment, we used Ni-NTA bound SAS-6 constructs

to pull down the MBP-tagged SAS-5 CTD, which further

confirms that SAS-5 binds to the same region of the SAS-6

coiled coil (Supplementary Figure S1).

Crystal structure of the SAS-6 CCD reveals an

electrostatic periodicity along the coiled coil

To investigate the interaction between SAS-5 and SAS-6 at

the molecular level, we determined the crystal structure of

the SAS-6 CCD (residues 248–410). This segment contains
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the SAS-5-binding site mapped above. The structure was

determined to 3.3-Å resolution (Table I; Figure 2A). In the

structure, each of the two chains is folded into a continuous a
helix spanning residues 250–407. The two helices form a

parallel coiled coil extending to 230 Å in length. Interestingly,

an electrostatic surface plot indicated that the SAS-6 CCD

exhibits a periodically charged pattern along the coiled coil—

the segments spanning residues 250–293 and 343–390 are

predominantly negatively charged, and residues 294–342

and 391–407 are mainly positively charged (Figure 2B).

Sequence alignment of SAS-6 proteins from three different

Caenorhabditis species indicated that the surface of the

coiled-coil region preceding the CCD, spanning residues

220–250, is also negatively charged (Supplementary Figure

S2), whereas the C-terminal part of SAS-6 (residues 410–492)

contains five conserved lysine/arginine residues and is

NH2
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Figure 1 The C-terminal domain of SAS-5 interacts with the central part of the SAS-6 coiled coil. (A) Deletion constructs of SAS-5 used for
in vitro binding assays with SAS-6. CTD, carboxy-terminal domain. Numbers indicate amino-acid positions or ranges. The right column shows
a summary of the binding results in (C). (B) Purified MBP and soluble fractions of MBP-tagged SAS-5 proteins for in vitro pull-down assays.
(C) In vitro pull-down results of SAS-5 proteins using Ni-NTA bound full-length SAS-6 as the bait. MBP is used as a negative control for
detecting tag-dependent binding. SAS-5 proteins specifically pulled down by SAS-6 are indicated with arrowheads. Marked by asterisks are the
two degradation products of SAS-6. (D) No non-specific interaction to the resin or the MBP tag was detected. (E) Truncation constructs of SAS-6
used for in vitro binding assays with the SAS-5 CTD. The right column shows the summary of the binding results in (G). (F) Soluble fractions of
SAS-6 proteins used in the in vitro pull-down assays. Arrowheads indicate the target proteins. (G) In vitro pull-down results of SAS-6 proteins
using amylose beads preloaded with the MBP-tagged SAS-5 CTD as the bait. Filled arrowheads indicate SAS-6 proteins pulled down by SAS-5.
An empty arrowhead indicates the MBP-dependent non-specific binding of the construct containing residues 1–218 of SAS-6, which is
comparable to what is seen in the control experiment in (H). Asterisks indicate the degradation products of SAS-6. (H) Control experiments to
show no non-specific binding of SAS-6 proteins to the MBP tag.
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positively charged (Supplementary Figure S3). Previously

published crystal structures of SAS-6 proteins have shown

that the head group together with the N-terminal part of the

CCD of SAS-6 forms a dimer (van Breugel et al, 2011;

Kitagawa et al, 2011b). Taken together, we conclude that

C. elegans SAS-6 folds into a tadpole-like structure with

an alternating charge distribution along its coiled-coil tail

(Figure 2C).

Association of SAS-5 and SAS-6 is based on synergistic

hydrophobic and electrostatic interactions

To further narrow down the specific binding site of SAS-5 on

SAS-6, we generated multiple structure-based deletion con-

structs of SAS-6 in the coiled-coil region covering residues

248–303 that is essential for their interaction (Figure 3A). To

avoid disrupting or distorting the coiled-coil structure, each

deletion removed n� 7 residues (n¼ 2, 3, or 4) to maintain

the register of the heptad repeats of the coiled coil. We also

generated a deletion outside of this region, spanning residues

317–344, as a control to show that a partial deletion of the

SAS-6 coiled coil did not affect its folding or the binding

ability of the neighbouring region to SAS-5. Using in vitro

pull-down assays, we determined that the region containing

residues 275–288 of SAS-6 is essential for SAS-5 binding

(Figure 3B).

To determine which individual residues are directly in-

volved in the interaction, we generated four structure-based

mutations of all residues in this 14-residue segment that are

conserved among Caenorhabditis species but are not parts of

the coiled-coil interface (Figure 3C, mA, mB, mC, and mD).

Results of the in vitro pull-down experiments indicated that

mutations of either the central hydrophobic residues (mB:

I279AþM283A) or the flanking negatively charged residues

(mA: E275AþE276AþE278A, mD: E287A) nearly comple-

tely abolished the SAS-5/SAS-6 interaction. In contrast, mu-

tation of another charged residue in the same region (mC:

E286A) seemed not to affect the interaction (Figure 3D). The

influence of the mutations on the SAS-5/SAS-6 interaction

was further measured by isothermal titration calorimetry

(ITC) assays. These indicated that each of the three mutations

(mA, mB, and mD) completely abolished the interaction

between SAS-5 and SAS-6, whereas the mutation mC only

slightly reduced the binding affinity (Supplementary Figure

S4A). Given that all these mutated residues are solvent

exposed, as seen in the crystal structure, this suggests that

the interaction between SAS-5 and SAS-6 is structure-based

rather than a non-specific electrostatic interaction.

