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Abstract
Matching is a powerful statistical tool in design and analysis. Conventional two-group, or
bipartite, matching has been widely used in practice. However, its utility is limited to simpler
designs. In contrast, nonbipartite matching is not limited to the two-group case, handling
multiparty matching situations. It can be used to find the set of matches that minimize the sum of
distances based on a given distance matrix. It brings greater flexibility to the matching design,
such as multigroup comparisons. Thanks to improvements in computing power and freely
available algorithms to solve nonbipartite problems, the cost in terms of computation time and
complexity is low. This article reviews the optimal nonbipartite matching algorithm and its
statistical applications, including observational studies with complex designs and an exact
distribution-free test comparing two multivariate distributions. We also introduce an R package
that performs optimal nonbipartite matching. We present an easily accessible web application to
make nonbipartite matching freely available to general researchers.
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1. INTRODUCTION
A major goal of many empirical studies in the health and social sciences is to evaluate the
causal effect of an intervention, such as a medical treatment or a policy change. The ideal
setup for conducting causal inference is a well-executed randomized experiment (Shadish,
Clark, and Steiner 2008). However, random allocation of participants to treatments is often
not feasible due to practical or ethical reasons, and observational studies have to be
performed instead. For example, in most smoking cessation studies, participants are given
the option to choose the treatment they would like to receive. In this case, participants who
choose the treatment may differ from those who choose the control condition. Lack of
adequate controls for treated participants often leads to biased treatment effect estimation,
where the observed effect may be due, in part, to selection effects.
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Matching is a popular approach to guard against such selection bias (Cochran and Chambers
1965). It classifies participants into homogeneous groups or strata according to certain
criteria, such that the individuals within the same matched groups were comparable before
they received a treatment. Provided the probability of treatment is influenced only by
variables balanced through matching, the difference in their outcomes provides an unbiased
estimate of the treatment effect. Matching is appealing for adjusting for measured
confounding in observational studies for several reasons. First, well-matched sets provide
easily interpretable analyses. Second, it draws the attention of the users to the covariate
balance between matched groups to understand the limits of the analysis. Third, some
matched analyses do not need the parametric assumptions required by most regression
methods. Fourth, matching that produces nonoverlapped pairs (matching without
replacement) maintains an independent structure and thus enables the proper use of the
existing statistical inference methods (Hansen and Klopfer 2006). Fifth, the matching
process itself does not use the outcome variable information, preventing inappropriate
manipulation of the data. Matching-based analysis has been widely applied in various fields,
including health care research, sociology, economics, business, and political science (see,
e.g., Smith 1997; Dehejia and Wahba 1999; Harding 2003; Ho et al. 2007; Armstrong,
Jagolinzer, and Larcker 2009).

Most of the existing matching methods in the literature are bipartite matching methods,
which are adequate for simple designs with only two treatment options such as one
treatment group and one control group. In many practical studies, however, participants may
have the option to receive multiple different treatments. For example, in a study to
investigate the influence of in-pregnancy smoking cessation, participants voluntarily go
through one of the three treatments—standard care, a combination of enhanced counseling
and self-help manual, and a combination of enhanced counseling and an interactive
computer program (Aveyard et al. 2005). To conduct causal inference in studies with
multiple treatment groups, nonbipartite matching methods have been proposed. However, in
contrast to the extensive discussions on bipartite matching methods in the statistical
literature (see Gu and Rosenbaum 1993; Ming and Rosenbaum 2001; Hansen 2004), the
discussions on nonbipartite matching have been scarce. Moreover, as far as we know, there
is no publicly available statistical software package to conduct nonbipartite matching.

The major thrust of this article is to provide a comprehensive description of the nonbipartite
matching method, including clarifying its association to bipartite matching and introducing
an optimal nonbipartite matching algorithm; and to demonstrate its applications in statistical
analysis, including performing causal inference in observational studies with complex
designs and conducting an exact distribution-free test between two multivariate
distributions. Moreover, we implement this optimal nonbipartite matching algorithm in R,
create a freely available R package, and provide an easily accessible web application for
researchers in various scientific fields.

