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Abstract
This work presents a few variational multiscale models for charge transport in complex physical,
chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery
cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models,
introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use
of differential geometry theory of surfaces as a natural means to geometrically separate the
macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and
continuum descriptions. Our main strategy is to construct the total energy functional of a charge
transport system to encompass the polar and nonpolar free energies of solvation, and chemical
potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and
Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations
leads to the minimization of the total free energy, and explicit profiles of electrostatic potential
and densities of charge species. To further reduce the computational complexity, the Boltzmann
distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the
densities of certain charge species so as to avoid the computationally expensive solution of some
Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-
Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in
heterogeneous systems. A major emphasis of the present formulation is the consistency between
equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major
emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the
LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge
transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes
equations from the variational principle for chemo-electro-fluid systems. A number of
computational algorithms is developed to implement the proposed new variational multiscale
models in an efficient manner. A set of ten protein molecules and a realistic ion channel,
Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive
numerical experiment is designed to validate the proposed variational multiscale models. A good
quantitative agreement between our model prediction and the experimental measurement of
current-voltage curves is observed for the Gramicidin A channel transport. This paper also
provides a brief review of the field.
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I Introduction
Charge transport is one of the most important processes in nature and man-made devices.
Due to the continuous miniaturization of mechanical, optical, and electronic devices,
molecular mechanism holds the key to the understanding of charge transport in a vast
variety of complex nano-bio devices, such as deoxyribonucleic acid (DNA) nanowires,
molecular junctions, solar cells, fuel cells, battery cells, molecular switches, nanotubes, field
effect transistors, nanofibers, thin films, ion channels, ATPases, neuron synapses, etc. Apart
from some oxidation and/or reduction in simple chemicals, which are described by ab initio
quantum theories, most charge transport processes are associated with complex molecular
structures or sophisticated devices in heterogeneous settings. As such, the molecular
mechanism of the charge transport often involves an excessively large number of degrees of
freedom and gives rise to enormous challenges to theoretical modeling and computations.182

One typical system is the metal oxide semiconductor field effect transistor (MOSFET), or
complementary metal oxide semiconductor (CMOS), which is the fundamental building
block of large scale integrated circuits used in almost all electronic equipments. Nano-scale
transistors, which are commonly used nowadays, still operate with the classical principle,
while severe quantum effects, i.e., the channel tunneling and gate leakage, have to be
suppressed by appropriate electrostatic potentials and designs.54,134 Quantum structures,
including nano-mechanical resonators, quantum dots, quantum wires, single electron
transistors, and similar low dimensional structures, have been contemplated and/or
prototyped.70,102 They utilize the fundamental properties of nature, such as quantum
coherence, i.e., the possibility for a quantum system to occupy several states simultaneously,
and quantum correlation or entanglement which do not have direct analogs in classical
physics. The charge transport and performance of quantum devices are subjects of intensive
research.27

Another example is the transport behavior of charge and water in the proton exchange
membranes (PEMs) of fuel cells, which remains a subject of much interest in both
theoretical and experimental studies.179 The role of PEMs in the selective permeation of
protons and effective blocking of anions is essential to the fuel cell performance. The
molecular morphology of PEM polymers, including Nafion, most likely consists of
negatively charged pores of nanometer diameter. Meticulous water management is crucial to
avoid both dehydration and flooding of the fuel cell so as to sustain its continuous
function.74,86 The understanding of the PEM fuel cell's working principle and the
improvement of fuel cell's performance are strategically important to alternative and
environmentally friendly energy sources.137 However, the underlying complex material
structures, large spatial dimensions, chemical reactions, and charge and mass transport in the
fuel cells pose severe challenges to their theoretical understanding.

Similar to fuel cells, battery cells have been intensively studied and will continue to be an
important topic in chemistry, physics, engineering and material sciences for years to
come.161 Battery cell unit typically consists of positive and negative electrode phases,
separated by a functional polymer electrolyte, which selectively permeates certain ions.
Battery charge/discharge cycling often induces volumetric change or deformation, which
may lead to delamination at particle-binder and particle-current collector interfaces, and the
loss of electrical connectivity.152 These problems contribute to the battery capacity fading
and mechanical failure. A main task in battery cell design and modeling is to improve
battery performance by reducing charge/discharge cyclic deformation. The Nernst-Planck
equation is often used in the field to model the battery electrokinetics.132,175 However,
chemical, thermodynamic, mechanical and electrostatic properties of realistic
microstructures are important aspects as well.
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The other interesting subject concerns nanofluidics which is a new interdisciplinary field
that makes use of precise control and manipulation of fluids at submicrometer and
nanometer scales to study the behavior of molecular and biological systems. Fluids confined
at the nanometer scale exhibit physical behaviors which are not observed in larger scales,
because the characteristic length scale of the fluid coincides with the length scale of the
biomolecule and the scale of the Debye length. Mirco/nano fluidic devices can be used to
obtain a variety of interesting basic measurements including molecular diffusion
coefficients,105 pH values,122,184 chemical binding affinities,105 and enzyme reaction
kinetics.60,88 Nanobio fluidic techniques have been instrumented for polymerase chain
reaction (PCR) amplifications,19 macromolecule accumulator,40,186 electrokinetics,14

biomaterial separation110 membrane protein crystallization,120 and DNA computing
processor for gene expression analysis.192 Recently, the state of the art in nanofluidic
dynamic arrays has been devised for high-throughput single nucleotide polymorphism
genotyping.176 Nanofluidic devices have also been widely used as electronic circuits,188

local charge inversion,91 and photonic crystal circuits.67 At the sub-millimeter scale,
microfluidic and digital microfluidic devices have been widely used for electrowetting,
electrode array, dielectrophoresis, DNA pyrosequencing, DNA miniaturized sequencing,
immunoassay, cell manipulation, cell separation, and cell patterning. Currently, the
development in microfluidics and nanofluidics is essentially empirical.160 Since nanofluidic
device prototyping and fabrication are technically challenging and financially costly, the
lack of theoretical prediction and quantitative understanding hinders the further development
of the field.

Finally, ion channels are transmembrane proteins that facilitate selected ion permeation and
maintain proper cellular ion compositions.55 The phospholipid bilayer provides a low
dielectric hydrophobic barrier to the passage of charged ions, while strongly polar or even
charged amino acids of ion channel proteins offer an ion conducting pathway across the
hydrophobic interior of the membrane bilayer.97,107 Figure 1(a) presents a graphic
representation of an ion channel. Ion channels play critical roles in many physiological
functions such as the conversion of chemical, physical, mechanical, photonic and thermal
stimuli into electric signals so that they can pass through nerves and be analyzed by a
brain.69 Additionally, they maintain an intercellular material and charge balance, regulate
signal transduction and control cardiac excitability. Therefore, ion channels are crucial to
cell survival and function, and are key components in many biological processes. Physically,
ion channels are mostly gated by ligands or voltages — the opening or closing of ligand-
gated ion channels is controlled by the binding of ligands to the channel protein, while the
state of voltage-gated ion channels depends on the electric field gradient across a plasma
membrane. Ion channels can be regarded as nature-made nano-bio transistors. The health
impact of ion channels has been well recognized — ion channels are common targets in the
rational drug design.69

A common feature of the aforementioned nano-transistor, fuel cell, battery cell, nanofluidic
and ion channel systems is their involvement of charge transport. The main purpose of our
theoretical modeling of charge transport is to predict device characteristics and performance.
This amounts to the understanding of transport features, including the rate of charge
movement, current-voltage (I-V) characteristics, output power, and efficiency, etc. One of
most popular transport models is the Boltzmann equation, or the Boltzmann-Vlasov
equation, which describes the kinetic of a typical particle, such as electron, phonon, or
photon, in terms of distribution function, Wigner distribution101 or density operator,2 due to
the free motion, binary collision and/or external field effects.21,38,90 The quantum
Boltzmann equation, known as the Waldmann-Snider equation,157,174 can provide quantum
corrections to the classical transport expression. The Waldmann-Snider equation can be
formally derived from the BBGKY hierarchy with an elegant binary collision closure.157
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Pair particle correlations in the framework of the quantum Boltzmann kinetic theory have
been considered.158,159 Stochastic approaches, such as the Monte Carlo algorithm, have also
been widely used for charge transport in semiconductor device simulations.99 Other
methods, such as the FokkerPlanck equation and the Master equation,71,98 describe the time
evolution of the probability function. A commonly used transport model for nano-electronic
devices is the non-equilibrium Green's function (NEGF) formalism50,51,114,164 originally
developed by Schwinger,149 and Kadanoff and Baym.104 This approach is often used to
solve the Poisson-Schrödinger equations for charge transport in nano-electronic
devices.4,9,121,166 Recently, coupled Poisson and Kohn-Sham equations have been derived
from the variational principle to describe electron transport in MOSFETs via the density
functional theory (DFT) formalism.27 The reader is referred to Ref27 for a review-style
introduction to current issues in the charge transport of nano electronic devices.

Typically, fuel cell, solar cell, battery cell, nanofluidic and ion channel systems have a large
number of degrees of freedom, and thus exclude the possibility of single-scale ab initio
quantum mechanical descriptions, such as those used in the modeling of electron transfer in
small molecules. Theoretical models in the field are mostly phenomenological and
continuum in nature. They describe the hydrodynamic motion and change of velocity and
mass in fuel cell and nanofluidic systems, which might be coupled to electric and/or
electrostatic forces. In 1965, Rice and Whitehead proposed coupled Navier-Stokes and
Poisson-Boltzmann (PB) equations for the continuum modeling of the transport of
electrolyte solutions in long nanometer-diameter capillaries.138 Navier-Stokes equations can
be derived from the Boltzmann equation,158,159 providing a description of density, velocity,
and energy. Together with the PB equation, the Navier-Stokes equations are capable of
coupling fluid motion with electric/electrostatic forces.