We showed above that the SAS-5 CTD (residues 390–404)

is responsible for interacting with SAS-6 (Figure 1C). To

further identify which residues in this region are directly

involved in the interaction with SAS-6, we generated 11

mutations in the SAS-5 CTD that substituted each non-

alanine residue with an alanine, except for the residue

R397, which was replaced by a cysteine as in the previously

reported sas-5(t2079) mutant (Leidel et al, 2005) (Figure 3E).

All SAS-5 CTD mutations were fused to the C-terminus of

MBP to facilitate the visualization of the proteins on SDS–

PAGE gels. We then carried out in vitro binding assays using

Ni-NTA bound 6�His–SAS-6 (residues 1–410) to pull down

SAS-5. While most of the mutations did not affect the amount

of SAS-5 pulled down, four of them (M4/I396A, M5/R397C,

M8/Y400A, and M10/R403A) drastically reduced the interac-

tion between SAS-6 and SAS-5 (Figure 3F). To quantitate the

influence of the mutations on the interaction, we again

carried out ITC experiments using individually purified pro-

teins. None of the four mutations that could not be pulled

down by SAS-6 showed a measurable Kd (Supplementary

Figure S4B).

In summary, we have identified the residues on both SAS-5

and SAS-6 that are directly involved in the interaction of these

two centriolar proteins. These data, together with the crystal

structure of the SAS-6 CCD and the predicted helical structure

of the SAS-5 CTD, allowed us to generate a docking model

for the interaction between the two proteins (Figure 3G).

The docking was carried out by ClusPro 2.0 (Kozakov et al,

2010) using the crystal structure of the SAS-6 CCD as the

receptor and a theoretical helical model of the SAS-5 CTD as

the ligand. Multiple predicted interaction models were

generated (Supplementary Figure S5). In a representative

docked model, the helix of the SAS-5 CTD was placed nearly

perpendicular onto the SAS-6 coiled coil. This arrangement

allowed both the hydrophobic interactions between the cen-

tral two pairs of non-polar residues (SAS-6: I279/M283 versus

SAS-5: I396/Y400) and the electrostatic interactions between

the flanking oppositely charged residues (SAS-6: E275/E276/

E278 versus SAS-5: R403). However, the distance between

E287 of SAS-6 and R397 of SAS-5 seems too far for establish-

ing an electrostatic interaction. One possibility is that the side

chains of these two charged residues form salt bridges with

the backbone of the opposite molecule. Alternatively, the

SAS-6 coiled coil might bend at the interaction site to max-

imize the intermolecular contacts, which has been seen in

other interactions between a helix and a coiled coil (Sibanda

et al, 2001). Given the nearly symmetric arrangement of the

SAS-6 coiled coil and the stoichiometry of the complex (SAS-6

dimer: SAS-5¼1:1. See the ITC results in Supplementary

Figure S4), it suggests that SAS-5 only binds to one of the

two interacting sites on the SAS-6 coiled coil, which implies

that binding of SAS-5 to one site either occludes the other site

from binding SAS-5 or disrupts the structural symmetry

by inducing local conformational changes of the SAS-6

coiled coil.

Table I Data collection and refinement statistics

Data collection
Space group P61
Cell dimensions

a, b, c (Å) 140.29, 140.29, 74.67
Resolution (Å) 39–3.3 (3.48–3.30)a

No. unique reflections 12775 (1851)
Rmerge 0.138 (0.967)
I/sI 10.4 (1.9)
Overall completeness (%) 99.9 (100.0)
Overall redundancy 7.2 (7.4)
Anomalous completeness (%) 99.5 (99.7)
Anomalous redundancy 3.7 (3.7)

Refinement
Resolution (Å) 39–3.3
Rwork/Rfree (%) 25.8/29.9
No. atoms

Protein 2578
R.m.s. deviations

Bond lengths (Å) 0.009
Bond angles (deg) 1.30

aValues in parentheses are for the highest-resolution shell.
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Mutations in the SAS-6 CCD disrupt centriolar

recruitment and function in centriole assembly

in C. elegans embryos

Previous work has shown that SAS-5 does not localize and

centriole assembly fails in C. elegans embryos carrying a

mutation in the C-terminal domain of SAS-5 disrupting its

interaction with SAS-6 (Delattre et al, 2004). Similar results

would be expected with SAS-6 if we disrupt its interaction

with SAS-5, given the co-dependence of SAS-5 and SAS-6 for

each other’s recruitment (Leidel et al, 2005; Dammermann

et al, 2008). To determine whether this prediction holds true

and to confirm our in vitro data, we set out to examine this

question in C. elegans.