The article is organized as follows. In Section 2, we introduce general matching
methodology and optimal nonbipartite matching. In Section 3, we discuss the applications of
optimal nonbipartite matching in statistical analysis with various designs. Then in Section 4,
we propose a new R package for conducting optimal matching and illustrate its
implementation through an observational study on a media campaign. Finally, we
summarize the major contributions of the article and discuss possible extensions.
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2. OPTIMAL NONBIPARTITE MATCHING
2.1 The Basic Idea of Matching and Optimal Matching

In this subsection, we demonstrate the basic idea of matching methodology. To make the
demonstration easier, we consider a simple design with only one treatment group and one
control group. Matching in more complex designs will be discussed in the next subsection.

In graph-theoretic terminology, a graph consists of nodes and edges between nodes, usually
denoted by G = (V, E), where V = {vi, i = 1,…, n} denotes the set of nodes and E = {[vi, vj],
vi, vj ∈ V } denotes the set of edges. In statistical applications, we may call each individual
unit of interest a node; for example, in medical research, a node could be a hospital, a
patient, or a cell line. A matching of a graph is a set of distinctive edges with no shared
nodes. Denoted by M, a matching is a collection of paired nodes {[vi, vj]} between which an
edge exists and each node can appear at most once. A matching is called complete or perfect
if the cardinality of M is ⌋|V |/2⌊, which is the largest integer not greater than |V |/2 (|V |
denotes the number of nodes in the graph). If |V | is an even number, a complete matching
would cover all nodes in the graph.

In a two-group setup, we would match one node from the treatment group with one node
from the control group, and represent this match by an edge in the graph. We could also
evaluate the “closeness” of the matched nodes by assigning nonnegative weights to the
matches. The weights can be calculated as the distance between units based on the available
covariates information in a study, such as age difference, |agei – agej |. If each node has k ≥
2 covariates, an appropriate distance measure in k-dimensional space may be chosen. Of
course, for any two groups there could be numerous ways of matching. To evaluate the
causal effect of a treatment, we would like to create homogenous pairs in which the two
individual units have similar pretreatment covariates, and thus the outcome difference
between the treatment group and the control group must be due to the treatment, provided
that there is no unmeasured confounding. Therefore, matched pairs with smaller distance are
preferable.

A traditional algorithm to create such pairs is the greedy matching algorithm (Rubin 1973).
Using this algorithm, we first randomly order the units in one group. Then we pair the first
unit in this group with its nearest neighbor in the other group based on the weights or
distances. Next we match the second unit with its nearest neighbor in the other group’s
remaining units and continue this procedure until no more pairs can be formed. This
algorithm is very intuitive and easy to implement. However, it fails to produce the smallest
total distance among all the pairs, because the units in later pairs can be very “far away”
from each other.

The matching that minimizes the total distance among all the pairs is called an optimal
matching. It can be formulated as the solution to a restricted minimization problem. Without
loss of generality, we focus on complete matching with an even number of nodes in the
following discussion. Assume that every edge [vi, vj] ∈ E is associated with a nonnegative
weight wij. Then finding the optimal matching that minimizes the total distance is equivalent
to finding a set of

which solves the restricted minimization problem
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(1)

Rosenbaum (1989) discussed the optimal matching for two disjoint groups in detail.
Simulation studies have shown that optimal matching is noticeably better than nearest
neighbor matching in the sense of producing closely matched pairs in all cases (Gu and
Rosenbaum 1993).

2.2 Optimal Bipartite Matching and Optimal Nonbipartite Matching
In general, a matching can be classified as bipartite or nonbipartite depending on the number
of disjoint groups in the graph. Matching producing pairs in a bipartite graph that involves
only two disjoint groups is known as bipartite matching. The group is defined in the sense
that two nodes in the same group cannot be matched together, as illustrated in the left panel
in Figure 1 (the ovals define two groups). Literally, the term “bipartite” refers to “two
parts.” In contrast, when a graph has multiple groups, it is called a nonbipartite graph and
the associated matching is referred to as nonbipartite matching. The right panel in Figure 1
shows an extreme case of nonbipartite matching in which every single node is considered to
be a group and, as a result, any two nodes can be paired up in the matching.