In early 1990s, Eisenberg and his coworkers7,30,63–65,155 pioneered the theory of the
Poisson-Nernst-Planck (PNP) equations for ion transport in membrane channels and coined
the name “Poisson-Nernst-Planck”, which is currently very popular in many fields, although
a similar approach called drift-diffusion equations had been used in the electronic devices
community for years. As a mean field theory, the PNP model treats the ion flow as the
averaged ion concentration driven by the electrostatic potential force and ion concentration
gradient. In general, the PNP theory goes beyond the DebyeHückel limiting law and the
Guoy-Chapman theory. Unlike its use in electronic devices, fuel cells, battery cells, and
nanofluidic systems, the PNP model in ion channel modeling incorporates the atomistic
(permanent) charge description of channel proteins into the Poisson equation, and thus, it
hybrids the macroscopic continuum description of ionic channel flows with the microscopic
discrete representation of protein electrostatic charge sources, see Fig 1. Over the years,
Coalson and his coworkers have intensively calibrated and validated the PNP and modified
PNP models for realistic ion channel systems, which have significantly advanced the PNP
theory.44,82,112,123 The PNP model is able to offer very good predictions of I-V curves for
many channel proteins.23,112,195 Because of the continuum representation of ions, the finite
size effect and non-electrostatic interactions of ion species are not considered in the original
PNP theory. To address these drawbacks, many modified PNP models, including the
approaches of the potential of mean forces, have been proposed in the
literature.48,96,103,109,119,123,154 It turns out that the potential force of the PNP model can be
easily modified, while the essential structure of the equations remains unchanged. The
advantages and limitations of all the abovementioned ion channel models have been a
subject of intensive discussion in the literature.
3,8,36,37,41,43,44,44,61,64,65,113,117,118,124,142,148,169 In addition to its success in
biophysics, the PNP model is also widely used in semiconductor100 and electrochemistry
nowadays.16,144

Wei et al. Page 4

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2012 November 19.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Recently, researchers have employed coupled PNP and the Navier-Stokes (NS) equations
for nanofluidic simulations.30,32,42,47,100,171,172,178,182,197,199 These models are able to
provide a more detailed description of the ionic distribution in nanopore channels. Chang et
al compared the performance of the PB model and the PNP model for the streaming current
in silica nanofluidic channels.24 Adalsteinsson et al combined the Brownian dynamics of
ions in the nanopore channel with the continuum PNP model for regions away from the
nanopore channel.1 Note that in ion channel models, Brownian dynamics typically describes
individual ions of finite size in fluid regions, while treat the channel protein as a dielectric
continuum.43 Another important modeling aspect is the liquid-solid interface contact angle
and interface morphology under an external electric field. The Lippmann-Young equation is
utilized for the estimation of liquid-solid interface contact angle and droplet morphology in
electrowetting-on-dielectric actuators.160 Abovementioned models might work quite well in
a particular circumstance, but none of them provides comprehensive predictions for general
nanofluidic and fuel cell settings, because one or more important components are missing.
For example, it is not uncommon for nanofluidic processes to induce structural
modifications and even chemical reactions,108,168 which are not described in the
abovementioned models. Mechanical or structural stability of PEM polymers is crucial to
the fuel cell performance and is often maintained via the water management in the
literature.74,86 Therefore, it is imperative to develop innovative models that are able to
account for configurational changes induced by charge and mass transport processes.

It is very likely that maintaining a fluid flow balance between intracellular and extracellular
spaces is one of the most important roles of ion channels in physiology. A comprehensive
model, which constitutes coupled Poisson-Boltzmann, Navier-Stokes, Nernst-Plank and
Laplace-Beltrami equations, was proposed for the dynamics and transport of ion channels as
well as fuel cell and nanofluidic systems.182 However, currently, the main interest or the
experimental measurement of ion channels is still focused on the current-voltage (I-V)
curves to understand their electrophysiological properties. Consequently, the fluid modeling
via the Navier-Stokes equation is often neglected by the ion channel community. Compared
to the fuel cell and nanofluidic modeling, ion channel modeling places more emphasis on the
microscopic structure and structural modification of channel proteins, and their impact to ion
permeation. One of the most detailed ion channel models is constructed in light of the
molecular dynamics (MD)126,142 or explicit solvent molecular dynamics. MD approaches
typically make use of classical force fields to describe molecular motions and are able to
deal with an entire ion channel, including ions, counterions, solvent, lipids and proteins. To
efficiently describe transport properties, Brownian dynamics (BD), based on the stochastic
equation of motions of ion particles driven by some generalized potential functions, can
effectively reduce the number of degrees of freedom, run up to the real time scale of ion
permeation across channel membranes, and determine ion conductance.43 A quite similar
model is the Monte Carlo approach,95 which computes the probability of the movement of a
selected set of ion species using random samplings.

In the PNP theory as well as implicit solvent representations, a solvent-solute interface is
needed for differentiating different regions with appropriate physical features, i.e., dielectric
functions and diffusion constants, and for separating appropriate computational domains.
Currently, the van der Waals surface, the solvent excluded surface,139 and the solvent
accessible surface are often utilized as solvent-protein interfaces. In combination with
implicit solvent theories, these surface models have been applied to the biological modeling,
computation and analysis, such as protein-protein interactions,49 protein folding,162 DNA
binding and bending,59 to name only a few. However, from the physical perspective, these
surface representations are simply ad hoc divisions of solute and solvent regions, and do not
satisfy physical requirement of free energy minimization. Another problem associated with
these surface representations is the admission of non-smooth interfaces, i.e., cusps, and self-
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intersecting surfaces, which could lead to computational instabilities in molecular
simulations.46,66,81,145 To remove geometric defects, we introduced one of the first partial
differential equation (PDE) based approaches to construct biomolecular surfaces via
curvature driven geometric flows in 2005.183 In 2006, we proposed one of the first
variational formulations of molecular surfaces, and the resulting molecular surface, called
the minimal molecular surface (MMS), is constructed by the mean curvature flow.12,13

Recently, we proposed a general framework for the construction of biomolecular surfaces by
generalized geometric flows in which the surface evolution is determined by balancing
curvature effects and potential effects.11 The mathematical structure of the potential driven
geometric flow was prototyped by Wei in 1999181 and is akin to the level set method
devised by Osher and Sethian.130 This approach enables incorporating microscopic
interactions, such as van der Waals potentials, into the curvature motion. Similar smooth
interfaces are used to impose boundary conditions on complex boundaries.185

Recently, Wei has introduced a differential geometry based multiscale paradigm182 for large
chemical and biological systems, such as fuel cells, nanofluidics, ion channels, molecular
motors, and viruses, which, in conjunction with their aqueous environment, pose a challenge
to both theoretical description and prediction. Therefore, it is crucial to perform
dimensionality reduction and manifold contraction by multiscale approaches. The essential
ingredient of this multiscale paradigm is to utilize the differential geometry theory of
surfaces and the geometric measure theory as a natural means to separate macroscopic
domain from the microscopic domain, and meanwhile, couple the continuum mechanical
description of the aqueous environment with the discrete atomistic description of the
macromolecule. The main tactic of the multiscale formalism is to construct multiscale free
energy functionals, or multiscale action functionals as a unified framework to derive the
governing equations for the dynamics of different scales and different descriptions.
Differential geometry based multiscale models are constructed for three types of aqueous
macromolecular complexes: ones that are near equilibrium, ones that are far from
equilibrium, and ones that are excessively large. Coupled Poisson-Boltzmann and Laplace-
Beltrami equations are derived for systems near equilibrium. For the micro-macro
description of electrokinetics, electrohydrodynamics, electrophoresis, fuel cells, and ion
channels, generalized Poisson-Nernst-Planck equations are coupled to generalized Navier-
Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and the
Laplace-Beltrami equation for the micro-macro interface. Finally, for excessively large
aqueous macromolecular complexes, differential geometry based multiscale fluid-electro-
elastic models are introduced to replace the expensive molecular dynamics description with
an alternative elasticity formulation, which further reduces the dimensionality of the
problem.

In the past two years, we have carried out intensive investigation to practically implement
and further analyze differential geometry based multiscale models.26,28,33–35 In a series of
efforts, both the Eulerian formulation33 and the Lagrangian formulation34 of differential
geometry based solvation models have been studied. In our Lagrangian formalism, interface
elements are directly evolved according to governing equations which prescribe a set of
rules. In our Eulerian formalism, the interface is represented in a hypersurface function
which is evolved according to the derived governing equations.33 A Lagrangian
representation can be obtained from the projection of the hypersurface function by using an
isosurface extraction procedure. The Eulerian formulation is mathematically simple and
computationally robust, while the Lagrangian formalism is straightforward for force
prescription11 and is computationally efficient, but usually encounters difficulties in
handling the geometric break-up and/or surface merging. We have demonstrated the
equivalence of these two formulations for the solvation analysis.34 A good agreement
between our theoretical prediction and experimental measurement has been observed for
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solvation energies of tens of compounds.33,34 Independent confirmation of our differential
geometry based solvation model has been reported in the literature.193 For comprehensive
background on the solvation analysis, the reader is referred to two review-style
introductions.33,34 Most recently, a quantum mechanical formulation has been introduced to
extend our earlier two-scale solvation models to genuine multiscale formulations.35 The use
of density functional theory enables us to compute the charge distribution from the Kohn-
Sham equation, and thus has significantly improved the predictive power of our earlier
solvation models.

In another effort, we have developed differential geometry based multiscale models for
proton transport which plays an important role in biological energy transduction,
reproduction of influenza A viruses and sensory systems.26,28 However, unlike other ion
channel processes, proton permeation across membrane proteins involves significant
quantum effect and needs to be treated by quantum mechanical formulations.128,135 We
have proposed a multiscale/multiphysics model for the understanding of the molecular
mechanism of proton transport in transmembrane proteins via continuum, atomic and
quantum descriptions, assisted with the differential geometry representation of membrane
channel surfaces. To reduce the number of degrees of freedom, we have constructed a new
density functional theory based on the Boltzmann statistics to describe proton dynamics
quantum mechanically, while implicitly treat numerous solvent molecules as a dielectric
continuum. A new density functional formalism is introduced to represent protein density
according to the Boltzmann statistics, in contrast to the Fermi-Dirac statistics used in the
traditional density functional theory (DFT) for electronic states. Such a change in statistics is
necessary because the Hamiltonian operator of the proton transport admits the absolute
continuous spectrum, while the Hamiltonian operator of the tradition DFT has a discrete
spectrum. The densities of all the other ions in the solvent are treated by using Boltzmann
distributions in a dynamic manner, an approach that has been validated in our earlier
work.196 An atomistic representation is given to protein molecular structures and their
charge locations. The non-electrostatic interactions among all the ions, and between ions and
proteins are denoted as generalized correlations and explored in detail.28 The differential
geometry based multiscale framework is utilized to put proton kinetic energy, proton
potential energy, the free energy of all other ions, and the polar and nonpolar energies of the
whole system on an equal footing. A comparison between experimental data and theoretical
predictions validates our model.

The objective of the present work is to explore new differential geometry based multiscale
formulations for heterogeneous chemical and biological systems that are far from
equilibrium. In our earlier differential geometry based multiscale models, the chemical
potential and the associated free energy are not accounted in the total energy functional.182

Consequently, the Nernst-Planck equation is introduced from the mass conservation of each
individual chemical species with an appropriate argument for the “diffusion flow” of a
species defined with respect to the barycentric motion of the homogeneous flow. As a result,
the evolution and formation of the solvent-solute interface are independent of the entropy of
mixing. In the present work, we construct alternative differential geometry based multiscale
models for chemical and biological systems that are far from equilibrium by incorporating
chemical potential related energy in the total free energy functional. We also investigate the
effective reduction of the number of degrees of freedom by introducing the quasi-
equilibrium Boltzmann distribution to selected charge species, which avoids the time-
consuming solution of many three-dimensional (3D) Nernst-Planck equations.