Re-encoded GFP transgenes have been used successfully

in C. elegans to confirm functionality following depletion of

the endogenous protein by RNAi (Dammermann et al, 2008).

However, the intrinsic variabilty in germline expression

associated with traditional methods of transformation, notably

ballistic bombardment, made comparisons of different mutant

isoforms unreliable. The recently established method of Mos1

transposon-mediated insertion at a defined integration site

eliminates that variability by providing a fixed chromosomal
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Figure 2 Crystal structure of the SAS-6 CCD. (A) Stereo view of a representative portion of the 2Fo–Fc experimental electron density map
covering residues 268–290 (contoured at 2.0s). For clarity, only the main chains of the final model are shown. (B) Ribbon diagram and
electrostatic surface plot of the SAS-6 CCD structure. Residues at the boundaries of differently charged segments are indicated. (C) Schematic
representation of the SAS-6 dimer. Dashed lines indicate the regions lacking a known structure. Positive and negative charges along the coiled
coil and in the C-terminal domain are depicted as ‘þ ’ and ‘� ’, respectively.
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context for transgene expression (Frokjaer-Jensen et al,

2008). Any differences in phenotype can therefore be

confidently assigned to the mutations introduced prior to

transformation. We first generated a wild-type SAS-6:GFP

fusion under the control of its own promoter and regulatory

elements. This fusion was found to be fully functional in

restoring centriole assembly and rescuing embryo viability

following RNAi-mediated depletion of endogenous SAS-6

(Figure 4A), as well as in the context of a putative null

mutant deleting most of the SAS-6 open reading frame

(sas-6(ok2554); data not shown).

We next generated constructs carrying each of the three

sets of mutations that disrupted interaction with SAS-5

in vitro (mA, mB, and mD) and used these for C. elegans

transformation. For mA and mD we obtained several inde-

pendent strains with identical behaviour. We were unable to

generate a strain carrying an integration of mB. This may be

due to technical limitations or reflect differences in the ability

of C. elegans to tolerate the two classes of mutations (mA,

mD charged versus mB hydrophobic). Interestingly, SAS-6

mutants mA and mD both localized to centrioles, at levels

not appreciably different from wild-type SAS-6, in control
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embryos (Figure 4A and B). However, neither mutant could

sustain centriole assembly following depletion of the endo-

genous protein by RNAi, with the characteristic monopolar

second division phenotype observed in all embryos

(Figure 4A). Note that under the standard RNAi regimen,

sperm centrioles are unaffected by RNAi-mediated depletion,

and these do remain GFP:SAS-6 positive, even for the two

SAS-6 mutants.

To specifically assess recruitment to the site of new

centriole assembly, mating can be used to introduce
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unlabelled sperm centrioles (Kirkham et al, 2003;

Dammermann et al, 2004) or centrioles marked with

mCherry:SAS-4 (Dammermann et al, 2008), the latter being

particularly useful for live assays. Since SAS-6 stably

incorporates into centrioles (Dammermann et al, 2004;

Leidel et al, 2005), any GFP signal seen under mating

conditions reflects new recruitment, rather than exchange

of sperm centriole-associated SAS-6 with the cytoplasmic

pool. Under these conditions, SAS-6 recruitment was nearly

completely abolished for both mutants when endogenous

SAS-6 was depleted, similar to what was seen with wild-

type SAS-6 following depletion of SAS-5 (Figure 4B). Thus,

the residues mutated in mA and mD are indeed critical for

SAS-6 recruitment and function in centriole assembly, and the

severity of the phenotype mirrors that of depleting SAS-5

itself.

SAS-6 molecules form an anti-parallel tetramer through

the electrostatic interactions of their CCDs

Our rotary metal shadowing electron microscopy studies of

purified recombinant SAS-6 protein showed that although

many of the observed particles are tadpole-like structures as

reported previously (Kitagawa et al, 2011b), a significant

fraction of them (B20%) are dumbbell-like structures with

a central rod measuring 35–45 nm in length (Figure 5A). As

shown in Figure 2B, there is an alternating charge distribu-

tion along the SAS-6 CCD, which we suspected may dictate

further self-association of SAS-6 dimers along their coiled

coils. To test this hypothesis, we carried out a dilution ITC

experiment that has been used successfully for analysing the

dissociation equilibrium of other proteins (Lovatt et al, 1996).

In this assay, a series of small aliquots of concentrated SAS-6

CCD were injected into a large volume of buffer, which

generated a sequence of endothermic heat pulses,

characteristic of molecular dissociation (Figure 5B, upper

panel). It has been reported that the Kd of the SAS-6 coiled-

coil dimer is B0.9 mM (Kitagawa et al, 2011b). The fit

dissociation curve had a Kdiss of 56.2±7.6 mM and DHdiss of

2.84±0.05 kcal/mol, which suggests a dimer-tetramer

equilibrium (Figure 5B, lower panel). The tetrameric associa-

tion of the SAS-6 CCD is apparently much weaker than the

coiled-coil dimer and thus may not always survive the grid

preparation for rotary metal shadowing as the coiled-coil

dimer does. This explains why the dumbbell-like tetramer

structure was not as frequently observed as the tadpole-like

structure of the SAS-6 dimer.

