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Abstract
Purpose—We present three methods of performing pattern recognition on spatiotemporal plots
produced by pharyngeal high-resolution manometry (HRM).

Method—Classification models, including the artificial neural networks (ANNs) multilayer
perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines
(SVM), were evaluated for their ability to identify disordered swallowing. Data were collected
from twelve normal and thirteen disordered subjects swallowing 5 ml water boluses. Following
extraction of relevant parameters, a subset of the data was used to train the models and the
remaining swallows were then independently classified by the networks.

Results—All methods produced high average classification accuracies, with MLP, SVM, and
LVQ achieving accuracies of 96.44%, 91.03%, and 85.39% respectively. When evaluating the
individual contributions of each parameter and groups of parameters to the classification accuracy,
parameters pertaining to the upper esophageal sphincter were most valuable.

Conclusions—Classification models show high accuracy in segregating HRM data sets and
represent one method of facilitating application of HRM to the clinical setting by eliminating the
time required for some aspects of data extraction and interpretation.
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INTRODUCTION
The pharyngeal swallow is a complex physiological event which requires muscle contraction
and consequent pressure generation to move a bolus from the mouth to the esophagus (Kim
et al., 1997; McConnel 1988; Cook 1991). Accurate quantification of these rapidly changing
pressures requires high spatial and temporal resolution. High-resolution manometry (HRM)
represents a promising clinical and research tool which is capable of capturing the detailed
pressure activity during the pharyngeal swallow.
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Our version of HRM (ManoScan360 High Resolution Manometry System, Sierra Scientific
Instruments, Los Angeles, CA) uses 36 circumferential pressure sensors which can measure
rapidly changing pressures in asymmetric structures such as the pharynx (Fox and
Bredenoord, 2008). Though informative and potentially clinically valuable, it has yet to be
applied routinely to the assessment of dysphagia. One reason may be difficulty extracting
and interpreting the large amounts of data present in the three-dimensional spatiotemporal
plot generated by HRM. An algorithm for efficient, automated interpretation of these data
based on pattern recognition techniques may be valuable and facilitate increased clinical use.

Classification models, including artificial neural networks (ANNs) and support vector
machines, are powerful mathematical models which can classify data into groups according
to nonlinear statistical analysis (Cross et al., 1995; Baxt 1995; Santos et al., 2006). Further,
ANNs can handle extremely large data sets. ANNs have been used to analyze voice and
swallow events, differentiating between normal and disordered events, as well as
distinguishing among different types of disorders (Cross et al., 1995; Baxt 1995; Santos et
al., 2006). Acoustic analysis of pathological voice production, achieved a 93.5% success rate
in the classification of unknown voice samples as normal or pathological with ANNs
(Boyanov and Hadjitodorov, 1997). Recently, pattern recognition of acoustic data has been
used to differentiate between patients with muscle tension dysphonia and adductor
spasmodic dysphonia (Schlotthauer et al., 2010). ANNs have also been used to differentiate
between normal and dysphagic subjects based on swallowing acoustics (Lazareck and
Moussavi, 2004). Additionally, patients have been accurately ruled in for gastroesophageal
reflux with 100% accuracy (Pace et al., 2005).

Germane to the current study, patients have been classified according to their type of
esophageal dysphagia (esophageal dysmotility) based on manometric measurements with an
8 sensor Dentsleeve manometric catheter, achieving a classification accuracy of 80%
(Santos et al., 2006). Though previously applied to traditional esophageal manometry,
ANNs and other classification models have not been used with HRM of the pharynx. The
amount of data points sampled and the potential number of variables extracted increases
dramatically when moving from traditional to high-resolution manometry and from
measurements in a relatively simple structure, the esophagus, to a complex structure, the
pharynx. As such, HRM is well-suited to analysis by ANNs and other classification models.