The bipartite matching corresponds perfectly to the classical two-arm design in
observational studies, and so it has been extensively discussed in the literature. Optimal
bipartite matching algorithms are available and usually implemented as a max-flow problem
in the network flow framework (Rosenbaum 1989). Numerous statistical analyses of
observational studies under various two-arm designs have used optimal bipartite matching to
provide appropriate adjustments for unbiased estimation of treatment effects (see, e.g., Ming
and Rosenbaum 2001; Hansen 2004).

In contrast, the optimal nonbipartite matching has received much less attention. The main
reason is that the optimal nonbipartite matching problem requires a more complex algorithm
to solve it. The simple optimal bipartite matching algorithm cannot be used for nonbipartite
matching. Nonbipartite matching can only be reduced to an extension of the max-flow
problem with bidirected graph, which has no easy solution. A widely accepted algorithm to
solve nonbipartite matching is by searching augmenting paths (Papadimitriou and Steiglitz
1998). Our implementation of the optimal nonbipartite matching is based on Derig’s shortest
augmentation path algorithm, discussed in Section 3.

Practically, the demand for nonbipartite matching is by no means meager. In many
observational studies where the investigators have no control over the treatment given to
each participant, the classic two-arm design is not satisfactory and a nonbipartite matching is
required. For example, in a study investigating the effect of a media campaign on reducing
illegal drug use by young Americans, the exposure to the media campaign is measured as
the number of hours of antidrug advertisements the teenagers watched from various media
sources. The treatment is perceived in a continuous scale rather than dichotomous. Lu et al.
(2001) classified the kids into five ordinal dose groups and conducted an optimal
nonbipartite matching to generate matched pairs that will be close on their covariates but far
apart on the exposure levels. Then the within-pair response difference was aggregated to
estimate the treatment effect for various levels of exposure differences.

Theoretically, optimal nonbipartite matching encompasses optimal bipartite matching as a
special case, as shown in the following proposition.
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Proposition 1—For a bipartite graph, the optimal nonbipartite matching produces the
same result as the optimal bipartite matching, provided that the optimal matching for such
graph is unique.

Proof—The bipartite graph differs from the nonbiparite graph structurally in terms of the
number of disjoint groups. The bipartite graph has only two groups and the edges connect
one node from each group. When the optimal matching algorithm is applied, it searches the
entire set of possible edges to find the best result. Therefore, the optimal bipartite and the
optimal nonbipartite matching algorithms have the same set of edges to search. Moreover,
both algorithms minimize the same objective function (1). Hence, the two minimization
problems are identical and would yield the same result provided that the optimal matching is
unique.

In summary, optimal nonbipartite matching can be applied in observational studies with
more complex designs and provides a unified framework for matched analyses in
observational studies that encompasses optimal bipartite matching. Thus, it can be widely
applied in statistical analysis with a variety of designs.

2.3 A Small Example of Optimal Nonbipartite Matching
To illustrate the basic idea of optimal nonbipartite matching, consider a small matching
example with six nodes (Figure 2). Assume that each node forms a different group, and so it
could be matched with any other nodes in the figure. The lines between two nodes denote
existing edges, and the numbers besides the lines denote the associated distances. If a line is
missing between two nodes, such as between nodes 3 and 4, it means that the two nodes can
not be matched (the distance between them is usually referred to as an infinite distance). We
could also summarize the distances between the nodes in a distance matrix as in Table 1.
This matrix is symmetric because the distance between the pair [i, j] is the same as the
distance between the pair [j, i].

The goal of optimal matching is to create a matching that has three disjoint pairs and
achieves the smallest total distance. Under formulation (1), the optimal matching for this
figure is {[1, 6], [2, 4], [3, 5]}. The distances between these three pairs are highlighted in the
distance matrix, and the total distance is 10 + 10 + 10 = 30. It is worth noting that node 1 is
actually closer to node 2 than node 6, but if we matched node 1 with node 2, we would have
to match node 6 with nodes 4 or 5 which incurs a very large distance. This illustrates a
scenario when the optimal matching beats the greedy matching. Since the data cannot be
clustered into two groups, the bipartite matching algorithm does not apply and the optimal
nonbipartite matching algorithm must be used.