To better understand the self-association of the SAS-6 CCD,

we subjected our solved crystal structure of the SAS-6 CCD to

the ClusPro 2.0 protein–protein docking server (Kozakov

et al, 2010). Docking results suggested an anti-parallel

interaction of the coiled coils, with the opposite charges

complementing each other in each segment (Figure 5C).

The fully extended central rod of the anti-parallel SAS-6

tetramer based on this docking model is calculated to be

B45-nm long, which is in agreement with the length of the

rod in the dumbbell-like structure seen in the electron

micrographs (Figure 5A). The length variation of the central

rods in the dumbbell-like structures is likely due to the

flexible region at the N-terminal part of the coiled coil as

shown above (Figure 1C, asterisks). These data altogether

suggest that C. elegans SAS-6 forms a dumbbell-like tetramer

through the anti-parallel association of the coiled coils.

Notably, the SAS-5-binding sites on the SAS-6 CCD are

obscured in the anti-parallel SAS-6 tetramer (Figure 5C,

boxes).

Binding of SAS-5 both disrupts the tetrameric

association of the SAS-6 CCD and promotes the

formation of an ordered structure reminiscent of the

central tube of C. elegans centrioles

We found that SAS-5 binds specifically to a segment of the

SAS-6 CCD that is part of the periodic charge region being

obscured in the anti-parallel tetramer (Figure 5C, boxes).

Moreover, the interaction between SAS-5 and SAS-6

(KdB2mM) is over one order of magnitude stronger than

the self-association of the SAS-6 CCD tetramer (KdB56 mM).

Therefore, binding of SAS-5 should potentially disrupt

SAS-6 self association. To test this, we carried out a dilution

ITC assay similar to that for the SAS-6 CCD alone but

with 1.5 � fold (molar ratio) of the SAS-5 CTD supplemented

to both the injections and the buffer. The presence of the

SAS-5 CTD in the buffer prevents the dissociation of the

SAS-5/SAS-6 complex. However, in case that the anti-parallel

self-association of SAS-6 is not affected by SAS-5 binding,

we would still observe the dissociation of the tetramer of the

SAS-6 CCD to dimers. As shown in Figure 5D, no endother-

mic heat pulses were observed, which was in contrast

to the strong dissociation signal for the SAS-6 CCD

(Figure 5B). This suggests that binding of SAS-5 either

stabilizes the SAS-6 CCD tetramer or disrupts the tetrametric

association of the SAS-6 CCD. As shown in Figure 5E,

analysis of the complex by static light scattering (SLS)

indicated that the complex is a hetero-trimer (Mw B80 kDa;

Mws of the SAS-6 CCD monomer and the MBP–SAS-5 CTD

are 19 and 44 kDa, respectively). Furthermore, examination

by rotary metal shadowing electron microscopy indicated

that while SAS-6 (residues 1–410) alone forms a tadpole-

like structure (Figure 5F), the complex shows a bound MBP-

tagged SAS-5 CTD in the middle of the SAS-6 tail (Figure 5G).

Therefore, it is the latter case that accounts for the loss of

endothermic heat pulses in the ITC. Moreover, examination

using dynamic light scattering also indicates that the SAS-5

CTD shifts the equilibrium between two species of the SAS-6

CCD into one species when mixing the two proteins in a

stoichiometric 1:1 ratio (Supplementary Figure S6).

Therefore, binding of SAS-5 disrupts the tetrameric associa-

tion of the SAS-6 CCD.

As seen in Figure 4, mutations of SAS-6 residues involved

in SAS-5 interaction disrupt SAS-6 centriolar recruitment

comparably to what occurs in SAS-5 depletion, which is

consistent with previous report that SAS-5 and SAS-6 are

mutually dependent for their centrosome localization

(Pelletier et al, 2006). Observation of the tadpole- and

dumbbell-like structures (Figure 5A) rather than the cart-

wheel structure of recombinant C. elegans SAS-6 suggests

that SAS-5 may play a critical role for establishing the nine-

fold symmetry of C. elegans centroles. To find this out, we

used rotary metal shadowing electron microscopy to examine

the purified complex of recombinant SAS-6 and MBP-tagged

SAS-5. Interestingly, we repeatedly observed curved struc-

tures (n¼ 22) with particles of the same size arranged with a

similar distance in between (Figure 6B). These particles are

2–3 times larger than the SAS-6 head group shown in

Figure 5A and are likely SAS-5 molecules. The mean diameter
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of the fit rings of these structures is 63.2±9.2 nm (Figure 6C),

which is in good agreement with the 60-nm diameter of the

inner layer of the central tube of C. elegans centrioles

(Pelletier et al, 2006).