The rest of this paper is organized as follows. Section II is devoted to the theory and
formulation of our theoretical models. We first review our differential geometry based
solvation models, which establishes the required notations and introduces some necessary
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modifications to our earlier formulations.33,34,182 The modified solvation model also serves
as a benchmark for non-equilibrium models when the system returns to the equilibrium.
Based on this preparation, the chemical potential formulation of our variational multiscale
models is presented in detail. In particular, the relations among different models are
investigated. To highlight the perspective of fluid-dynamics driven charge transport, we
present a differential geometry based chemo-electro-fluid model. This model is relevant to
the nanofluidic and fuel cell systems. In Section III, a number of associated computational
algorithms are presented and discussed. Some of these algorithms have been developed in
our earlier work over many years for solving the Poisson-Boltzmann
equation25,190,191,194,200,201 and the classical PNP equations.195 Validation and application
of the proposed new models are carried out in Section IV by using a set of ten proteins. We
place a main emphasis on the demonstration of the consistency between the equilibrium
solvation model and new non-equilibrium charge transport models. In fact, such a
consistency provides a validation to new non-equilibrium models. We further apply our new
models to the ion transport of the Gramicidin A channel protein. By a quantitative
comparison, our model prediction of the I-V curves is found to be in a good accordance with
experimental data in the literature. This paper ends with concluding remarks.

II Variational multiscale models
In this section, we discuss a family of variational multiscale models for the analysis of
charge transport. Our formulation makes use of the differential geometry based multiscale
models.182 The essence of our models is that the macroscopic description of the solvent is
coupled to the microscopic description of the solute via the solvent-solute interface, which
together with other physical properties, is determined by the variational principle. As charge
transport is associated with mass transport, chemical potential comes to play a major role in
our energy based formulation. Three different descriptions of charged species in the solvent,
i.e., local equilibrium, local quasi-equilibrium and non-equilibrium descriptions, give rise to
three distinct models. It is crucial to analyze the consistency among these models. In
particular, the non-equilibrium models must reproduce the equilibrium model at equilibrium.
Therefore, the consistency provides a theoretical validation to non-equilibrium models.

In this section, we start from a minor modification of the differential geometry based
solvation model. Based on this foundation, we develop corresponding differential geometry
based models for charge transport. The consistency between different models at equilibrium
is established, which is a unique feature of the present work.

II.A Differential geometry based solvation model
Solvation is an elementary process in nature, and particularly in biological systems as 65%
to 90% of cell mass is water. All other more sophisticated processes, such as charge and
mass transport, signal transduction, transcription and translation, occur in aqueous
environment under the physiological conditions. Consequently, the understanding of
solvation is an elementary prerequisite for the quantitative description and analysis of the
above-mentioned processes as well as many other physical systems, such as nanofluidics,
fuel cells, batteries, etc. To establish the notation, provide the background, and illustrate our
multiscale modeling procedure, we briefly review our differential geometry based solvation
model.33,182 In fact, we present a slightly modified solvation model in the present work.
Changes are made to the solvent-solute interaction potentials and the Boltzmann
distribution, which are necessary for the development of our present new models.

II.A.1 Total energy functional for solvation—Phenomenologically, solvation process
can be described as the creation of a solute cavity in the solvent, the hydrogen bond breaking
and formation at the solvent-solute interface, the surface reconstruction of the solute
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molecule, and the entropy effect due to the solvent-solute mixing. Microscopically, the
solvation process involves a variety of solvent-solute interactions, such as the electrostatic,
dipolar, induced dipolar and van der Waals interactions between the solvent and the solute.
Solvation process is typically described by solvation free energies, which can be measured
by experimental means. The experimental data provide a validation to solvation models.
Typically, a solvation model provides a description of the solvation free energy, from which
many other physical properties can be evaluated as well. It is a standard procedure to split
the solvation free energy into two components: polar and nonpolar contributions. The polar
part is accounted either by the Poisson-Boltzmann (PB) theory,52,73,115,151 the polarizable
continuum theory,127,165 or the generalized Born approximation.10,58 Among them, the PB
theory is the most popular and can be formally derived from basic theories.17,92,129 One of
commonly used nonpolar solvation models is the scaled particle theory (SPT), which
includes the surface free energy and the mechanical work of creating a cavity of the solute
size in the solvent.133,163 However, it is well known that classical solvation models neglect
the additional solvent-solute interaction and polar-nonpolar coupling.33,62,173 An improved
nonpolar solvation free energy is given as

(1)

where the first two terms come from the SPT model and the third term describes the solvent-
solute interactions. Here “Area” and “Vol” are respectively the solute surface area and
volume of the solute, γ is the surface tension, p is the hydrodynamic pressure, and U
denotes the solvent-solute non-electrostatic interactions, such as the van der Waals
interaction. The integration is over the solvent domain Ωs.

We assume that the aqueous environment has multiple species. Under the assumption of
pairwise solvent-solute interactions, U can be obtained by summing up all the interactions of
each solute atom near the interface with the solvent species

(2)

(3)

where ρα (r) is the density of αth solvent component, which may either charged or
uncharged, and Uαj is an interaction potential between the jth atom of the solute and the αth
component of the solvent. For a single component solvent that is free of salt, ρα (r) is the
density of an uncharged solvent.33,34 The solvent-solute non-electrostatic interactions can be
approximated by the Lennard-Jones potential. In our recent work,33,34 the Weeks-Chandler-
Andersen (WCA) decomposition of the Lennard-Jones potential based on the original WCA
theory180 is utilized to split the Lennard-Jones potential into attractive and repulsive parts

(4)

(5)

where  is the well-depth parameter, σj and σα are the radii of the jth solute atom and the
αth solvent component, r denotes a point on the physical space and rj represents the location
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of the jth atom in the protein. The WCA potential was found to provide a good account of
the attractive dispersion interaction in our earlier work.33,34 In fact, there are many other
unaccounted interactions between the solvent and solute at their interface, including the
dielectric effect of the polarizable solvent (water and complex ions). In the present work, we
denote U for all possible solvent-solute interactions as shown in Eq. (2). Therefore, U
contains part of the so called size effects as well.28,96

The Lennard-Jones potential is singular and can cause computational difficulties.33

Recently, Zhao has proposed a way to improve the integration stability in a realistic setting
for proteins.193 However, further mathematical algorithms are needed for this class of
problems.

Furthermore, the surface area in Eq. (1) can be evaluated via a two-dimensional (2D)
integral.11,13 However, it is convenient for us to set up the total free functional as a 3D
integral in . To this end, we make use of the concept of mean surface area182 and the
coarea formula68

(6)

where 0 ≤ S ≤ 1 is a characteristic function of the solute domain and is usually called a
surface function. It embeds the 2D surface manifold in the 3D Euclidean space. Similarly, 1
– S is a characteristic function of the solvent domain. Here, Ω represents the whole
computational domain. The validity of the mean surface area has been examined in our
recent work.33 By means of the hypersurface function S, the volume in Eq. (1) can be easily
defined as

(7)

where Ωm is the macromolecular (i.e., solute) domain. Note that  is not empty
because the surface function S is a smooth function, which leads to the overlapping between
Ωs and Ωm. The last term in Eq. (1) can be rewritten as

(8)

Figure 2 provides a one-dimensional (1D) illustration of the profiles of solute characteristic
function S and solvent characteristic function 1 – S. The solute molecule is located from -0.8
to 0.8Å in the x-axis. Obviously, there is an overlapping between the solvent domain and the
solute domain. As shown below, the surface function S is determined by the Laplace-
Beltrami equation.

In this work, we make use of the Poisson-Boltzmann theory for the polar solvation free
energy. Variation formulation of the Poisson-Boltzmann theory was originally proposed by
Sharp and Honig150 in 1990 and was extended to the force derivation by Gilson et al.80

By means of the surface function S, the polar solvation free energy can be expressed as182

(9)

where Φ is the electrostatic potential, εs and εm are the dielectric constants of the solvent
and solute, respectively, and ρm represents the fixed charge density of the solute.
Specifically, one has ρm = Σjδ(r – rj), with Qj denoting the partial charge of the jth atom in
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the solute. Here kB is the Boltzmann constant, T is the temperature, ρα0 denotes the
reference bulk concentration of the αth solvent species, and qα denotes the charge valence
of the αth solvent species, which is zero for an uncharged solvent component.

In Eq. (9), we assume the Boltzmann distribution of the form

(10)

with μα0 being a relative reference chemical potential which reflects the difference in the
equilibrium concentrations of different solvent species, i.e., ρα ≠ ρβ, given that ρα0 = ρβ0. In
Section II.B, it is seen that Boltzmann distribution (10) occurs naturally.

Note that the thermodynamic equilibrium is a state of full balance over the whole domain,
which might not be achieved all the time at nanoscale, due to the recognition of microscopic
interactions. The concept of local equilibrium, which is commonly used in the Boltzmann
kinetic theory,158,159 is appropriate. Therefore, we refer to equilibrium as a local one in this
work.

Combining all the energy contributions mentioned above, the total free energy functional for
the solvation system can be described as

(11)

The total free energy functional (11) appears to differ much from that in our earlier
work.33,182 First, the Boltzmann distribution in Eq. (10) is used. Additionally, solvent-solute
interactions (1 – S)U are omitted. To understand these modifications, let us assume kBT >>
qαΦ + Uα – μα0 to obtain an expansion

(12)

Therefore, it is seen that the solvent-solute interactions have already been accounted in the
new Boltzmann distribution. In this sense, the present formulation (11) is consistent with
that in our earlier work.33,182 In fact, two more comments are in order. First, the division
between polar and nonpolar parts is quite ad hoc. Particularly, the solvent-solute interactions
can be included either in the nonpolar part or in the polar part. Additionally, by modifying
the energy term in the Boltzmann distribution, one can easily take into consideration of more
interactions, such as dipole,76 multipole,106,147 steric effects,20 multiple dielectric
constants140 and van der Waals interactions in a generalized Poisson-Boltzmann equation.
Such a generalized Poisson-Boltzmann equation may be able to show appropriate correlation
corrections to the equilibrium density as those computed by more expensive integral
equation theories.79,141

II.A.2 Governing equations for solvation—The total solvation free energy in Eq. (11)
is expressed as a functional of the surface function S and the electrostatic potential Φ. Our
goal is to minimize the total solvation free energy functional with respect to S and Φ. By
applying the variational principle, we have
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(13)

Based on the discussion in the earlier work,13,33,34,182 the solution of Eq. (13) can be
obtained by solving the following generalized Laplace-Beltrami equation after the
introduction of an artificial time

(14)

where the potential driven term is given by

(15)

The generalized Laplace-Beltrami equation (14) gives rise to the surface definition of the
solvent-solute interface.

Taking the variation with respect to Φ, we have

(16)

From Eq. (16), one obtains the generalized Poisson-Boltzmann equation

(17)

where ε(S) = (1 – S)εs + Sεm is the generalized permittivity function. As shown in our
earlier work,33,182ε(S) is a smooth dielectric function gradually varying from εm to εs. The

extra term  in Eq. (17) is due to the solvent (including ions) and solute interactions near
the interface. Note that Uα is a relatively weak short range potential and has its largest

impact near the solvent-solute interface. Therefore,  provides a non-electrostatic
correction to the charge density near the interface.