As a first step in this process, we determined if pattern recognition techniques could
correctly classify a swallow as normal or abnormal. We analyzed data from normal and
dysphagic subjects and extracted feature vectors containing relevant parameters such as
maximum pressures and timing events. Feature vectors form a training set, which is used as
the input to train several types of neural networks including a multilayer perceptron, support
vector machine, and self-organizing map with learning vector quantization. These networks
utilize machine learning algorithms to classify swallows as normal or abnormal. Parameters
were tuned to achieve a higher correct classification rate, and the components of the feature
vector were examined to consider their individual contribution to classification. Thus, the
purpose of this study was to determine which classification approach yielded the most
accurate classification of normal versus abnormal swallowing pressure patterns, as well as to
determine the relative importance of different feature sets in these classifications.

MATERIALS AND METHODS
Data collection

Equipment—A solid-state high resolution manometer was used for all data collection
(ManoScan360 High Resolution Manometry System, Sierra Scientific Instruments, Los
Angeles, CA). The manometric catheter has an outer diameter of 4.1 mm and 36
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circumferential pressure sensors spaced 1 cm apart. Each sensor spans 2.5 mm and receives
input from 12 circumferential sectors. These inputs are averaged and a mean pressure is
recorded as the pressure detected by that individual sensor. The system is calibrated to
record pressures between −20 and 600 mmHg with fidelity of 2 mmHg. Data were collected
at a sampling rate of 50 hertz (Hz) (ManoScan Data Acquisition, Sierra Scientific
Instruments). Prior to calibration, the catheter was covered with a protective sheath to
preserve sterility without the need to sterilize the catheter between uses (ManoShield, Sierra
Scientific Instruments). The catheter was calibrated before each participant according to
manufacturer specifications.

Participants—Twenty-three subjects participated in this study with the approval of the
Institutional Review Board of the University of Wisconsin-Madison. Twelve subjects were
without swallowing, neurological, or gastrointestinal disorders, while thirteen had a
diagnosis of a swallowing disorder. All subjects in the disordered group reported at least one
symptom of dysphagia: diet change, food sticking, cough with eating, or globus sensation.
Subjects also displayed abnormalities on either fiberoptic endoscopic evaluation of
swallowing (FEES) or modified barium swallow study (MBSS), as determined by their
medical history. Specific clinical characteristics of the disordered subjects are presented in
table 1. Subjects displayed significant variation in etiology and manifestation of dysphagia.
Including a diverse subject group allowed us to evaluate the robustness of our analysis and
also reflects the wide range of symptoms that patients present to the otolaryngologist or
speech-language pathologist. Participants were instructed not to eat for four hours and not to
drink liquids for two hours prior to testing to avoid any potential confounding effect of
satiety.

Procedure—Topical 2% viscous lidocaine was applied to the nasal passages with a cotton
swab and participants gargled a solution of 4% lidocaine (1 to 2 cc) for several seconds. The
manometric catheter was lubricated with 2% viscous lidocaine to ease passage of the
catheter through the pharynx. Once the catheter was positioned within the pharynx,
participants rested for 5–10 minutes to adjust to the catheter prior to performing the
experimental swallows.

For the normal subjects, a 5 ml water bolus was swallowed five times while the subject was
upright with the head in the neutral position. Each water bolus was delivered to the oral
cavity via syringe. Four random swallows from each normal subject were included in the
analysis to ensure approximately equal numbers of normal and disordered swallows were
inputted into the ANNs. Disordered participants swallowed 5 ml boluses between one and
five times. Forty-eight swallows were analyzed for normal subjects and forty-one swallows
were analyzed for disordered subjects. The number of samples per class in a pattern
recognition problem should be on the order of five times the number of features worth of
samples in each class (Jain and Chandrasekaran, 1982). Our classes contain roughly this
number in the full featured set, and meet or exceed this in the reduced feature sets.