3. APPLICATIONS OF OPTIMAL NONBIPARTITE MATCHING IN
STATISTICAL ANALYSIS

This section outlines the use of optimal nonbipartite matching in statistical analysis with
different designs through four concrete scenarios. We focus on how nonbipartite matching
can be used to generate comparable pairs, hence providing unbiased treatment effect
estimates assuming strongly ignorable treatment assignment. Put simply, this assumption
posits that the variables matched on are the only ones that influence treatment assignment.
Naturally, if there exists an important variable that has not been balanced after matching, the
estimates may still be biased. The detailed implementations in standard software are
deferred to Section 4.
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3.1 Observational Studies With Complex Design
A major advantage of nonbipartite matching is that it can lead to unbiased treatment effect
estimation in complicated observational studies where the classic bipartite matching is not
applicable.

• Matching with multiple ordinal dose groups. In some nonexperimental studies,
control groups might not be available and the level of exposure to treatment could
vary significantly among the participants. For example, Flores-Kagybes, Gonzalez,
and Neumann (2007) studied a job training program, in which the enrollment was
voluntary and the time that the participants stayed in the program varied
substantially. The level of exposure (the length of the program) would be an
important factor in estimating the treatment effect. A nonbipartite matching can be
used to compare the treatment effects among different “dose” groups. A reasonable
approach is to first create propensity scores through an ordinal logit model and use
them to measure distances between participants. Then conduct an optimal
nonbipartite matching to match participants with similar pretreatment
characteristics. This matching design is illustrated in the upper left panel of Figure
3. The detailed implementation with an antidrug media campaign dataset is shown
in Section 4.

• Matching with multiple unordered groups. In order to detect hidden biases due to
failure to control for an unobserved covariate, some observational studies use two
control groups selected to systematically vary the unobserved covariate. There is
usually no ordering among those three groups. Matched pairs are created not only
between the treated group and the control groups, but also between the two control
groups. Eventually, three two-group comparisons would be conducted, treated
versus control 1, treated versus control 2, and control 1 versus control 2. If there is
a treatment effect and no hidden bias with regards to the speculated unobserved
variable, we would expect to see significant differences in the first two
comparisons, but not in the third. Bipartite matching can only generate matched
pairs between two groups. With three groups, bipartite matching needs to be
applied three times and results in overlapped matched pairs. In contrast,
nonbipartite matching can produce nonoverlapping matched pairs between three
groups simultaneously. They can be easily analyzed as either a balanced
incomplete block design or unbalanced incomplete block design as shown in Lu
and Rosenbaum (2004). The upper right panel of Figure 3 illustrates this matching
design.

• Matching with time varying covariates. Many observational studies on chronic
diseases are longitudinal. A patient’s covariates may change over time, and at each
time point, whether a patient receives the treatment depends on their symptoms at
that time and on the physician’s judgment. Thus, there is a group of treated patients
and a group of people not yet treated, at each time point. Matching can be
conducted at each time point, and the treatment effect is estimated by taking the
outcome difference between matched pairs. The overall treatment effect is the
average of the treatment effects at all time points. This design is known as the risk
set matching design (Li, Propert, and Rosenbaum 2001). If the bipartite matching
algorithm is used, we need to conduct the matching separately at each time point,
which can be very computationally intensive when the number of time points is
large. The nonbipartite matching can reduce the computational burden significantly
by treating risk sets at different time points as different groups, then running the
matching once for all. For example, Lu (2005) investigated the effect of a certain
surgical procedure on interstitial cystitis (IC) with a cohort of women who were
followed up with every three months for up to four years. Therefore, there were 16
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time points. An optimal nonbipartite matching was applied once to generate
matched pairs between treated and not-yet-treated women at all time points. The
lower left panel of Figure 3 illustrates this matching design.