Equations (14) and (17) describe the surface evolution and the electrostatic potential,
respectively. These coupled equations are called the Laplace-Beltrami and Poisson-
Boltzmann (LB-PB) equations. They form a coupled system for the differential geometry
based solvation model in the Eulerian representation. An essentially equivalent Lagrangian
representation of the differential geometry based solvation model was derived.34 It has been
shown33,34 that these solvation models provide very good predictions of solvation energies
compared to experimental data.

The solvation model describes the system at equilibrium as the charge concentration is
approximated by the Boltzmann distribution. However, for charge transport phenomena,
charges typically undergo a dynamical process driven by the generalized electrochemical
potential. As such, a non-equilibrium description for the charge concentration is required. In
the rest of this section, we present variational multiscale models to describe charge transport
in chemical and biological systems.

Wei et al. Page 12

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2012 November 19.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



II.B Differential geometry based Poisson-Nernst-Planck model
In the above system, the generalized Poisson-Boltzmann and Laplace-Beltrami equations are
obtained from the variational principle. For chemical and biological systems far from
equilibrium, it is necessary to incorporate a kinetic equation to describe the dynamics of
charged particles. Typically, the Nernst-Planck equation plays such a role. In our earlier
work,182 the generalized Nernst-Planck equation was derived from the mass conservation.
As such, the total free energy functional does not include the chemical energy density and
the solvent-solute interface is not affected by the chemical potential. In the present work, we
seek for an alternative formulation of charge transport, in which the total free energy
functional encompasses the chemical potential contribution as well.

A variational approach to the Poisson-Boltzmann free energies that includes the
concentration effect and chemical potential was considered by Fogolari and Briggs.72

II.B.1 Total energy functional for a system with charged species—For simplicity,
we assume that the flow stream velocity vanishes (|v| = 0). Additionally, we omit the
chemical reactions in our present discussion. Chemical potential consists of a homogeneous
reference term and the entropy of mixing. It can be derived from the free energy
functional.72

Chemical potential related free energy can be expressed as

(18)

where  is a reference chemical potential of the αth species at which the associated ion

concentration is ρ0α given = Φ = Uα = μα0 = 0. Here  is the entropy of
mixing, and –kBT (ρα – ρα0) can be regarded as a relative osmotic term.125

The chemical potential of species α can be obtained by the variation with respect to ρα

(19)

Note that at equilibrium,  and ρα ≠ ρα0 because of possible external electrical
potentials, solvent-solute interactions, and charged species. Even if the external electrical
potential is absent and system is at equilibrium, the charged solute may induce the
concentration response of ionic species in the solvent so that ρα ≠ ρα0.

Considering the aforementioned chemical potential related energy term, together with the
polar and and nonpolar contributions discussed in the previous section, the total free energy
for the system can be described as below

(20)

where the first row is the nonpolar solvation free energy functional, the second row is the
polar solvation free energy functional, and the third row is chemical potential related energy

Wei et al. Page 13

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2012 November 19.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



functional. Here λα is a Lagrange multiplier, which is required to ensure appropriate
physical properties at equilibrium.72

Note that we have employed the original nonpolar solvation free energy functional (1) in the
present total free energy function formulation (20).

II.B.2 Generalized correlations — Size effect and channel confinement—Water
is naturally abundant in nature. In an aqueous solution, charged particles do not exist by
themselves, but constantly interact with solute, water molecules, and with other ions. Part of
these interactions are electrostatic in nature and have been accounted in the above
formulation. However, there are other interactions, including van der Waals interactions,
dispersion interactions, ion-water dipolar interactions, ion-water cluster formation or
dissociation, ion spin effects, ion-protein interaction, etc. These additional interactions are
termed as generalized correlations in our recent work.28 They give rise to many important
effects in the behavior of charged particles. One obvious and intensively studied effect is the
size effect.28,96 Size effect typically offers a small correction to the ion distribution when the
ion concentration is relatively small, but gets more important as the concentration increases.
The effects of finite ion sizes in terms of volume exclusion were discussed by Bazant et al14

and many others.84,116,170 Size effect in the variational multiscale solvation models has been
accounted with the WCA potential for realistic proteins.33,34 A treatment of pair particle
interactions, including the so called size effects, in the Boltzmann kinetic theory was
formulated by Snider et al in 1996.158,159 They have demonstrated the impact of these
interactions to the transport equations of density, velocity and energy, and transport
coefficients. Another important effect of generalized correlation is an energy barrier to the
ion transport due to the change in the solvation environment from the bulk solution to a
relatively narrow channel pore.28 It is commonly believed that the difference in this type of
energy barriers for sodium and potassium leads to the selectivity of sodium and potassium
channels. In the present work, we adopt the formulation of generalized corrections
introduced in our earlier work.28 This amounts to modify Eqs. (2) and (3) as

(21)

where the solvent-solute interaction potential Uαj(r) was described in Section II.A.1 and the
subscript β runs over all solvent components, including ions and water. In general, we
denote Uα as any possible non-electrostatic interactions in the system.

If the solvent-solvent interaction is represented by the van der Waals potential, one has an
explicit expression for Uαβ (r)

(22)

Note that there should be a factor of 1/2 in Eq. (22) when β = α. However, such a factor is
eliminated after the variation. As pointed out in our earlier work,28 the Lennard-Jones
formula in our formulation is significantly different from the conventional Lennard-Jones
potential, which traditionally represents short-range interactions between two explicit
particles. Whereas in the present model, it characterizes solvent-solvent interactions in the
continuum-continuum representation as both water and all ion species admit the continuum
description. The repulsive 12-power term in the Lennard-Jones potential prevents any two
particles from occupying the same space. It was shown in our earlier work that because the
integration in Eq. (22) is restricted to a smaller volume in a narrow channel pore, the
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generalized correlation gives rise to an additional energy barrier. Physically, the channel
confinement decreases the configurational entropy and increases the solvent-solvent
interaction potential energy.

It is interesting to note that the inclusion of generalized correlation, i.e., adding an additional
solvent-solvent interaction term Uαβ (r) to the total interaction potential Uα (r), does not
change the derivation and the form of other expressions presented in the preceding section.
It is expected that further modifications can be easily introduced to the present formulation.

II.B.3 Governing equations—The total free energy functional (20) is a function of the
surface function S, electrostatic potential Φ and the ion concentration ρα. By applying the
variational principle, we obtain governing equations for the system.

Generalized Nernst-Planck equation: First, we consider the variation with respect to the
ion concentration ρα

(23)

where  is the relative generalized potential of species α. Note that it is , rather than

, that vanishes at equilibrium. As such, one has

(24)

From Eq. (24), the relative generalized potential  can be expressed as

( 25 )

A similar quantity was derived from a slightly different perspective in our earlier work.196

Note that the relative generalized potential consists of contributions from the entropy of
mixing, electrostatic potential, solvent-solute interaction and the relative reference chemical
potential. The latter is position independent. By Fick's first law, the ion flux can be

expressed as the gradient of the relative generalized potential  with Dα
being the diffusion coefficient of species α. Then the mass conservation of species α at the

absence of steam velocity gives , which is the generalized Nernst-Planck
equation:

(26)

where qαΦ + Uα can be identified as a form of the potential of the mean field. Equation (26)
reduces to the standard Nernst-Planck equation when the solvent-solute interactions vanish.

The steady state of Eq. (26) reads as

(27)
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Generalized Poisson equation: The derivation of the generalized Poisson equation can be
pursued in the same manner. We consider the variation of the total free energy functional
with respect to the electrostatic potential Φ

(28)

This gives rise to the desirable generalized Poisson equation

(29)

where ε(S) = (1 – S)εs + Sεm is an interface dependent dielectric profile. Obviously, Eq.
(29) involves the densities of ions ρα and the surface function S.

Generalized Laplace-Beltrami equation: As discussed earlier, the surface function S can
be solved from the generalized Laplace-Beltrami equation. It is noted that although all
Laplace-Beltrami equations in our formalisms share the same mean curvature operator
obtained from the surface energy term, each system has its own potential driven term which
can be derived from the Euler-Lagrange equation

(30)

where we have made use of Eq. (24). As shown in our earlier work,11,182 the solution of Eq.
(30) can be obtained by solving the following parabolic equation via the introduction of an
artificial time

(31)

where

(32)

Equations (26), (29), and (31) are coupled together to form a coupled system of equations
for describing the surface function S, charge concentrations ρα and the electrostatic potential
Φ, where the steady state of S and ρα are given in (30) and (27). This coupled system differs
from the original PNP system in the sense that the surface characteristics is coupled to
charge concentrations and the electrostatics. We call this system a Laplace-Beltrami
Poisson-Nernst-Planck (LB-PNP) model.

II.B.4 Relation to the solvation model at the equilibrium—In this part, the relation
between the non-equilibrium LB-PNP model and the equilibrium solvation model is
investigated. If the charge flux is zero for the electrodiffusion system, the PNP model is
known to be equivalent to the PB model.142 Note that at equilibrium, the relative generalized
potential vanishes every-where and one has the equilibrium constraints given in Eq. (24).
Therefore, by utilizing the constraints in Eq. (24), the total free energy functional in Eq. (20)
becomes
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(33)

It shows that under the equilibrium assumption, the total free energy functional for the
present charge transport model reduces to that of the solvation model given in Eq. (11). We
emphasize that this consistency between LB-PNP and LB-PB models is a crucial aspect of
the present non-equilibrium theory of charge transport.

Furthermore, for the surface driven functions of the generalized LB equation, it is easy to
show that under the constraints of Eq. (24), one has

(34)

However, in general, the total free energy functional of the LB-PNP model in Eq. (20)
differs from that of the LB-PB model in Eq. (11). Similarly, the surface driven term V2 in
the charge transport model differs from V1 in the solvation model. Moreover, ρα in the
charge transport model needs to be solved by the Nernst-Planck equation (26).

II.C Differential geometry based Poisson-Boltzmann-Nernst-Planck model
The LB-PNP model discussed above provides a good prediction of charge transport
phenomena for non-equilibrium systems. However, the computational cost increases
dramatically as the number of charge species in the system increases because the
concentration of each charge species is governed by one Nernst-Planck equation. In a
complex system with multiple charge species, the LB-PNP model can be very expensive. In
our earlier work,196 we introduced a Poisson-Boltzmann Nernst-Planck (PBNP) model in
which the densities of target ions (ions of interest) are modeled by the Nernst-Planck
equation while those of other ions are described by using the Boltzmann distribution. We
have shown that the PBNP model is able to faithfully reproduce prediction of the PNP
model for ion channel transport at non-equilibrium settings.196 The validity and usefulness
of the PBNP formulation have been quickly confirmed by independent researchers.111 In the
present work, we derive a set of coupled LB-PBNP equations for multiple charge species at
non-equilibrium.