Data analysis
Data extraction—Pressure and timing data were extracted using a customized MATLAB
program (The MathWorks, Inc., Natick, MA) which locates peak pressures in areas of
interest [velopharynx, region of the tongue base/posterior pharyngeal wall, and upper
esophageal sphincter (UES)] and then calculates relevant parameters based on those points
(Mielens et al., 2011). The basic workflow is automated, but the user may override program
suggestions in cases of misidentification and manually select the correct manometric sensors
and temporal location of the areas of interest.
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Regions of interest were defined manometrically as in McCulloch et al. (2010). The
velopharynx is the region of swallow-related pressure change just proximal to the area of
continuous nasal cavity quiescence and extending two centimeters distally. The tongue base
is the area of swallow related pressure change with a high pressure zone approximately
midway between the nasopharynx and UES, with its epicenter at the high pressure point and
extending two centimeters proximal and distal to that point. The UES is the midpoint of
stable high pressure just proximal (rostral) to the baseline low esophageal pressure zone,
extending to a point of low esophageal pressure distally and low baseline pharyngeal
pressure proximally. During swallowing, the UES is mobile along the catheter, moving
rostrally as much as 4 cm. We account for this movement in our analysis by treating the
UES as a range of sensors, and selecting the appropriate sensor for a given time when
considering specific phases of the swallow.

Data were extracted automatically as in Hoffman et al. (2010). An example of the automated
analysis algorithm screen is shown in figures 1a and 1b. To locate the regions of interest, the
program first locates the peak pressure values on each sensor channel. Once the range is
determined, the program identifies which peaks best represent the velopharynx and tongue
base. This determination is made on the profile of the peaks present within the range of
interest. The velopharynx is detected by comparing the most proximal (rostral) peaks of the
range, as the peaks increase continually until maximal velopharyngeal pressure is reached.
After the sensor containing the velopharyngeal pressure max is identified, the peaks of the
sensors immediately caudal to the maximum continually decrease to a local minimum. The
region of the tongue base/posterior pharyngeal wall is then detected by comparing the
sensors immediately below this local minimum, which increase until another local
maximum is reached, the maximum tongue base pressure. The location of the UES is
determined by computing the average resting pressure of each sensor and selecting the
sensor with the highest value. Additional pressure maximums before the opening and after
the closing of the UES are also of interest. To locate these maximums, allowing for the
inherent movement of the UES during swallowing, the program considers up to three
sensors immediately rostral to the detected UES sensor. For these sensors there are two
peaks corresponding to the pre- and post-swallow UES pressure maximums on that channel,
and the highest among the candidate peaks are chosen as the true pre- and post-swallow
UES pressure maximums. Minimum UES pressure is also calculated by finding the point of
minimum pressure between the detected pre- and post-swallow UES pressure maximums.
We consider sensor channels immediately rostral to the UES resting position in order to
account for movement of the UES during swallowing.

Timing—Timing information is calculated by measuring the time elapsed between pressure
maximums, as well as the onset and offset of elevated pressure on the relevant sensor
channel. Parameters including durations and the rate of pressure increase are determined
based on these onset and offset points. UES activity time is calculated similarly, by
calculating the difference between the post-swallow UES pressure peak and the point at
which the UES pressure begins to fall. Total swallow duration is defined as the time lapse
between onset of velopharyngeal pressure and the post-swallow UES pressure peak.

Integrals—While maximum pressure can provide valuable information on swallowing
physiology which can easily be compared to previous manometric investigations, it does not
provide a complete picture of pharyngeal pressure events. Measuring the total pressure
created in a specific region offers more information and, when combined with durative data,
reveals more about the shape of the pressure curve and thus a better estimation on the
pressure affecting bolus propulsion. Integrals are calculated for the area beneath the
velopharynx and tongue base pressure curves, as well as above the UES minimum with the
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UES resting pressure as an upper limit. Temporal bounds in all cases are the onset and offset
of pressure elevation or depression determined previously.