3.2 Comparing Distributions Based on Adjacency
In addition to conducting matched pair analyses in observational studies with complex
designs, optimal nonbiparite matching can be used to construct a distribution-free test for
comparing two multivariate distributions. Rosenbaum (2005) used the optimal nonbipartite
matching to develop an exact test for checking whether the outcomes from two populations,
say the treated and the control populations, follow the same distribution. He first pooled the
observations from these two populations together and ignored the grouping information.
Then he used optimal nonbipartite matching to create matched pairs among all the
observations. After the matching is done, he classified these matched pairs into three
categories based on their compositions, namely, pairs consisting of treated subjects only,
pairs consisting of control subjects only, and pairs consisting of one treated and one control
subject. A substantially lower number in the third category would provide evidence against
the null hypothesis that the two groups have exactly the same distribution. This test is
known as the cross-match test. Rosenbaum also derived the normal approximation version
of the exact test and compared the test with the well-known Kolmogorov–Smirnov test. He
concluded that the cross-match test is consistent for comparing any two discrete
distributions with finitely many mass points. It could also be extended to comparing
continuous distributions given that the distributions can be approximated well by discrete
distributions with finitely many mass points. The lower right panel of Figure 3 illustrates the
nonbipartite matching design for the cross-match test.

4. SOFTWARE
The optimal matching problem is a combinatorial optimization problem that can be solved
with a polynomial time algorithm. In general, it takes O(|V |3) arithmetic operations to finish
a complete optimal bipartite matching and takes O(|V |4) arithmetic operations to finish a
complete optimal nonbipartite matching, where |V | is the number of nodes in the graph. The
complexity of nonbipartite matching can be brought down to O(|V |3) with some careful
refinement to the original algorithm (Papadimitriou and Steiglitz 1998).

Matching routines are available for bipartite matching in many standard statistical software
packages, such as R, Stata, and SAS. For example, King and his colleagues introduced a
comprehensive R package MatchIt to conduct matching, check balance and perform post-
matching analysis (Ho et al. 2007 and website http://gking.harvard.edu/matchit/). Hansen
provided a R package for conducting optimal bipartite matching (http://cran.r-project.org/
web/packages/optmatch). Sianesi and Leuven (2003) made a Stata package for conducting
bipartite matching with either Mahalanobis distances or propensity score distances (see
http://ideas.repec.org/c/boc/bocode/s432001.html). Moreover, Bergstralh, Kosanke, and
Jacobsen (1996) implemented the optimal bipartite matching algorithm in SAS.

As far as we know, however, codes for the optimal nonbipartite matching exist in C and
FORTRAN languages, but are not available in any standard statistical software. The C code
may be downloaded from http://elib.zib.de/pub/Packages/mathprog/matching/weighted/
index.html, which was based on Gabow’s (1973) algorithm. The objective of this algorithm
is maximizing the total weights, that is, the weight between subject i and j is βij, rather than
minimizing the total distance, that is, the distance between subject i and j is δij. To use it in
our setup, we must redefine the weights based on the distance measure, βij = maxi, j {δij }
−δij. The FORTRAN codes for the optimal nonbipartite matching can be found in Derigs
(1988). His algorithm—based on searching the shortest augmentation path with respect to an
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initial extreme matching—was intended to minimize the total cost in an undirected graph.
His implementation is also efficient in terms of achieving a computational complexity of O(|
V |3). Therefore, we used Derigs’ algorithm to create our R matching package.

4.1 A New R Package
The R language has become widely used for statistical research and data analysis, and its use
is standard among statisticians for software development. We have created a new R package
for the optimal nonbipartite matching based on Derig’s algorithm and made it freely
available to public. It can be downloaded from the CRAN website http://cran.r-project.org/
web/packages/nbpMatching or the Vanderbilt Biostatistics website http://
biostat.mc.vanderbilt.edu/NonbipartiteMatching.

To use this package for the optimal nonbipartite matching, users need to first pass their
distance matrices to function distancematrix(), which performs validity checks on the matrix
and converts it into a readable object for the nonbimatch()function. In version 1.0,
distancematrix() takes the integer part of the distance matrix values. Users may wish to
rescale their distance matrix prior to passing it to distancematrix() by, for example,
multiplying by 1000, to achieve the desired accuracy. Because Derig’s algorithm only solves
the complete nonbipartite matching problem with an even number of subjects, the
distancematrix() function automatically adds one artificial subject (known as sink, see
Section 4.2 for details) to make the total number even. Users should make sure the generated
distance matrices reflect their planned matching designs prior to performing matching. The
function nonbimatch() in the package calls Derig’s FORTRAN codes and returns the
optimal matching result in a complete list, which has all k subjects in column one and their
respective matches in column two. It also returns a nonredundant list, which has k/2 subjects
in column one with their respective matches in column two. Furthermore, for those not
familiar with R, we implemented the package in an interactive webpage http://
biostat.mc.vanderbilt.edu/NonbipartiteMatching, which calls the nbpMatching package’s
functions using rapache by Horner (2008).