II.C.1 Total energy functional for Poisson-Boltzmann-Nernst-Planck model—
Assuming that the total number of ion species in the system is Nc, and we are interested in
certain charge species (or target charge species), while the rest of the species are not the
ones of interest. Nevertheless, all species have similar impact on the system. Let us denote
ρα (α = 1, ..., NNP) as the densities of the target charge species, ρα (β = NNP + 1, ..., Nc) as
the densities of the remaining charge species in the system, where NNP is the total number of
charge species treated by using the non-equilibrium Nernst-Planck (NP) equation, and NBD
= Nc – NNP is the total number of the remaining charge species which are represented by the
equilibrium Boltzmann distribution. It was demonstrated in our earlier work that since all
species are fully coupled, the non-equilibrium transport of the charge species can be
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effectively recovered although their densities are represented by the equilibrium Boltzmann
distribution. Based on this consideration, the total free energy functional can be expressed
by

(35)

where the first row is the nonpolar solvation free energy functional, followed by the polar
and chemical potential related energy functionals in the second and third rows. Note that the
charge source terms in the polar solvation free energy functional are modified to reflect the
abovementioned different treatments of the charge species. The Lagrange multiplier λα is
designed to enforce appropriate physical properties at equilibrium.

As shown in Eq. (2), the solvent-solute interaction potential U in Eq. (35) involves densities
for all solvent species as well. As discussed above, these densities are described by the non-
equilibrium Nernst-Planck (NP) equation and by the equilibrium Boltzmann distribution.

II.C.2 Governing equations—In our differential geometry based multiscale formalism, it
has become a standard procedure to derive governing equations from the total energy
functional. Here we present related governing equations for the system of charge transport.

Generalized Nernst-Planck equation: To calculate relative generalized potentials we take
the variation of Eq. (35) with respect to the ion concentration ρα

(36)

where  is the relative generalized potential of species α. It must vanish at equilibrium,
which leads to the constraint for the Lagrange multiplier and the equilibrium concentration

(37)

From Eqs. (36) and (37), the relative generalized potential can be expressed as

(38)

Note that μα0 does not have a position dependence. Therefore, by using the same procedure
as that for deriving Eq. (26), we arrive at the generalized Nernst-Planck equation

(39)
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The combination of Eqs. (37) and (39) provides a full description of charge particles in the
system. In practical applications, one wishes to solve as few NP equations as possible, while
maintaining the given level of modeling accuracy.

Generalized Poisson-Boltzmann equation: By taking the variation of the total energy
functional with respect to the electrostatic potential Φ, one has the generalized Poisson-
Boltzmann equation

(40)

where ε(S) = (1 – S)εs + Sεm. The treatment of certain mobile charge species by the
Boltzmann distribution has significantly reduced the number of NP equations to be solved.
The combination of Eqs. (39) and (40) is called generalized PBNP equations.

Generalized Laplace-Beltrami equation: Furthermore, we can obtain the equation for the
solvent-solute interface by the variation of Eq. (35) with respect to surface characteristic
function S

(41)

Similarly, the solution of Eq. (41) can be obtained by solving the following generalized
Laplace-Beltrami equation

(42)

where the potential driven term is given by
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(43)

The generalized LB equation (42), PB equation (40) and NP equation (39) are coupled
together to form the system for the present LB-PBNP model. The solution to these equations
gives rise to an optimized surface function S, electrostatic potential Φ and a set of charge
densities {ρα}. The convergent solutions of S, Φ and {ρα} provide the minimal total energy

 given in Eq. (35).

II.C.3 Relation to the LB-PB and LB-PNP models—It is easy to show that at

equilibrium, the constraints given in Eq. (37) reduce the LB-PBNP total energy  given

in Eq. (35) to the LB-PB total energy  given in Eq. (11)

(44)

Similarly, one can demonstrate that under the constraints of Eq. (37), the surface driven
function V3 given in Eq. (43) reduces to the surface driven function V1 of the LB-PB model

(45)

However, it is not easy to show that the LB-PBNP total energy  is a faithful

representation of the LB-PNP total energy . In other words, it is not clear whether the
reduced LB-PBNP model is able to recover the full predictions of the LB-PNP model. The
representability of the LB-PNP model by the present simplified LB-PBNP model is one of
the major issues to be addressed by the numerical analysis and experiments in following
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sections. The success of the present LB-PBNP model depends on its ability to reproduce the
full predictions of the computationally more expensive LB-PNP model.

The LB-PNP and LB-PBNP models neglect possible fluid flows and chemical reactions. In
fact, in practical applications, such as fuel cells and nanofluidic systems, fluid motion and
chemical reaction commonly occur. In the next section, we present a differential geometry
based chemo-electro-fluid model.

II.D Differential geometry based chemo-electro-fluid model
At nanoscale, fluid flows play a crucial role in the density distribution of charge species and
electrostatic properties of immersed macromolecules. In nano-fluidic devices and fuel cell
systems, the description of fluid motion is mostly required. The interface description is
important in PEM fuel cells, where a hydrophobic polymer membrane is functionalized by
acidic side chains. The polymer membrane behaves as an electrode separator and allows
certain types of ion species (e.g., protons) to pass through so as to convert the chemical
energy into electric power. However, fluid particles involve an excessively large number of
degrees of freedom and are better described by using continuum models. On the other hand,
we wish to describe the immersed molecules, such as proteins, DNAs and ion channels, by
using discrete atomistic models because their charge locations are important to the ion
selectivity, gating effect, and transport. It is well-known that the relevant distance is

determined by the Debye length . In biological systems, the
electrostatic potential impacts over a few orders of magnitude, from atomic to cellular
scales, depending on the temperature and ion density. Similar effects can be found in
mechanical and chemical systems as well. As such, a multiscale model is desirable for
nanofluidic and fuel cell systems as introduced in our earlier work.182 In classical kinetic
theory, the distribution of charge species is often described by equations of the conservation
law. Therefore, we have provided a conservation law based derivation of the Nernst-Planck
equation in our earlier work.182 It was shown that the “diffusion flow” of each individual
species defined with respect to the barycentric motion is crucial to the derivation of the
Nernst-Planck equation. All other governing equations, including Navier-Stokes, Laplace-
Beltrami and Poisson equations, were derived from the variational principle.

In the present work, we offer an alternative derivation of coupled Navier-Stokes, Laplace-
Beltrami, Poisson and Nernst-Planck equations. Specifically, we do not resort to the
conservation law argument for the Nernst-Planck equation. Instead, all governing equations
are derived from the variational framework, which is able to put microscopic and
macroscopic description on an equal footing. An important advantage of this framework is
that it is easy to put different theories in contact and eliminate inconsistency in governing
equations. An essential tactic in our multiscale variational framework is to make use of
fundamental laws of physics, while avoiding phenomenological descriptions.

II.D.1 The action functional for the chemo-electro-fluid model—In this work, we
develop differential geometry based approaches so that the surface formation is coupled to
the Navier-Stokes equation and Poisson-Nernst-Planck equations. We slightly modify the
formulation developed in Section II.B with an appropriate fluid term. Let us consider the
following total action functional
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(46)

where ρ = Σα ρα is the total solvent mass density, v is the flow stream velocity, and μf is the
viscosity of the fluid. The Einstein summation convention is used in the viscosity term. The
first few rows in Eq. (46) have been discussed in the earlier sections. The last row in Eq.
(46) describes the Lagrangian of an incompressible viscous flow with the kinetic energy,
potential energy and viscous energy lost due to friction.182

II.D.2 Governing equations
Generalized Nernst-Planck equation: With a non-vanishing flow velocity, the derivation
of the generalized Nernst-Planck is slightly different from that in Section II.B.3. One first
computes the generalized potential via the variation of the total action functional (46) with
respect to the ion concentration ρα.

(47)

where  is the relative generalized potential of species α. We assume that  vanishes at
“dynamical equilibrium”. As such, one has

(48)

Of course, more classical equilibrium state is described by Eq. (24). From Eq. (48), the

relative generalized potential  can be expressed as

(49)

With the above relative generalized potential, we obtain the generalized flux as

With the consideration of chemical reactions and fluid flows, the generalized Fick's law
reads182

(50)

where  is the density production of α species per unit volume in the jth chemical
reaction. Therefore, we have the generalized Nernst-Planck equation
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(51)

Here,  is a generalized potential, which is similar to the “potential of mean

forces” for the system. Consequently,  is a generalized force. It is
interesting to note that the local gradient of fluid flow kinetic energy also contributes to the
density flux. When |v| = 0 and there is no chemical reactions, Eq. (51) reduces to Eq. (26),
which further reduces to the standard Nernst-Planck equation if the solvent-solute
interactions vanishes.

Generalized Navier-Stokes equation: The variation of the total action functional (46) also
leads to the generalized Navier-Stokes equation which governs the flow stream velocity of
incompressible flows182

(52)

where  is the flow stress tensor182

(53)

where symbol T denotes the transpose. In Eq. (52), FE is the total force given by

(54)

where the nonpolar force is

(55)

It is interesting to note that compared with the classical Navier-Stokes equation under

electric field,182 the generalized reaction field force  (i.e., the

classical electric field (E) term  for electro-osmotic flows) is absent from the
present force expression because the density of each species is regarded as a variable in the
variation. For the same reason, generalized Nernst-Planck equation (51) has gained an extra
term associated with the fluid energy. Therefore, by using the total energy functional
formulation, one can eliminate the inconsistency in governing equations.

Generalized Laplace-Beltrami equation: By using the same procedure as that used in
Section II.B.3, we end up with the generalized Laplace-Beltrami equation

(56)

where
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(57)

Compared with Eq. (32), the additional fluid energy term contributes to the solvent-solute
interface evolution.

Finally, the variation of the total action functional (46) with respect to does not lead to a new
equation — the generalized Poisson equation (29) is obtained again.

The generalized Nernst-Planck equation (51), Navier-Stokes equation (52) and Laplace-
Beltrami equation182 are coupled to the generalized Poisson equation (29). These coupled
equations provide a description to a chemo-electro-fluid system of multiple charge species
far from equilibrium. They offer a reference to the charge transport models formulated in
earlier sections so as to enhance our understanding.

As discussed in our earlier work,182 the total charge current density Ic is given by

(58)

where ρqv is the charge convection current due to flow motion and ic is the charge
conduction current. The charge convection current vanishes for a charge neutral system.

III Computational algorithms
The development of rigorous numerical techniques and computational algorithms is
enormously important for the study and understanding of realistic chemical, physical,
biological and engineering problems. This section concerns the implementation of the
proposed charge transport models for ion channel transport in membrane proteins. Since ion
channel measurements are usually conducted without fluid motion, we focus our effort on
two charge transport models given in Sections II.B and II.C. In these models, essentially
three types of coupled equations with appropriate initial/boundary conditions need to be
solved in a self-consistent manner. In this section, the algorithms of solving the coupled
system are discussed by referring to the generalized LB-PNP equations, the algorithms for
LB-PBNP follow similar procedures.

As discussed in the previous work,33,34 either the Eulerian representation or the Lagrangian
representation can be utilized for the multiscale analysis. Here we discuss the computational
algorithms for both formulations.