Pressure wave velocity—The pharyngeal swallow can be thought of as a traveling
pressure wave, with peak pressure traveling caudally and ending at the UES. We can
calculate the velocity of this pressure wave by taking the distance from the velopharyngeal
pressure peak to the maximum post-swallow UES pressure peak and dividing by the time
lapse between these two points.

Data processing—In total, 89 swallows were analyzed and the derived feature sets were
used as a basis for determining models of normal and disordered swallowing. By attaching
the known status of a swallow to its feature vector, machine learning techniques can be
applied with the goal of modeling the relationship between the input features and the
pathological status of a given swallow. These techniques share the common procedure of
first being presented with the known data, going through a 'training' stage, and finally being
presented with new data during a 'test' stage. The training data and testing data are kept
separate in order to better gauge the generalizing ability of the classification.

Data were normalized and each variable in the data set ranged in value from −1 to 1, with a
mean of 0 and a standard deviation of 1. Normalizing the data improves both the efficiency
and accuracy of the algorithms, especially when using the scaled conjugate gradient
algorithm in the multi-layer perceptron technique (Saarinen et al., 1993). Additionally,
principal component analysis was used to reduce dimensionality to improve generalization.
The feature set was subjected to two levels of reduction, which removed features that
minimally contributed to overall variation. This was done because extra features which do
not significantly contribute to classification can be detrimental to correct classification rates.
The two levels of reduction were compared to the full, unreduced feature set.

For training purposes, a five-fold cross validation was performed. As random influences
may occur during the partitioning process, a more stable performance measurement was
obtained by repeating each classification task twenty times and averaging over the
individual results. A standard multi-layer perceptron (figure 2a) was created using sigmoidal
activation functions in one hidden layer, and the number of nodes in the hidden layer was
varied in increments of 5 from N=5 to N=60 to attain better performance. The Levenberg-
Marquardt learning algorithm was used. The goal of the learning algorithm in this model is
to modify the weights associated with the connections between the nodes (represented by
lines in figure 2a) such that an input vector will produce the specified desired output vector,
essentially mapping the input space onto the output classes of a normal or disordered
swallow.

The second approach used was Kohonen's learning vector quantization (figure 2b) (Kohonen
1988). Learning vector quantization is a competitive learning technique, where the goal is to
move 'codebook vectors' into positions where they accurately represent the structure of the
input space. Codebook vectors are hypothetical input vectors which attempt to represent the
feature space by locating themselves in regions containing many swallows. Then, individual
swallows can be classified by determining the codebook vector nearest to it, making
learning vector quantization similar to a nearest neighbor clustering method. We modified
the number of codebook vectors to reduce misclassifications. Noting that with large
codebook sizes comes a high degree of overfitting and poor generalization, we kept the
codebook size low enough to prevent each vector from simply associating with a particular
subject. This allowed us to keep good generalization with new subjects.
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The third and final approach used was support vector machines (figure 2c). Support vector
machines are traditionally a linear classification technique, where a hyperplane with a
maximum-margin of separation between the two classes (normal and disordered) is
constructed. Classification is then a simple matter of projecting a new swallow into this
feature space, and determining the side of the hyperplane to which it falls. We use a non-
linear approach (Boser et al., 1992) known as the kernel trick, whereby the feature space
undergoes a non-linear transformation, and the hyperplane is then fit to this higher
dimensional data. In particular, we use a radial basis function with a variable gamma
parameter as our kernel function, which provides the transformation from our feature space
into the higher dimensional space used for classification.

Separate from the variation of models, the feature set was selectively reduced in an attempt
to discover the classification ability of various subsets of the features. These subsets
included the categorical elimination of pressures, integrals, timing parameters, and the three
manometrically defined regions of interest. In addition to their inclusion in these subsets, all
parameters were used on their own as a singular input.

Receiver operating characteristic analysis
To determine the potential of each classification model as a diagnostic tool, receiver
operating characteristic (ROC) analysis was performed and area under the curve (AUC) was
determined.