4.2 Matching Design and Distance Specification
Our R package is a general-purpose matching routine that can generate the optimal pairing
under various matching designs. The only information that users need to input is the distance
matrix. The grouping information is contained in the distance matrix because the distances
between two subjects in the same group are set to be infinity, which prevents matching these
subjects. To correctly specify the distance matrix, users should be familiar with the
following common matching designs and understand how our matching algorithm works
under these different designs.

• Bipartite 1–1 matching. Under a simplified bipartite matching design, each
matched pair consists of one subject from the treatment group and one subject from
the control group. Suppose that there are m1 and m2 subjects in these two groups,
respectively. If m1 = m2 = m, our package produces m matched pairs using all the
subjects. If m1 < m2, some subjects in the control group cannot be matched. Since
Derigs’ algorithm only works with complete matching, we introduce artificial
nodes (or sinks) to match with the extra control subjects. The sinks are set to have
zero distances with all control subjects and have infinite distances with all treated
subjects and among themselves. Thus, they can only be matched to the control
group. Therefore, by including s = m2 − m1 sinks in the treated group, both groups
have m2 subjects and we can proceed with the complete matching.

• Bipartite 1–k matching. The 1–k matching design is an extension of the simple pair
design. It was motivated by the matched sampling scenario described by Rubin
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(1973), where there is a huge pool of control subjects and only a limited number of
treated subjects. To improve the efficiency of the treatment effect estimation, each
treated subject is matched with k controls, where k is a prespecified integer. When
k = 1, this is reduced to simple pair matching. To conduct a bipartite 1–k matching
using our R package, we need to create k – 1 replicates for each of the treated
subjects. These replicates will take exactly the same outcomes and covariates
values as their original ones. Then the treated group has k × m1 subjects and k
should not exceed m2/m1. We may consider this as a regular bipartite 1–1
matching. Additional sinks may be needed to meet the complete matching required
by the algorithm.

• Bipartite variable matching. The bipartite variable matching design further extends
the 1–k design by allowing each treated subject to be matched with different
number of controls. It can reduce more bias than simple pair matching (Ming and
Rosenbaum 2000). To conduct a bipartite variable matching, we need to first
specify the lower bound and the upper bound of the number of control subjects
matched to each treated subject. By default, the lower bound is set to 1 and the
upper bound is set based on the sample sizes of the two groups. Suppose that the
upper limit is u, then up to u control subjects can be matched to each treated
subject, so u – 1 replicates are created for each treated subject. Unlike the fixed 1–k
design, these replicates can be matched to not only the control subjects, but also
designated sinks (if less than u controls should be used). Again, additional sinks
may be needed to meet the complete matching requirement.

• Nonbipartite multiple group 1–1 matching. As we have seen in Section 2.2, a
nonbipartite matching could simultaneously match subjects from more than two
groups. For example, suppose there are five dose groups, then a subject in dose one
group can be matched to any subject in dose two, dose three, dose four or dose five
groups. The optimal matching result minimizes the total distance among all
possible parings between these five groups. A key to using the matching algorithm
is to identify the correct distance matrix among groups. Usually we calculate the
distance between two subjects from different groups based on their covariates. As
in bipartite matching, artificial sinks will be introduced to satisfy the complete
matching requirement if there is an odd number of subjects.

• Nonbipartite matching with no group classification. This no-group matching design
is an extreme case of nonbipartite matching. Under this design, each subject is
considered to form a separate group, so it can be matched to any other subject in
the dataset. Rosenbaum (2005, sec. 3.2) used this matching design in his cross-
match test for multivariate distributions. First, all subjects are pooled together and
the grouping information is ignored. Then a nonbipartite matching is conducted
with no group classification. Finally, the number of cross matches is identified and
used as the pivotal quantity in the test.