III.A Eulerian representation
The main feature of the Eulerian representation is that a smooth solvent-solute interface is
produced, which avoids many numerical problems in dealing with the Poisson equation or
the Poisson-Boltzmann equation.

III.A.1 Generalized Laplace-Beltrami equation—To solve Eq. (31) with V2 being
represented by Eq. (34), the initial condition is defined below
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(59)

where , that is, if r lies in any of the sphere

 defined by atomic coordinates, then the value for S
is 1, otherwise, S = 0. Here, rβ and rβ (β = 1; ..., Na) are respectively the coordinate and
specific radius of βth atom in the molecule with Na being the total number of atoms, and rm
is the probe radius. The atomic specific radius can be chosen as the atomic van der Waals
(vdW) radius.

To evaluate the LB equation, we set t′ = tγ and . To avoid the blowup when the
magnitude of ∇ S is very close to zero, we modify the LB equation as

(60)

where  is a small positive number. Denote  as the protection zone,

then the surface function S is only updated in domain  as

(61)

Here Eq. (61) can be solved explicitly35 where the time discretization is implemented by the
forward Euler scheme and the spatial discretization is done by the standard central finite
difference scheme. Alternatively, it can also be solved implicitly by the semi-implicit
scheme and alternating-direction implicit (ADI) methods.11 Implicit schemes allow the use
of a relatively large time step.

III.A.2 Generalized Poisson and Nernst-Planck equations—The discretization of
Eq. (27) and Eq. (29) can follow the standard finite difference scheme. To discretize Eq.
(29) along x direction at point (i, j, k), we use

(62)

where Δx is the mesh size in the x direction, εi = ε(Si,j,k). As for the delta functions on the
right hand side, they can be distributed to the neighboring points round (i, j, k).

As Dα is the position dependent diffusion coefficient of the α species, we define Dα (S) = (1
– S)Dα . By using this definition, we can observe that when S = 1, Dα(S) is 0, which means
that there is no diffusion in the protection zone, then the steady state Eq. (27) can be written
as
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(63)

To discretize Eq. (63) along the x direction at point (i, j, k), the following scheme can be
utilized,

(64)

where  and Di,j,k = (1 – Si,j,k)D. Here one problem is how to implement the
boundary condition for Eq. (63). To enforce the non-flux boundary condition, we set Jα = 0
on ∂Ω2. Therefore, every time Eq. (31) is updated to the steady state, then ε(S) and Dα (S)
can be determined from the surface function S. Therefore, Eqs. (29) and (27) can be solved
iteratively until the steady state is reached, which provides new Φ and ρα for updating S.

In the Ith inner loop for computing Φ and ρα, the successive over relaxation scheme is
utilized33

(65)

where ζ1 and ζ2 are in the range of zero and one. This algorithm delivers a stable scheme
with appropriate choice of relaxation factors, ζ1 and ζ2. A larger value will lead to slower
convergence, while a smaller values may cause instability.33 Alternatively, the Gummel
iteration53 can also be used to handle this type of problems as shown in our earlier work.195

III.B Lagrangian representation
Although the free energy functional is presented in the Eulerian formulation, an alternative
free energy functional can be provided by using the Lagrangian representation. Based on
such a free energy functional, one can derive the governing equations in a way similar to
that in Ref.34 We skipped the description in the present work. The final governing equations
are presented below, while the reader is referred to Ref.34 for more details about the
derivation procedure.

III.B.1 Poisson equation—In the Lagrangian representation, the total domain  is

divided into two domains  and  by a sharp interface  such that  and

. Here the interface  is determined by the hyperfunction S via an isosurface
extraction procedure

(66)

The matched cubes algorithm is used for the isovalue extraction. Typically, we set c = 0.5
although other values may be used for a particular purpose of illustration. In Eq. (66), the
surface function S is still determined by the steady state of evolution equation (31).

The governing equation for electrostatic potential Φ is given by
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(67)

where the sharp dielectric function is given by

(68)

For charge densities ρα, Eq. (27) is used. However, it is defined in the present domain of .

The solution of Eqs. (67) and (27) involves elliptic equations with discontinuous coefficients
and singular sources in biomolecular context. This numerical problem is extremely
challenging. The algorithms developed in our recent work195 can be utilized. Many of
essential ideas for treating the irregular points in the discretization of the governing elliptic
equations close to the interface are developed in our earlier work.187,189–191 Notice that in
this representation the zero-flux boundary condition is enforced on . A brief discussion of
computational techniques is presented below so that the reader can have an essential idea
about what are involved.

III.B.2 Dirichlet to Neumann mapping—In order to remove the Dirac delta functions
describing partial charge sources in ρm from the Poisson equation, the Green's function can

be utilized78,202 and Φ can be decomposed into the regular part  and the singular part

. Specifically, , where  is defined only in .39,78 We define

, where Φ*(r) is the analytical Green's function given as

(69)

To compensate the values induced by the Green's function Φ* on the interface  is
introduced and satisfies the following Laplace equation with a Dirichlet boundary condition

(70)

This decomposition of Φ gives rise to a Poisson equation for  without the singular
source term, i.e., delta functions,

(71)

where n is the interface norm. Due to the introduction of the new Neumann interface
condition in Eq. (71), this method is also called Dirichlet to Neumann mapping (DNM).
Note that after the decomposition,  depends on the geometry of the computational domain
and fixed protein charge information, and is independent of the concentration. Therefore, 
needs to be solved only once. In contrast, since  is coupled to the ion concentrations,  is
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to be solved in each iteration step. The DNM enhances the stability, improves the accuracy
and enables the use of larger mesh sizes.

III.B.3 Matched interface and boundary (MIB) method—To solve Eq. (71)
rigorously, the discretization of Eq. (71) requires the enforcement of interface jump
conditions while taking care of discontinuous coefficients (68) to ensure certain order
accuracy for complex biomolecular surfaces. In this work, we utilize the matched interface
and boundary (MIB) method25,187,189–191,194,200,201 for the discretization of Eq. (71). Three
generations of MIB based Poisson-Boltzmann solvers, MIBPB-I,198 MIBPB-II189 and
MIBPB-III,78 have developed. The MIBPB-I is the first PB solver that explicitly enforces
the interface conditions in the biomolecular context. However, it encounters an accuracy
reduction in the presence of molecular surface singularities.146 The MIBPB-II has addressed
this problem by utilizing an advanced MIB technique developed by Yu et al.190 to achieve
the second order accuracy for the molecular surfaces of proteins. However, the MIBPB-II is
limited to small mesh sizes, namely, sizes smaller than half of the smallest van der Waals
radius in a protein structure, because of the interference of the interface and singular charges
in the MIBPB-II scheme. This problem has been addressed in our MIBPB-III78 by using the
Dirichlet to Neumann mapping approach as discussed above. To our knowledge, the
MIBPB-III is the only numerical method that delivers second order accuracy in solving the
Poisson-Boltzmann equation with discontinuous coefficients, singular sources and primitive
geometric singularities in the biomolecular context at present.25,78

In the MIB method, we define a regular point as the point where its nearest neighboring
points involved in the discretization are in the same domain, that is, the point itself is away
from the interface. An irregular point is defined as the point where at least one of its nearest
neighboring points lies on the other side of the interface, that is, the point itself is close to
the interface. The main idea of the MIB method is that to maintain the designed order of
accuracy, the finite difference schemes for regular points and irregular points are different.
For the discretization along x direction at a regular point (i – 1, j, k), we use the standard
finite difference scheme,

(72)

where Δx is the mesh size in the x direction. However, for the irregular point (i, j, k),
assuming point (i + 1, j, k) lies on a different subdomain, and the solution might not be
smooth across the interface, a fictitious value is utilized for the discretization

(73)

where fi+1,j,k is the fictitious value defined at point (i + 1, j, k) and the value is interpolated
by using the interface jump conditions shown in Eq. (71). This is nontrivial for complex
biomolecules since the discretization of the jump conditions is defined on the interface, and
in most cases the interface points are off grid. The discretizations from both sides of the
interface are required for the enforcement of the jump conditions, which needs many
auxiliary points. The details of the technique are referred to the related work on the MIB
method.190,191,194,200,201 Essentially, the MIB method makes use of simple Cartesian grids,
standard finite difference schemes, lower order physical jump conditions and the idea of
fictitious values defined on irregular points close to the interface. While the physical jump
conditions are enforced at each intersecting point of the interface and the mesh lines, the
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MIB method takes care of the interface condition in a systematic way. As a result, whenever
it is possible, the MIB method reduces a multidimensional interface problem into one-
dimensional ones. So far, it is the only known method that has been shown to achieve the
second order accuracy in solving the PB equation with realistic molecular surfaces of
proteins and associated singular charges, to our best knowledge.25

III.C Iterative procedure and algebraic equation solver

The iteration loop for the linear implementation starts from an initial guess of Φ0 and ,

then  is obtained by solving

(74)

Then, Φ1 can be obtained by

(75)

Here the superscripts of Φ and ρα indicate the iteration step. The solution of the formed
linear algebraic system is credited to a preconditioner algorithm25 from the SLATEC library
(http://people.sc.fsu.edu/~jburkardt/f_src/slatec/slatec.html). The following implementation
procedure is used in the present work for proteins or ion channels.

Step 1: Initial atomic position and partial charge generation. The initial atomic positions
of a protein are taken from the Protein Data Bank (PDB) (www.pdb.org), and the partial
charge prescription is obtained by the software PDB2PQR,56,57 which provides rj and
Qj values in the formulation.

Step 2: Give an initial guess of Φ and ρα, the surface function S is obtained by the
initial value problem Eq. (31). After the surface function S is determined, an isosurface
is extracted for the interface Γ.

Step 3: Based on the interface Γ, normal direction n is computed by  on the
isosurface; the coupled Eqs. (29) and (27) are solved iteratively by above mentioned
schemes.

Step 4: Go to Steps 2 and 3 for updating S, Φ and ρα until a convergence is reached
based on a given tolerance. Noticed that in the lth outer loop for updating S, we use Sl+1

= λ3Sl+(1 – λ3)Sl+1. In each outer loop, the total free energy functional is evaluated for
checking the convergence criteria.

IV Validation and Application
Rigorous validation of mathematical models via advanced computational techniques in
realistic settings is perhaps one the of most challenging and time-consuming aspects of
theoretical studies. In fact, without quantitative validations with experimental data in
realistic settings, it is extremely easy for mathematical models to admit unphysical
components. Therefore, rigorous validation should become a standard procedure to calibrate
mathematical and theoretical models in the field.

This section studies the validity of the proposed variational multiscale models, investigates
their feasibility for realistic proteins and ion channels, and test the accuracy, stability and
robustness of our computational algorithms. First, we describe the computational setup for
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proteins and ion channels. Additionally, we carry out numerical experiments on proteins to
examine the consistency of proposed multiscale models. Finally, we perform numerical
simulations on a realistic ion channel.