RESULTS
Summary data from normal and disordered subjects are presented in table 2. Sample
spatiotemporal plots from each subject are provided in figure 3.

ANN techniques
A multilayer perceptron using the Levenberg-Marquardt training algorithm provided the
lowest average error rate (3.56% across architectures with varying numbers of hidden nodes)
and also performed well with a modest number of hidden nodes (2.58% N=25, where N =
number of hidden nodes). Among the learning vector quantization models, codebook size
(the number of hypothesized classes) had little impact on misclassification rate (average
misclassification rate of 8.97%). The support vector machine models performed the worst,
with an average misclassification rate of 14.61%.

Area under the receiver operating characteristic (ROC) curve for multilayer perceptron,
learning vector quantization, and support vector machine were 0.95, 0.94, and 0.88,
respectively (figures 4a, 4b, 4c).

Feature reduction
Principal component analysis provided no significant benefit, and reduced performance in
several instances, so the full featured data set was selected as optimal. In addition to PCA,
eliminating features associated with the UES resulted in the greatest increase in
misclassification, while eliminating the velopharygeal measurements decreased
misclassification only slightly. Concerning individual parameters (table 5), the pressure
maximum prior to UES opening performed the best, achieving a misclassification rate
approaching that of the support vector machines (average misclassification 20.68%). The
UES integral performed the worst, barely improving on randomness (average
misclassification 45.6%). This analysis was done to identify individual features which
contribute most strongly to correct classification. We found that the features associated with
the UES were most crucial to achieving correct classification.
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DISCUSSION
Subject health status (normal or disordered) was determined prior to the manometric
experiment and accomplished using traditional assessments such as history and physical
exam, modified barium swallow study, or fiberoptic endoscopic evaluation of swallowing.
We achieved greater than 95% classification accuracy and agreement with health status
determined using the aforementioned metrics. Therefore, different results were not obtained
between traditional assessment tools and HRM with topical anesthetic. Also, though topical
anesthesia was used in this study, it may not have significantly altered swallowing
physiology with regard to our measurements (McCulloch et al., 2010). Omitting topical
anesthetic in pilot experiments led to increased gagging and resting UES pressure,
confounding data collection. As swallowing is a sensorimotor phenomenon, impairing
pharyngeal afferent nerves could potentially alter normal physiology. However,
mechanoreceptors deep to the mucosa are largely responsible for modulating swallow
physiology (Ali et al., 1997) and these fibers were likely unaffected. Additionally, the oral
mucosa was minimally affected, and afferent information from this area is also important to
regulating swallow function. We believe that the benefit of increased subject comfort at the
expense of short-term pain/temperature afferent alteration improved the reliability of our
data.

Three classification model techniques were studied to determine effective discrimination
between normal and disordered swallowing based on data extracted from HRM
spatiotemporal plots. The ability to distinguish normal from disordered swallows is the first
step in in distinguishing among different specific disorders, which is the goal of this type of
analysis in a clinical setting. If normal subjects present with significant variation, then the
likelihood of a classifier distinguishing among disorders is low. The three classification
techniques used in this study were multi-layer perceptron (MLP), learning vector
quantization (LVQ), and support vector machine (SVM). The multi-layer perceptron
technique performed best, achieving an average classification accuracy of 96.44%.
However, support vector machines classified normal versus disordered swallows with
85.39% accuracy, which is also considered a high success rate. These results suggest that
these techniques, particularly the ANNs, can effectively distinguish normal from abnormal
swallowing, which could be valuable clinically.

Our efforts to improve performance by modifying the architecture of the ANN, such as
increasing the number of hidden nodes and codebook sizes, had a minimal effect in most
cases. This is likely a consequence of implementing measures to prevent overfitting in large
networks. Increasing the number of data points available by analyzing more swallows from
a larger subject pool could potentially prevent this overfitting and allow these larger
networks to run longer, potentially improving accuracy and generalization to new data (i.e.
different types of dysphagia).