To find out whether SAS-5 alone can form such structures,

we tried to purify the MBP–SAS-5 with a C-terminal 6�

His-tag. However, we could not purify the protein using Ni-

NTA resin (data not shown), suggesting that the His-tag is

inaccessible either due to being shielded by a neighbouring

structure or being buried in aggregates. Using size exclusion

chromatography and negative staining electron microscopy,

we found that SAS-5 forms large aggregates (Supplementary
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Figure S7). Interestingly, the C-terminus of SAS-5 became

accessible when mixing with SAS-6 as demonstrated by the

success in the pull-down of SAS-5 by Ni-NTA bound SAS-6

(Figure 1C), and the complex shows semicircle and arc-like

structures (Figure 6B). This indicates that binding to SAS-6

indeed releases SAS-5 from its aggregates. Overall, our data

suggest that while SAS-6 and SAS-5 individually form an

oligomeric conformation, together they can assemble into a

highly ordered structure resembling the central tube of the

C. elegans centrioles.

Discussion

Accumulating data indicate that SAS-5 and its putative ortho-

logues, Ana2 in flies and STIL in vertebrates, work coopera-

tively with SAS-6 in centriole formation (Stevens et al, 2010a, b;

Tang et al, 2011; Arquint et al, 2012; Vulprecht et al, 2012). To

determine how SAS-5 assists SAS-6 in centriole assembly, we

first need to know how the two proteins interact. Here, we

demonstrate that the short SAS-5 CTD specifically interacts

with a very narrow segment of the SAS-6 coiled coil. We have
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also solved the crystal structure of the SAS-6 CCD that

contains the binding site of SAS-5 and further used

structure-based mutagenesis studies to identify the residues

on both proteins that are directly involved in their

interaction. Interestingly, we found that the interaction is

mediated by synergistic hydrophobic and electrostatic

interactions of multiple residues on either protein. Single-

residue mutation analyses showed that mutating any one of

these residues completely abolished the interaction. We

further showed that the recombinant SAS-5/SAS-6 complex

could potentially form semicircular or arc-like structures

(Figure 6B). How can one put this into the context of centriole

duplication?

Unlike the clearly visible cartwheel structure in non-

nematode centrioles, centriole duplication in C. elegans

begins with a 60-nm central tube dependent on SAS-5/SAS-6.

This central tube grows wider at the pronuclear migration

stage when SAS-4 is recruited, which coincides with the

emergence of SAS-4 derived hook-like structures around the

outer wall at positions where MT assembly occurs (Pelletier

et al, 2006). Consistently, SAS-4 homologues in flies and

humans also localize to the outer wall of centrioles and are

essential for recruiting MTs and pericentriolar materials

(Kohlmaier et al, 2009; Tang et al, 2009; Gopalakrishnan

et al, 2011). In this study, we show that SAS-6 forms an

anti-parallel tetramer whereas SAS-5 aggregates. Crystal

structure of the SAS-6 CCD reveals a periodic charge

distribution with the SAS-5-binding site in the centre of the

coiled coil (Figure 6A). We also discovered that binding of the

SAS-5 CTD to the SAS-6 coiled coil both releases SAS-5 from

its aggregates and prevents the tetrameric association of

SAS-6. This would allow the efficient interaction between

the SAS-6 head groups. Our electron microscopy studies

confirmed that SAS-5 binds to the central region of the

SAS-6 coiled coil (Figure 5G) and demonstrated that the

recombinant SAS-5/SAS-6 complex assembles into arc-like

structures with an average diameter of 63.2±9.2 nm for the

corresponding rings (Figure 6B and C; Supplementary Figure

S8). We therefore believe that the emerging 60-nm wide

central tube in the procentriole is formed by circularly

arranged SAS-5 molecules bound onto the coiled coils of

SAS-6 (Figure 6D). SAS-5 and SAS-6 together assemble into

an unstable tubular structure, whereas loading of SAS-4

stabilizes this tube (now becomes the inner layer) by

generating an outer wall with protruding hook-like appen-

dages that serve to recruit the nine singlet MTs (Figure 6E).

Apart from disrupting the tetrameric association of SAS-6,

SAS-5 may also play a more active role in centriole assembly.

It was recently revealed that the Trichonympha basal body

has a cartwheel structure with spokes from two neighbouring

layers merging into a single bundle at the position B20 nm

away from the central hub (Guichard et al, 2012). However, it

remains mysterious how this merge occurs. Given that the

merging points around the central hub would encircle a

62-nm ring (d¼ 20 nm� 2þ 22 nm), we speculate that SAS-

5 and its functional orthologues might mediate this merge.