It is noted that the solvent-solvent interaction Uαβ(r), i.e., the generalized correlation, is
omitted in our present numerical experiments. However, such effects were numerically
explored in our earlier work28

IV.A Computational setups of proteins and ion channels
We discuss the computational setup for proteins and ion channels. The essential procedure is
similar to that used in our earlier work.33,78,189,195

IV.A.1 Preparation for the protein study—A set of ten protein molecules is employed
in the present work. The initial atomic positions of proteins are taken from the Protein Data
Bank (PDB) (www.pdb.org), and the partial charge prescription is obtained by the software
PDB2PQR.56,57 Here, the PDB2PQR is a Python software package that automates many of
the common tasks of preparing structures for continuum electrostatic calculations, providing
a platform-independent utility for converting protein files in the PDB format to the so called
PQR format. The following procedures are involved in the conversion: adding a limited
number of missing heavy atoms to biomolecular structures, placing missing hydrogens,
optimizing the protein for favorable hydrogen bonding, and assigning charge and radius
parameters from a variety of force fields. The details are described in the software webpage
(www.poissonboltzmann.org/pdb2pqr/). In our models, the function S is obtained by solving
the parabolic evolution equation, and the surface is obtained by extracting the isovalue of
0.5. A uniform mesh with the mesh size of 0.5Å is utilized for the computation. After the
surface is obtained, all the mesh points are identified either in the solvent domain or in the
solute domain. For the whole computation, the stopping criteria is that the energy difference
between two iterations in the outer loop is less than 0.01 kcal/mol. The parameters
developed in our previous work for the nonpolar solvation model33 are considered as the
reference in the present work. In the protein test cases, the following parameters are utilized:
ρs/ρ = 2, σs = 0.65 Å and p/γ = 0.5 where ρs is the solvent density. Since we only consider
very low ion densities in the present work, we neglect interactions between the protein and
solvent ions in the nonpolar model. For the value of γ, it may be chosen due to different
sizes of the molecule. In this computation, γ is scaled to be 1/3 for the surface generation to
incorporate the time evolution scale, while in the final total energy computation, γ = 0.0065
kcal/(mol Å2).

IV.A.2 Preparation for the ion channel study—The ions are charged particles
solvated to the solvent environment, including both bulk solvent and channel pore solvent.
In ion channels, many microscopic interactions take place during ion transport processes, as
ion channel proteins interact with ions and the solvent at atomic scale. Essentially, the ion
channel protein and lipid bilayer are immersed in a solvent environment.195,196 In the
present study, we consider Gramicidin A (GA) channel (PDB ID: 1mag, see Fig. 1), which
is a benchmark ion channel for testing various theoretical models. As shown in Fig. 1, the
computational domain of the GA channel incorporates four different regions, i.e., the
channel region, bulk region, protein region and a membrane lipid bilayer. The channel and
bulk regions are set to Ωs and the protein and membrane regions are set to Ωm. The structural
preparation of GA is done according to the following procedure. First, the initial atomic
positions of the GA channel protein are obtained from the PDB. The partial charge for each
atom in the protein is obtained by using the PDB2PQR software, and is accounted in Φ*.
The channel protein is combined with an implicit slab representation of the membrane lipid
bilayers to form the molecular domain Ωm. We set the GA channel pore as along the z
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direction, which is the same as that in the literature.23 The corresponding diffusion
coefficient profile and unit conversion detail are described in our previous work.195

The value S is obtained by solving the Laplace-Beltrami equation, and the surface can be
extracted by choosing an isovalue between 0 and 1. In the following computation, the
surface is obtained by extracting an isovalue of 0.7 so that the protein channel pore diameter
is similar to that used in our earlier computation.195 A uniform mesh with the mesh size of
0.5Å is utilized for the present study. After the surface is obtained, mesh points are
identified as either in the solvent domain or in the solute domain, then mesh points in the
pore region can be located accordingly. For the whole computation, the stopping criteria is
that the energy difference between two iterations in the outer loop is less than 0.01 kcal/mol.
In our calculations, we set γ = 1/15 kcal/(molÅ2), ρs/γ = 2, σs = 0.65Å and p/γ = 0.5.

IV.B Protein study
Using a set of ten proteins, we test the proposed LB-PNP and LB-PBNP models.
Comparison is given to the traditional PB model and our earlier LB-PB model. The latter
has been intensively validated by using both accurate theoretical predictions and
experimental data of solvation energies.35

IV.B.1 Free energies at equilibrium—In this subsection, the electrostatic solvation
energies of proteins with salt effect are studied by using three models. The first model is the
PB equation with the solvent excluded surface generated by using the MSMS package.145

Another model is the LB-PB equations proposed in our earlier work.33 The other model is
the LB-PNP system introduced in the present paper.

For the LB-PNP model, the numerical procedure discussed in the previous section is
utilized. The surface function, electrostatic potential and ion densities are obtained by
solving the coupled equations. As discussed in our earlier work,34 the electrostatic potential
can be computed in different units. By applying the Gaussian units and defining the

dimensionless potential as , Eq. (29) can be written as

(76)

and the boundary condition is given by93

(77)

on ∂Ω, here  and , where Is is the ionic strength measured
in molar (molars per liter).93 For the concentration ρα (α = 1, 2), the uniform Dirichlet
boundary condition of ρ0 = 0.1molar is imposed on ∂Ωs. For the surface function S, zero
boundary condition is imposed.

The reduced electrostatic free energy is computed after solving the Poisson equation or the
PB equation
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(78)

where Φrf is the reaction field potential which is defined as , with Φvac
being the electrostatic potential in vacuum. Note that ΔGele is not the total free energy of the
system.

The PDB IDs of 10 proteins are listed in Table 1. We set the bulk salt (KCl) concentration as
n0 = 0.1molar (i.e. the bulk ion concentrations of cations and anions are 0.1 molar,
respectively). Electrostatic solvation free energies are computed using PB, LB-PNP and LB-
PB models. Results are listed in Table 1, where the first column shows the PDB IDs
obtained from the PDB. The second column lists the electrostatic energies computed by
using MIBPB package25 which is based on the MSMS surface. The third column provides
the electrostatic energies computed based on the LB-PNP model and the last column lists the
electrostatic energies computed from the LB-PB model. Figure 3 gives a graphic
representation of our comparison. The diagonal line is the reference, or PB vs PB.
Obviously, there is an extraordinary consistency between the LB-PB and LB-PNP
predictions. Therefore, the equilibrium solution of the Nernst-Planck equation indeed
reproduces the Boltzmann distribution of the ion concentration. This consistency provides a
confirmation of our non-equilibrium formulation. This result is in a good accordance with
our earlier findings.196

Figure 3 also reveals that the results of the present variational interface based LB-PB and
LB-PNP models are in a good agreement with those obtained from the traditional PB model
equipped with solvent excluded surfaces generated by the MSMS software. As shown in
Table 1, the energy differences from these two types of models are within 3% for all
proteins examined in this study.

IV.B.2 Variational surface and surface electrostatic potentials—Another
important product of the present differential geometry based multiscale models is the
variational solvent-solute interface. As discussed in the Introduction, the interface definition
underpins a wide range of biomolecular applications. After solving the coupled equations,
the surface is extracted at the isovalue of S = 0.5. As an illustrating example, the variational
surface of protein 1ajj is shown in Fig. 4 (b), while the molecular surface generated by
MSMS package145 is shown in Fig. 4 (a). Our visualization is aided with the VMD software.

Obviously, there is a similarity between these two types of surfaces. Technically, the
molecular surface is subject to geometric singularities, i.e., non-smooth interfaces, which
may devastate numerical simulations. Whereas, our variational interface is free of geometric
singularities.11,13

The other utility of the present multiscale model is the surface electrostatic potential, which
is crucial to the protein-protein and protein-ligand interactions, as well as rational drug
design. In the present work, we are interested in the consistency between surface
electrostatic potentials obtained from the LB-PNP and LB-PB models in the absence of the
external force or voltage. Figure 5 provides a comparison of surface electrostatic potentials
computed from both models at the iosvalue of S = 0.5. The surface electrostatic potentials
are projected on surfaces and illustrated with appropriate colors. Figure 5(a) shows the result
obtained from the LB-PNP model and Fig. 5(b) depicts the profile from the LB-PB model.
Clearly, a good consistency between two models can be observed. On the one hand, this
consistency validates the theoretical formulations of our models; on the other hand, it
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confirms the computational codes as the results are obtained by solving different sets of
coupled equations.

IV.B.3 Convergence of the total free energy—Another important issue regarding the
present variational paradigm is the minimization of the total free energy functional. If the
formulation is correct, the total free energy should be gradually reduced in the course of the
numerical solution of the coupled equations until a steady state is reached. The
computational detail for the evaluation of the nonpolar free energy has been described and
validated in our earlier work.33 Figure 6 plots the total free energy, the electrostatic free
energy and the volume of protein 1ajj obtained from the LB-PNP model at the absence of
the external voltage. Obviously, all three quantities decrease as the number of outer
iterations increases. In particular, at each given time, the difference between the total free
energy and the electrostatic free energy is relatively small. Therefore, the nonpolar energy
contribution to the total free energy is much smaller than the electrostatic free energy
contribution. Moreover, the volume converges slightly faster than the energies do. We have
tested that the LB-PB model shows essentially the same convergence characteristic.

Here, we would like to point out that an unreasonable formulation of the total energy
functional may lead to abnormal behaviors in the total energy integration history. Monotonic
decay to a steady value is the normal behavior. Whereas, increase and/or discontinuous drop
in the total energy integration history are unacceptable behaviors and may be caused by
unphysical terms in the total energy functional.

IV.C Ion channel study
In this subsection, we study the proposed differential geometry based models for the ion
transport problem using a realistic ion channel, the GA channel. Figure 1 provides an
illustration of the GA channel and its computational setup. It is important to verify that the
consistency between the proposed equilibrium LB-PB model and non-equilibrium LB-PNP
model at equilibrium, and the ability of the quasi-equilibrium LP-PBNP model to recover
the predictions of the non-equilibrium LB-PNP model at non-equilibrium. After this
verification, we explore the GA channel electrostatic potential characteristic and ion density
profiles under a variety of typical experimental conditions. Finally, we compare our model
predictions with experimental data.

First, the GA channel parameters of the present differential geometry based models are
calibrated by the solvation free energies. After the calibration, we study the channel
morphology by using two approaches, the conventional MSMS and the present LB equation.
Figure 7 depicts two surface representations of the GA channel. Clearly, the surface
generated by the LB equation is much smoother, while that generated by the MSMS
software usually has geometric singularities.195 Apart from the surface regularity, the
channel pore radius is another important feature. It appears that LB surface pore radius is
slightly smaller. This is reasonable because in the Eulerian representation generated by the
LB equation, the channel pore domain overlaps with the protein domain. A smaller pore
radius also reflects the fact that there is a boundary effect, which means many physical
properties at the solvent-solute interface are different from those away from the pore
boundary.