Under any of the above matching designs, the distance matrix should be appropriately
specified to reflect the matching design. The choice of the distance measure is up to users.
Interested users are referred to Gu and Rosenbaum (1993), where an extensive simulation
study was conducted to compare three popular distance metrics in observational studies,
namely, the Mahalanobis distance, the propensity score distance, and the Mahalanobis
distance with propensity score caliper. Since our focus in this article is to discuss
nonbipartite matching, we do not discuss the choice of distance further here.
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4.3 An Example: Optimal Nonbipartite Propensity Score Matching in an Observational
Study With Multiple Ordinal Treatment Groups

This section reviews a concrete example where we used our R package to conduct optimal
nonbipartite matching.

In 1998, the United States Office of National Drug Control Policy (ONDCP) launched a
media campaign intended to reduce illegal drug use by young Americans. This made for a
challenging observational study. Not only was each teenager’s exposure to media self-
selected, but no natural control group existed for evaluating the campaign’s effects because
the campaign was launched nationwide. In total 521 teenagers participated in the pilot study.

To evaluate the effect of the antidrug media campaign, Lu et al. (2001) classified the
teenagers into five ordinal dose groups based on how often they reported seeing antidrug
commercials in three major media sources. They used “1” to denote least exposure and “5”
for most exposure. They used the following ordinal logit model to estimate the distribution
of the doses:

where Zk is the dose level. Twenty-two covariates regarding the teenagers’ background
information were included to fit this model. Note that the distribution of doses depends on
the observed covariates only through e(xk) = βT xk. Therefore, the maximum likelihood
estimate β̂T xk was used as the propensity score component in the matching to balance the
distributions of the covariates. If a dose-dependent treatment effect exists, subjects with
similar covariates but very different dose exposures are more likely to show significant
results. Therefore, in matching with doses, the goal is not only to balance the observed
covariates, but also to produce pairs with very different doses. To this end, the following
distance was considered:

where ε > 0 was a vanishingly small but strictly positive number, which serves two
functions. First, it makes the distance between two subjects with the same dose equal ∞,
regardless of their observed covariates. Second, when two subjects have identical covariates,
the distance will be smaller as the dose difference increases. The addition of a sufficiently
small ε > 0 would not affect the optimal matching result.

The teenagers from the same dose group cannot be matched to each other, so their distances
are set to be ∞. In practice, a huge positive integer is often used to facilitate the
computation, say 1,000,000. Derig’s algorithm works only for integer distances. When
propensity score related distance is calculated, it often involves small decimal values which
may lead to nonoptimal results with Derig’s algorithm. One practical remedy is to multiply
all distances by 10 to an appropriate power. For example, if the desired accuracy is three
decimal places, we can multiply all distances by 1000 and round them. Thus, a 521 × 521
distance matrix between all of the teenagers can be generated. Because the number of
teenagers is odd, one sink is added to meet the complete matching requirement. The sink has
zero distance to all 521 original subjects and infinity distance to itself. As a result, the final
distance matrix is 522 × 522.
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Using the optimal nonbipartite matching, we created 261 pairs and discarded one original
subject by using the sink. Within each pair, the teenager with the higher dose was classified
into the high dose group and the other was classified into the low dose group. As a result,
two groups with 260 teenagers each were generated. Lu et al. (2001) showed that 7 of the 22
covariates were significantly associated with the dose levels before matching, and after
matching, no significant differences were observed between high and low dose groups.

Specifically, to accomplish the optimal nonbipartite matching with ordinal dose groups, we
take the following steps:

1. Estimate the ordinal propensity score with the ordinal logit model and save the
propensity score component β̂T xk for each subject, k = 1,…, 521.

2. Generate a 521 × 521 distance matrix between all subjects with the above formula,
denote it by distmx1. It is symmetric with infinity distance on the diagonal and
between subjects with same dose. (A very large integer value is used to represent
∞ in practice.)