Differences between the three techniques could point to a lack of well defined clustering in
the data or could be the result of combining dysphagic subjects into a single group rather
than separating them by disorder. With both learning vector quantization and support vector
machines, the winner-take-all nature of the learning algorithm means that correct
classification depends to a great degree on the identification of clusters associated with
particular output classes. The multilayer perceptron, though clearly improved by clustered
data, is not as reliant on that condition since it lacks both the competitive nature of learning
vector quantization and the direct partition construction, and inherent clustering, utilized by
support vector machines.
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Performing a feature reduction analysis allows us to determine which parameters are most
frequently affected by dysphagia. Variations in these parameters may be sensitive indicators
of swallowing abnormalities. Using maximum pre-opening UES pressure as the only
parameter of interest, a classification accuracy of 79.32% was obtained. The accuracy
obtained using this one parameter approached that using the entire feature set, demonstrating
the impact of the UES to disruptions in swallowing physiology. Removing all UES-related
parameters from the feature set resulted in the greatest decrease in classification accuracy
(table 4), in part due to the sensitivity of the maximum pre-opening UES pressure. As the
UES was the region most sensitive to physiological abnormalities, we expected the UES
integral to be a powerful parameter in distinguishing normal from disordered swallows;
however, classification accuracy was only 55.40%. At our modest sample size in this
preliminary stage, this may be due to some subjects exhibiting hypertonicity and some
subjects exhibiting hypotonicity. Additionally, our method used to calculate the UES
integral may have contributed to this as local pressure maximums occur far above resting
UES pressure, but the integral we measured was the area above minimum UES pressure but
below resting UES pressure. Extending the area of interest to include the area bounded by
local pressure maximums, and thus integrating by parts over multiple sensor channels, may
increase the utility of the parameter by more accurately accounting for the movement of the
UES during swallowing. Interestingly, removing velopharyngeal pressure from the feature
set did not greatly affect classification accuracy (table 4), resulting in a decrease of only
1-2% depending on the classification method.

Based on the data presented in this study, UES abnormalities are likely the most common
errant pressure feature associated with dysphagia, at least for our subject pool. As the UES
requires fairly complex and appropriately timed sphincteric action, this is not surprising.
Bolus gravitational force may be sufficient to compensate for a dysfunctional velopharynx
or tongue base and elevated velopharyngeal pressure may adjust for low tongue base
pressure. However, UES opening to facilitate bolus passage to the esophagus and closing to
prevent regurgitation and reflux are critical aspects of a functional swallow.

Even at this preliminary stage, the pattern recognition techniques employed here appear to
be clinically useful in distinguishing normal from abnormal swallowing. We recognize that
the ultimate goal of a swallowing evaluation is to define the underlying physiologic
abnormality that impairs successful swallow function. However, an immediate report on
whether a subject’s swallow is normal or disordered could aid clinicians in patient screening
and assessment based on pharyngeal HRM. The next step is to define manometric
abnormalities according to dysphagia characteristics, which would be further aided by
coupling HRM with videofluoroscopy. Although this study focused on differentiating
normal and disordered swallows, the many features generated by our analysis of HRM data
could prove able to distinguish between different types of dysphagia. The high accuracy in
this preliminary study provides evidence that HRM has potential as an alternative clinical
assessment tool, especially when coupled with ANN techniques.