Notably, SAS-5 was shown to self-associate in a reported

domain-based interactome network in C. elegans (Boxem

et al, 2008). The self-association of SAS-5 could bridge

spokes of neighbouring layers so that the nine-fold

symmetric rings are stacked onto one another to form

the cylindrical structure. The other possibility for SAS-5 to

play an active role is that binding of SAS-5 may induce

conformational changes in the SAS-6 coiled coil that

subsequently facilitate centriole assembly. The crystal

structure of the SAS-6 CCD indicates that each SAS-6 coiled-

coil contains two almost symmetrically arranged SAS-5-

binding sites (Figure 6A). However, results of both ITC and

SLS experiments indicate that only one SAS-5 molecule

could bind to the SAS-6 dimer (Figure 5E; Supplementary

Figure S4). One reason for this might be that binding of SAS-5

to one site sterically blocks the other site from recruiting

another SAS-5. Alternatively, SAS-5 binding may disrupt the

structural symmetry of SAS-6 CCD by inducing a kink of the

SAS-6 coiled coil as was seen in the DNA ligase IV-induced

bending of the Xrcc4 coiled coil (Sibanda et al, 2001). Such a

local conformational change may facilitate SAS-6 directed

centriole assembly.

Why were only arc-like structures but not full circles seen

in the EM images? Since ZYG-1 is required for the recruitment

of SAS-5/SAS-6, it is likely that ZYG-1 plays a structural role

in the assembly of the central tube. It was reported previously

that ZYG-1 phosphorylates SAS-6 and this phosphorylation is

crucial for centriole duplication in vivo (Kitagawa et al, 2009).

The phosphorylation site, serine 123, is located in a long

flexible loop (disordered in the crystal structure) next to the

dimerization interface of the SAS-6 head group (Kitagawa

et al, 2011b). It is conceivable that phosphorylation by ZYG-1

might strengthen the head group interaction of SAS-6 by

providing an electrostatic interaction between the phospho-

group and a positively charged surface patch on the opposite

molecule (Supplementary Figure S9). This hypothesis is not

only consistent with the observation that ZYG-1-dependent

phosphorylation of SAS-6 is needed for both central tube

formation and maintenance of SAS-6 at the central tube

(Kitagawa et al, 2009), but would also explain why we only

observed arc-like structures of the SAS-5/SAS-6 complex

in vitro but not closed rings. In the future, it will be

interesting to examine whether adding ZYG-1 to the

recombinant SAS-5/SAS-6 complex or co-expressing the

three proteins could stimulate the formation of a ring-like

structure.

It was shown previously that SAS-5 failed to localize to

centrioles in a mutant sas-5 (t2033) corresponding to a single

amino-acid substitution (R397C) in SAS-5 (Delattre et al,

2004). This substitution disrupts SAS-5 and SAS-6

interaction as demonstrated in a yeast two-hybrid assay

(Leidel et al, 2005). Using in vitro pull-down and ITC

assays, here we showed that the R397C substitution in SAS-

5 completely abolishes its interaction with SAS-6 (Figure 3F).

Thus, SAS-5 seems to shuttle to procentrioles through the

specific interaction of its CTD with SAS-6. Given that ZYG-1-

dependent recruitment of SAS-6 failed when SAS-5 was

depleted (Figure 4B), SAS-5 could help SAS-6 target to the

procentriole by forming with SAS-6 a specific recognition site

for ZYG-1. Indeed, the combination of conserved charges on

the SAS-5 CTD and its binding site on the SAS-6 CCD may

provide a unique recognition site for ZYG-1 binding (Figures

3G and 6A). Notably, although the SAS-5 CTD is sufficient to

bind SAS-6, the N-terminal part of SAS-5 seems to ensure the

fidelity of the interaction. As shown in Figure 1C, while full-

length SAS-5 was pulled down stoichiometrically relative to

SAS-6, considerably more protein was pulled down for all the

three N-terminal truncations of SAS-5. This disproportionate
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interaction occurs only when using full-length SAS-6 but

not for SAS-6 lacking the C-terminal disordered tail (residues

411–492) (Figure 3D and F). Therefore, we conclude that the

N-terminal domain of SAS-5 (residues 1–389) prevents the

non-specific interaction between the SAS-5 CTD and the

unstructured SAS-6 C-terminal tail. Consistently, most of

the N-terminal part of SAS-5 is conserved in the three

Caenorhabditis species. These conserved residues may confer

on SAS-5 the ability to regulate its interaction with SAS-6.

What does our finding of SAS-5/SAS-6 interaction imply for

the mechanisms of centriole formation in other organisms?