3. Expand the distance matrix to 522 × 522 by introducing a sink, which has zero
distance to all 521 original subjects and infinity distance to itself. We add the sink
at the very end and denote the matrix by distmx2 which looks like the following
using the command distmx2<-distancematrix(distmx1)

4. Conduct the optimal nonbipartite matching to create 261 matched pairs using the
command:

5. The matched pair consisting of the sink (the 522nd node) should be discarded. The
remaining 260 pairs are clustered into a high-dose and a low-dose group for
checking balance after matching and for subsequent analyses.

5. SUMMARY
Matching plays a critical role in statistical study design and analysis. Many observational
studies have a relatively small number of treated subjects and a much larger number of
control subjects. Matched sampling is often used to select a group of control subjects who
are comparable to the treated with regard to the background variables to allow valid
treatment effect estimation (Rosenbaum and Rubin 1985). This is particularly important
when the cost of obtaining the outcome is nontrivial for each subject.

Most of the matching algorithms discussed in the statistical literature are confined to two
group matching. However, bipartite matching cannot accommodate more complex study
designs. In this article, we provide a comprehensive description of the optimal nonbipartite
matching methodology and demonstrate its applications in statistical analysis with various
complex designs. Optimal nonbipartite matching has gained its popularity recently as being
adopted in more and more publications to address various issues in observational studies
(Rosenbaum and Silber 2009; Silber et al. 2009; Small and Rosenbaum 2009; Baiocchi et al.
2010; Heller et al. 2010). Nonbipartite matching can also be extended to randomized studies,
especially when the sample size is small and the conventional randomization mechanism
cannot guarantee the balance of the baseline covariates in both groups (Greevy et al. 2004).
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To aid in implementation, we develop a new R package that conducts optimal nonbipartite
matching and encompasses optimal bipartite matching as a special case. The function is easy
to use and runs quickly for moderately large cohorts. For users who are not familiar with R,
we provide an interactive website to conduct the matching. Users may optionally have their
matching results e-mailed to them and import those results into their preferred statistical
software for analysis.

Our experience suggests that, for sample sizes up to a couple of thousand, the running times
to solve a bipartite matching problem are similar for the optimal bipartite matching
algorithm and the optimal nonbipartite matching algorithm. However, when the sample size
is much larger than that, the nonbipartite algorithm is noticeably slower. Therefore, in a
large study with well-defined dichotomous treatment options, the bipartite matching
algorithm may be preferred. In a study with a polychotomous treatment, which will usually
be intractable for the bipartite algorithm, nonbipartite matching provides a solution.

One limitation of our current R package is that it cannot perform full matching, which
allows both multiple controls to be matched with one treated subject and multiple treated
subjects to be matched with one control. Full matching can be viewed as an extension of
bipartite matching, and may maximally eliminate observed bias (Hansen 2004). We are
working on modifying our package to accommodate full matching. The idea is to add super
sinks to increase the matching flexibility by allowing variable matching in both directions.

Many other interesting topics regarding matching are in the literature and are being
developed. A practical issue is how to check the degree of balance after matching. One way
is to perform hypothesis tests, such as two-sample tests after matching two groups and
ANOVA or χ2-tests after matching multiple groups. Rosenbaum and Rubin (1985) pointed
out that two-sample t -tests are relevant for comparing the distribution of the covariates
between the treated and control group; whereas, paired t -tests are relevant for assessing
residual biases. They suggested reporting standardized differences to examine the imbalance
in covariates. In contrast, Imai, King, and Stuart (2008) argued against using tests to check
balance because balance is a sample characteristic while most statistical tests infer about
population quantities. Therefore, they recommended using graphical means to illustrate the
balance and echoed the standardized difference approach. Love (2002) proposed forest plots
as an effective way to show covariate balance before and after matching. Hansen extended
the discussion in a series of papers that proposed a randomization-based test to appraise the
balance for stratified and clustered designs (Hansen 2008; Hansen and Bowers 2008).
Bowers and Hansen’s R package RItools implements both the balance test and the forest
plot as a graphical diagnostic tool. Many good matching methodologies are available and
more work is needed in this area, especially with regard to synthesizing the interpretation of
the methods and making them more accessible.
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Figure 1.
Bipartite matching and nonbipartite matching.
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Figure 2.
Nonbipartite matching with six nodes.
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Figure 3.
Complex nonbipartite matching designs.
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