CONCLUSION
Three neural networks are presented which can be used effectively to distinguish normal
from disordered swallowing based on pharyngeal high-resolution manometry. Feature
reduction analysis demonstrated that the upper esophageal sphincter is critical region for
distinguishing normal versus disordered swallows in our data set. Continuing to modify the
pattern recognition methods along with the use of additional disorder-specific data will
refine the utility of these techniques. Even at this preliminary stage, high classification rates
were achieved. As high-resolution manometry provides robust information on swallow
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events, applying pattern recognition methods will be useful in facilitating clinical
application and enhancing assessment utility.
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Figure 1.
High-resolution manometry spatiotemporal plot of one normal swallow (A) and
corresponding automated extraction of salient parameters (B). A = maximum
velopharyngeal pressure; B = velopharyngeal pressure integral; C = maximum tongue base
pressure; D = tongue base pressure integral; E = maximum pre-swallow upper esophageal
sphincter (UES) pressure; F = minimum UES pressure; G = UES pressure integral; H =
maximum post-swallow UES pressure; I = pressure wave velocity.
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Figure 2.
A) Schematic of a multilayer perceptron neural network. Each parameter of interest in the
input vector has a corresponding node in the input layer. The hidden layer contains the
nodes, the number of which was varied during the experiment. The output vectors are the
possible classifications of data, which were normal and disordered in this study. B)
Schematic of a learning vector quantization neural network. The four codebook vectors (1–
4) represent average positions in the four possible classes of data. The regions established
for these classes are outlined. In our study, there were only two classes. C) Schematic of a
support vector machine neural network. Support vectors on the periphery of the data clusters
(circled) help construct the hyperplane by locating the maximum margin between the
classes.
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Figure 3.
Sample spatiotemporal plots representing from each of the thirteen disordered subjects. Note
the wide range of abnormalities present across subjects.
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Figure 4.
A) Receiver operating characteristic (ROC) curve for multilayer perceptron classification,
Levenberg-Marquardt algorithm, N=30. B) ROC curve for learning vector quantization
classification, N=7. C) ROC curve for support vector machine classification, radial bases
function with gamma=1.
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Table 1

Clinical descriptions of disordered subjects.

Subject Age Sex Clinical characteristics

1 87 M Cervical spine injury at C7/T1

2 47 F Oropharyngeal irritation, severe globus sensation, treated laryngopharyngeal and gastroesophageal reflux disease,
slight esophageal dysmotility, high resting upper esophageal sphincter pressure

3 72 M Total laryngectomy for malignant neoplasm of the larynx, dysphagia following radiotherapy

4 64 F Raynaud syndrome with dysphagia, esophagitis likely secondary to reflux, possible diagnosis of scleroderma and
Sjögren’s syndrome, non-specific white matter changes (per MRI) likely secondary to small vessel disease

5 57 M Cricopharyngeal bar

6 38 F Cricopharyngeal dysfunction

7 77 M Cricopharyngeal bar, multiple instances of aspiration pneumonia, significant esophgaeal reflux

8 74 M Fall and subsequent subdural hematoma, severe oropharyngeal dysphagia, percutaneous endoscopic gastrotomy tube

9 37 M Total laryngectomywith bilateral neck dissections for radiation failure of recurrent laryngeal squamous cell
carcinoma

10 56 F Multiple brainstem strokes, severe oropharyngeal dysphagia, cricopharyngeal dysfunction, percutaneous endoscopic
gastrotomy tube

11 51 M Total laryngectomy and bilateral neck dissections for T4N2c squamous cell carcinoma on the right side of the larynx

12 61 F Dysphagia with hypopharygneal mass (later diagnosed as carcinoma), esophageal dysmotility, gastroesophageal
reflux

13 72 F Left vocal fold paralysis secondary to recurrent laryngeal nerve stretch injury during a successful repair of aortic
dissection
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Table 2

Summary data from normal (n=12) and disordered (n=13) subjects.