Homologues of SAS-6 and putative orthologues of SAS-5 have

been identified in flies and vertebrates, which are DSAS-6/

hSAS-6 and Ana2/STIL, respectively. Crystal structures of

several SAS-6 proteins show that the head group of SAS-6

has a conserved fold that mediates the intermolecular inter-

action in SAS-6 oligomeric assembly, implying that the

mechanism of centriole biogenesis may be conserved through

evolution. While structural segmentation of SAS-6 family of

proteins is easy to define, domain arrangements of SAS-5/

Ana2/STIL are very vague because of the lack of distinct

motif structures. An B90-residue region toward the

C-terminus of the SAS-5 family of proteins, the STAN motif,

was suggested to be important for their function (Stevens

et al, 2010a). However, while the STAN motif is modestly

conserved between Ana2 and STIL (31% sequence identity),

it is very divergent in SAS-5. Recently, a second conserved

motif called TIM was identified, which is located at the

extreme C-terminus of STIL, Ana2, and SAS-5 (Arquint

et al, 2012) and includes the SAS-5 CTD. Interestingly, the

corresponding sequences in STIL and Ana2 are also predicted

to form a helix and two of the four key residues that we found

to be essential for SAS-5 interaction with SAS-6 are also

conserved in Ana2 and STIL (Supplementary Figure S10A

and B). Ana2 has previously been reported to also interact

with SAS-6 in Drosophila (Stevens et al, 2010a). While the

binding sites have not been precisely defined, as with

C. elegans SAS-5 and SAS-6, the interaction appears to

involve the C-terminus of Ana2 and part of the coiled coil of

DSas-6. Given the poor sequence homology among SAS-5,

Ana2, and STIL, confirming and defining the interaction

between Ana2/STIL and SAS-6 would be a powerful

argument for an orthology relationship between these three

proteins.

Using full-length SAS-5 and SAS-6 proteins, we observed

semicircle and arc-like structures with an average extrapo-

lated diameter of B63 nm (Figure 6B), which is close to the

dimensions of the inner part of the central tube seen in

electron micrographs of C. elegans embryos (Pelletier et al,

2006). Furthermore, such circles could accommodate B8–10

globular structures, consistent with the characteristic nine-

fold symmetry of centrioles. Intriguingly, in the rotary metal

shadowing micrographs of the full-length SAS-5/SAS-6

complex, we did not observe the 23-nm central hub or the

coiled-coil spokes as that formed by C. reinhardtii and

D. rerio SAS-6 (van Breugel et al, 2011; Kitagawa et al,

2011b), which is notably consistent with the missing

cartwheel structure in C. elegans centrioles in vivo (Pelletier

et al, 2006). However, using the same experimental setup, we

could observe the coiled-coil tail of SAS-6 when using the

residues 1–410 of SAS-6 alone (Figure 5F) or in complex with

the MBP-tagged SAS-5 CTD (Figure 5G). It is worth to note

though that, similarly to what was observed in the electron

micrographs of the full-length SAS-6/SAS-5 complex, no rod-

like structures in the complex of SAS-6(aa1–410)/MBP–SAS-

5-CTD could be observed upon cross-linking by glutarade-

hyde (0.05% (v/v), incubated with 0.1 mg/ml protein for

5 min at 221C). While the invisible coiled-coil structure in the

truncated complex is likely an artefact generated by cross-

linking, we speculate that the lack of the cartwheel structure

for the full-length SAS-5/SAS-6 complex might arise from

some structural modulations of SAS-6 upon SAS-5 binding.

Interestingly, we found that although the majority of the

C. elegans SAS-6 coiled coil is well folded as seen in the

crystal structure, the N-terminal region (approximately resi-

dues 220–240) of the SAS-6 coiled coil is sensitive to proteo-

lysis and seems flexible (Figure 1C, asterisks). It needs to be

investigated whether the flexibility of this region accounts for

the invisible hub structure in C. elegans centrioles.

In summary, our findings uncover the specific interaction

between SAS-5 and SAS-6 and provide a possible explanation

for the double-layered central tube structure in C. elegans

centrioles. The data further confirm a role for SAS-5 in

assisting SAS-6 to determine the nine-fold symmetry of

centrioles and suggest a possible mechanism of the regulation

in C. elegans centriole assembly. Our results also provide

hints for SAS-6 and Ana2/STIL interaction in other organisms

and may have general relevance for future studies.

Materials and methods

Cloning, protein expression, and purification
Sequences encoding full-length C. elegans SAS-6 (residues 1–492)
and SAS-5 (residues 1–404) were amplified by PCR from cDNA and
cloned, respectively, into pET-29a (Novagen) and a custom vector
KiM5a that adds an N-terminal MBP tag to the target protein.
Truncations of SAS-6 were cloned into pET-15b (Novagen), which
provides an N-terminal 6�His tag cleavable by thrombin.
Truncations of SAS-5 were cloned in a similar manner to full-length
SAS-5. Deletions and point mutations were generated by the
QuickChange Kit (Stratagene) and confirmed by DNA sequencing.

All recombinant proteins were expressed in Escherichia coli BL21
(DE3) cells. The cells were grown at 371C. At an OD600 of 0.6–0.8,
the cells were cold shocked on ice for 10 min and then shifted to
181C. Protein induction was done overnight with 0.5 mM of iso-
propyl-b-d-thiogalactopyranoside (IPTG). The cells were harvested
and resuspended in cold lysis buffer (20 mM Tris–HCl (pH 8),
300 mM NaCl, 20 mM imidazole, and 5% glycerol). The cells were
broken by the EmulsiFlex-C3 homogenizer (Avestin) and the lysate
was cleared by centrifugation at 30 000 g for 30 min. The super-
natant was filtered through a 0.4-mm filter and loaded onto a
Ni-HiTrap column (GE Healthcare) pre-equilibrated in the same
lysis buffer. The column was washed with 5 � column volume (cv)
of lysis buffer, and bound protein was eluted by a liner gradient
concentration of imidazole (20–500 mM, 10� cv) in the lysis buffer.
The N-terminal 6�His tag was removed by incubation with 2%
(w/w) of thrombin overnight at 41C. The protein was concentrated
and further purified with a Superdex-200 16/60 column (GE
Healthcare) pre-equilibrated with 20 mM Tris–HCl (pH 8), 50 mM
NaCl and 5% glycerol. The protein was concentrated to 10 mg/ml,
divided into aliquots and stored at � 801C.