Parameter Normal Disordered

VP max (mmHg) 154 ± 42 148 ± 42

VP duration (s) 0.84 ± 0.21 0.79 ± 0.14

VP rise rate (mmHg/s) 880 ± 301 638 ± 282

VP integral 5777 ± 1837 6067 ± 2686

VP line integral 312 ± 77 309 ± 83

TB max (mmHg) 307 ± 172 144 ± 80

TB duration (s) 0.58 ± 0.17 0.59 ± 0.16

TB rise rate (mmHg/s) 1534 ± 713 747 ± 817

TB integral 4983 ± 2140 4252 ± 2093

TB line integral 491 ± 384 349 ± 220

UES pre (mmHg) 226 ± 115 84 ± 45

UES post (mmHg) 318 ± 135 221 ± 146

UES min (mmHg) −4 ± 7 2 ± 6

UES duration (s) 0.94 ± 0.18 0.85 ± 0.28

UES integral 11320 ± 40020 2913 ± 1750

UES line integral 137 ± 87 198 ± 107

Total swallow duration (s) 0.89 ± 0.13 0.95 ± 0.26

Pressure velocity (cm/s) 9.99 ± 1.85 10.19 ± 2.58
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Table 3

Summary data from each classification model.

Artificial neural network % Accuracy

Multilayer perceptron (MLP) 96.44 ± 1.27

Learning vector quantization (LVQ) 91.03 ± .98

Support vector machine (SVM) 85.39 ± 2.4
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Table 4

Average percent accurate classification for each classification model excluding a set of variables. Values are
presented as mean ± standard deviation. L-M = Levenberg-Marquardt algorithm.

Parameter excluded Multilayer Perceptron LM Support Vector Machine Learning Vector Quantization

None 96.44 ± 1.27 85.39 ± 2.4 91.03 ± 0.98

Pressures 86.29 ± 1.49 87.08 ± 1.12 90.73 ± 5.45

Durations 89.22 ± 0.39 90.17 ± 1.69 84.45 ± 3.75

Velopharynx 95.61 ± 3.62 83.43 ± 0.56 90.13 ± 5.46

Tongue base 89.48 ± 0.83 84.55 ± 1.08 85.71 ± 3.49

UES 83.57 ± 2.19 84.55 ± 2.81 79.45 ± 4.35

Integrals 91.84 ± 0.65 86.52 ± 0.92 85.50 ± 1.75

Line integrals 90.25 ± 1.49 83.43 ± 1.92 84.78 ± 5.12
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Table 5

Average classification accuracy for each parameter in isolation.

Parameter MLP LVQ SVM

VP max (mmHg) 69.25 ± 3.27 53.14 ± 2.15 53.65 ± 1.08

VP duration (s) 66.62 ± 2.17 52.09 ± 1.24 53.37 ± 0.65

VP rise rate (mmHg/s) 72.72 ± 3.03 68.12 ± 1.01 70.79 ± 0.92

VP integral 61.75 ± 2.39 53.45 ± 0.98 52.53 ± 1.69

VP line integral 62.96 ± 2.09 57.09 ± 1.78 53.09 ± 1.69

TB max (mmHg) 66.80 ± 3.14 66.17 ± 2.12 65.73 ± 1.12

TB duration (s) 65.62 ± 1.17 58.12 ± 2.45 53.93 ± 0

TB rise rate (mmHg/s) 66.98 ± 2.14 70.45 ± 1.98 71.07 ± 1.69

TB integral 63.93 ± 2.21 63.55 ± 4.45 57.02 ± 5.22

TB line integral 64.80 ± 2.47 59.12 ± 3.41 50.28 ± 1.92

UES pre (mmHg) 79.32 ± 2.19 75.63 ± 1.65 76.69 ± 0.56

UES post (mmHg) 78.52 ± 3.21 71.75 ± 1.71 72.47 ± 1.95

UES duration (s) 67.72 ± 2.28 62.52 ± 1.27 61.24 ± 1.12

UES integral 55.40 ± 4.12 51.49 ± 1.48 53.93 ± 0

UES line integral 66.77 ± 2.44 66.88 ± 2.47 64.89 ± 3.82

Total swallow duration (s) 68.88 ± 2.3 61.48 ± 2.44 54.49 ± 1.12
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