Selenomethionine(SeMet)-substituted SAS-6 CCD (residues 248–
410) for crystallization was expressed using M9 minimal medium
supplemented with all amino acids (2 mg/ml) except for methio-
nine. Prior to induction, L-SeMet was added to 80 mg/l, and
additional threonine, lysine, phenylalanine, leucine, isoleucine,
and valine were added to inhibit the methionine biosynthetic path-
way (Doublie, 1997). The SeMet-protein was purified as described
above, except for the addition of 15 mM b-mercaptoethanol (b-ME)
for Ni-HiTrap purification and 10 mM dithiothreitol (DTT) for gel
filtration.
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Crystallization and data collection
The SAS-6 CCD (residues 248–410) was crystallized at 41C by the
hanging drop method against a reservoir solution containing 0.1 M
tri-sodium citrate (pH 5.6), 10% (w/v) PEG 4000 and 10% (v/v)
isopropanol. Rod-shaped crystals appeared in 2 days and reached
the maximal size of B0.03� 0.03� 0.5 mm after 1 week. The
crystals belong to space group P61 (a¼ b¼ 140.29 Å, c¼ 74.67 Å).
For harvesting, crystals were soaked in the same reservoir solution
augmented with increasing concentrations of glycerol (final con-
centration 20% [v/v]), loop mounted, and flash frozen in liquid
nitrogen. Diffraction data to 3.3-Å resolution was collected at the
beamline ID23-1 at the European Synchrotron Radiation Facility
(ESRF). A complete and highly redundant data set at the anomalous
peak of Se (l¼ 0.9792 Å) was collected.

Structure determination and model docking
Data were integrated using iMosflm (Battye et al, 2011) and scaled
using the program SCALA (Evans, 2006). Selenium sites were
located and experimental maps were calculated using AutoSol in
the software suite Phenix (Terwilliger et al, 2009). Models were
built using the program COOT (Emsley and Cowtan, 2004), and
refinement carried out using CNS (Brunger et al, 1998) to final Rwork
of 0.258 and Rfree of 0.299.

For modelling of the SAS-6 coiled-coil tetramer and the SAS-6/
SAS-5 complex, we submitted our solved crystal structure of the
SAS-6 CCD and a theoretical helical model the SAS-5 CTD to the
web-based ClusPro 2.0 docking server (http://cluspro.bu.edu/),
which filters docked conformations with good surface and charge
complementarity and ranks them based on their clustering proper-
ties. The docking was carried out with default parameters.

Pull-down assays
Small aliquots (50ml of beads) of 6�His-tagged full-length or
truncated SAS-6 proteins bound to Ni-NTA beads (QIAGEN) were
used to pull down MBP-tagged SAS-5 protein from crude cell lysate.
Afterwards, the beads were washed using 5� cv of lysis buffer
supplemented with 0.1% Triton X-100 to remove contaminants.
After boiling for 2 min in 1� SDS loading buffer, the proteins were
separated on an SDS–PAGE gel and stained with Coomassie Brilliant
Blue G250 (Sigma-Aldrich). In a reciprocal binding experiment, we
loaded MBP-tagged SAS-5 CTD onto amylose beads and then used
these beads to pull down SAS-6 proteins. Subsequent wash and
examination were carried out in the same way as the Ni-NTA pull-
down. As a negative control to show that SAS-5 proteins did not
non-specifically bind to Ni-NTA beads and SAS-6 did not bind to
MBP and/or the amylose beads, mock experiments were carried
out, in which we used Ni-NTA bound 6�His-tagged MBP to pull
down SAS-5 or MBP alone on amylose beads to pull down SAS-6.

Electron microscopy
Purified full-length SAS-6 and SAS-6 (residues 1–410), either alone
or in complex with MBP-tagged SAS-5 CTD, were prepared at 0.05–
0.1 mg/ml in 100 mM ammonium bicarbonate (pH 7.5), 30% (v/v)
glycerol. The samples were sprayed onto freshly cleaved mica chips.
After drying in a Bal-Tec MED020 high vacuum coater (Leica
Microsystems) for at least 6 h, the chips were rotary shadowed
with 0.7 nm platinum/carbon at an elevation angle of 4 degree for
SAS-6 and 7 degree for SAS-5/SAS-6 complex and with carbon at a
tilted angle of 45 degree. Electron micrographs were taken on an FEI
Morgagni 268D transmission electron microscope operated at 80 kV
equipped with a 11-megapixel CCD camera. Images were examined
and analysed using ImageJ (http://imagej.nih.gov/ij/).

Accession code
Coordinates and structure factors have been deposited in the
Protein Data Bank (PDB) under accession code 4GKW.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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