IV.C.1 Convergence of the ion concentration—Although the convergence of the
iteration is judged by the energy, it is also important to examine the behavior of the ion
concentration during the iteration process. Figure 8 depicts the concentration profiles along
the cross section of the Gramicidin A channel at different numbers of outer iterations.
Initially, the cation concentration is relatively high and the anion concentration is relatively
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low because the fixed charges in the channel protein dominate the electrostatic potential.
Figure 9 shows the convergence history and trend of the peak concentration value along the
cross section of the Gramicidin A channel. Clearly, cation concentration decreases and anion
concentration increases during the iterations, due to the fact that ions themselves also
contribute to the electrostatic potential, in addition to many other effects. Note that the scale
for the anion profile is different from that for the cation profile.

IV.C.2 Consistency between the equilibrium LB-PB model and the non-
equilibrium LB-PNP model—As discussed in Section II, the non-equilibrium LB-PNP
model reproduces the equilibrium LB-PB model when the flux is zero. Here, computations
are carried out with a bulk concentration of ρα0=0.1 molar, where α = K+ and Cl–, and
without external voltage, i.e., Φ0 = 0mV. The computational results for two different sets of
governing equations are solved, and the cross sections of concentration and potential profiles
are plotted in Fig. 10. As shown in Fig. 10(a), the electrostatic potential is negative in the
channel region, which indicates that the GA selects positive ions. The concentrations of both
cations and anions are plotted in Fig. 10(b) and labeled with green and yellow dots,
respectively. In this figure and many other figures, two vertical dashed lines indicate the
channel region. Apparently, the cation density peaks at the electrostatic valleys, as expected.
Whereas, the density of anions is suppressed in the channel region by the electrostatic
potential and is about zero. Obviously, there is an excellent consistency between these two
models at equilibrium. This consistency validates our multiscale formulations and
computational algorithms.

Figure 11 presents a comparison of surface electrostatic potentials of two models. The red
color indicates the negative potential while blue color stands for a positive potential. As
expected, the GA channel possesses predominantly negative electrostatic potentials in the
channel mouth region and the pore region. The GA channel repulses anions not only inside
the channel pore, but also outside the channel pore region. As shown in Figs. 11 and 12, two
differential geometry based models provide essentially the same surface electrostatic
potential profiles.

IV.C.3 Consistency between the quasi-equilibrium LB-PBNP model and the
non-equilibrium LB-PNP model—So far, we have shown the consistency between
proposed differential geometry based models and classic PB model in terms of the solvation
free energy at equilibrium. We have also demonstrated the consistency between our LB-PB
and LB-PNP models in terms of electrostatic potential and density at equilibrium. However,
what remains unknown is the ability of the proposed quasi-equilibrium LB-PBNP model to
recover the full predictions of the non-equilibrium LB-PNP model at non-equilibrium
settings. This ability is important for the reduction of model complexity, because densities of
certain ion species are represented by the Boltzmann distribution, instead of being computed
by computationally expensive Nernst-Planck equations.

Figure 13 provides the comparison of the cross sections of electrostatic potential and
concentration profiles obtained from LB-PNP and LB-PBNP models. The external voltage is
set to Φ0 = 100mV and the salt (KCl) concentration is ρ0 = 0.5molar. Here we represent Cl–

density ρCl– (r) by using the Boltzmann distribution, while solve the Nernst-Planck equation
for K+ density ρK+ (r). Clearly, electrostatic potential computed by the reduced LB-PBNP
model is able to near perfectly recover that of the full LB-PNP model. For the density
profile, reduced LB-PBNP model does an excellent job in the channel region, which is the
region of main interest. Note that in the bulk regions, it may appear that there is a
discrepancy between two models. In fact, two models have an excellent agreement in the
bulk regions too.
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In Figs. 14 and 15, we also plot the comparison of surface electrostatic potentials obtained
from the LB-PNP and LB-PBNP models. The top views of surface electrostatic potential
profiles are demonstrated in Fig. 14. It is interesting to compare these profiles with those
given in Fig. 11, which are attained without any external voltage. Clearly, the applied
external voltage has significantly changed the landscape of electrostatic potentials at the top
channel mouth region shown in Fig. 14. However, one can still notice the negative surface
potential profile inside the channel pore, which ensures original GA channel selectivity. To
further confirm this property, we illustrate the cross section profiles of the surface
electrostatic potentials in Fig. 15. Indeed, the inner part of the channel pore remains
negatively charged, giving rise to the GA selectivity of cations.

It is also interesting to compare Figs. 12(b) and 15(b). The cross sections of electrostatic
potentials are clearly affected by the change in external voltages. However, under the
applied voltage, the channel pore region remains negative in terms of electrostatic potentials.

Finally, we emphasize that surface electrostatic potentials obtained from the LB-PNP and
LB-PBNP models are visually identical, which implies that the proposed LB-PBNP model
can be as useful as, but is computationally less expensive than the LB-PNP model for
realistic ion channel simulations.

IV.C.4 Electrostatic potentials and densities under different experimental
settings—Having validated the consistency of proposed variational multiscale models for
ion channel transport, we are interested in the behavior of the GA channel at different
external voltages and bulk salt concentrations. To this end, we investigate ion concentration
profiles and electrostatic potential distributions at different boundary conditions. In the first
set of numerical experiments, we fix the external voltage as V0 = 150mV and study the
system at five different bulk concentrations, namely ρ0 = 0.1molar, ρ0 = 0.2molar, ρ0 =
0.5molar, ρ0 = 1.0molar and ρ0 = 2.0molar. Our results are plotted in Fig. 16. It is observed
that a higher bulk salt concentration elevates the electrostatic potential profile, and increases
the concentrations of both ions in the channel pore region. It is interesting to note that the
local concentrations in the channel pore can be as high as 10molar, due to the local protein
charge environment. In general, there are more cation accumulations at the right hand side
of the channel because of the relatively low electrostatic potentials there.

In the second set of numerical experiments, we let external voltage vary from 0mV to
200mV with the increment of 50mV, while fixing the bulk concentration as ρ0 = 0.1molar.
Figure 17 displays the electrostatic potential and concentration profiles for five different
applied voltage values. It can be seen that on the left hand side (close to higher potential),
the changes in the potential values are larger than those on the right hand side (close to
lower potential), which corresponds to more dramatical changes in the concentration profiles
on the left. Additionally, note that concentrations of cations K+ and anions Cl–, are
essentially the same in the bulk regions. However, in the channel region, the concentrations
of K+ are high, but those of Cl– are nearly 0, which is consistent with the general property
that the GA is a positive monovalent ion channel.

It is particularly interesting to note that the ion concentrations in the channel region can be
about 70 times as high as their bulk concentrations. Similar findings have been reported in
the literature.195 Electrostatic certainly plays a major role in this phenomenon at nanoscale.
Microscopic structure, charge and polarization contribute to the variability and complexity
of biomolecular electrokinetics.

IV.C.5 Consistency between theoretical prediction and experimental
measurement—In electrophysiology, I-V curves of ion channels are frequently measured.
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In this situation, the voltage refers to the voltage across a membrane, and the current is the
flow of charged ions across protein pore. The current is determined by the conductances of
the channel protein. The experimental I-V curves of the GA channel for KCl were reported
by Cole et al.45 The right panel of their Fig. 8 is used as the reference data for the present
study.

To compute the electric current across the membrane protein pore, we employ an
expression195

(79)

For the bulk diffusion coefficients of K+ and Cl–, the experimental data are used. As in our
earlier work,195 the diffusion coefficients in the bulk region are set to their experimental
values: DK+ = 1.96 × 10–5cm2/s and DCl– = 2.03 × 10–5cm2/s for K+ and Cl–, respectively.
However, the diffusion coefficients in the channel pore are not known in general, to our
knowledge. Usually, smaller diffusion coefficients are to be used in the channel region due
to the restricted diffusion in most ion channels. Here we assume that the diffusion
coefficients inside the channel is a constant and we use the same current value as that used
in the experiment, i.e., at Φ0 = 200mV to obtain the range of diffusion coefficients. We find
that a diffusion coefficient which is 25 times smaller than the bulk coefficient shows a
reasonable match. The comparison between the present predictions using the LB-PBNP
model and experimental data45 is shown in Fig. 18. Although there are some minor
deviations between our model predictions and experimental values, overall, there is a very
good agreement between two sets of data, considering the fact that experimental
measurements are also subject to certain errors.

We notice that the prediction of the present LB-PBNP model or LB-PNP model is much
closer to the experimental measurement than the result of the PNP model studied in our
earlier work.195 A possible reason is that the present models take care of nonpolar solvation
effects, including solvent-solute interactions. The close agreement with experimental
measurement further validates the proposed variational multiscale models for ion channel
transport.

V Concluding remarks
Charge transport phenomena are omnipresent in nature and man-made devices, and become
fascinating when charge transport is regulated by multiple components or occurs in a
heterogeneous environment. Electrokinetics is a fast growing field which is devoted to the
study of complex charge transport phenomena. The complexity of electrokinetic systems
increases dramatically at nanoscale, where macroscopic meets microscopic. Typical
examples include fuel/solar cells, battery cells, nanofluidic systems and ion channels.
Theoretical modeling and computation of these complex systems pose a formidable
challenge due to the excessively large number of degrees of freedom. It is commonly
believed that dimensionality reduction via multiscale modeling should provide viable
approaches. The question is how to pursue the multiscale modeling, given the intriguing
nature of the aforementioned nano-bio systems.

Recently, Wei has introduced a new multiscale paradigm for the modeling and computation
of aqueous chemical and biological systems.182 The novelty of this multiscale paradigm is
the use of differential geometry theory of surfaces as a natural means to geometrically divide
the total domain into macroscopic and microscopic ones, while dynamically coupling
discrete and continuum descriptions. Typically, the biomolecular domain is equipped with
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discrete atomistic descriptions while the solvent domain is represented by macroscopic
continuum mechanics. A main strategy to couple macro-micro descriptions in our
differential geometry based multiscale models is the total free energy (or action) functional.
By the variation of the total free energy functional with respect to the variables of interest,
we systematically derive the generalized Poisson- Boltzmann (PB) equations for
electrostatic interactions, Navier-Stokes equations for the fluid dynamics, Newton's equation
for the molecular dynamics (MD), and the Laplace- Beltrami (LB) equation for the
hypersurface dynamics. These equations are coupled with the Nernst- Planck (NP) equation
to describe the charge transport in chemical and biological systems. For excessively large
macromolecular complexes, such as viruses, protein complexes and molecular motors,
differential geometry based multiscale fluid- electro- elastic models are proposed to replace
the expensive MD description with an alternative elasticity formulation.182 More recently,
the differential geometry based solvation models have been carefully analyzed and validated
by an intensive comparison with experimental data.33 The Lagrangian representation of our
new solvation models has also been developed.34 However, in our original formulation,182

the NP equation was not derived from the variation of the total free energy functional.
Instead, it was obtained from the mass conservation analysis. As a consequence, the
chemical potential energy plays no role in the surface formation and evolution.

In the present work, we provide an alternative formulation of differential geometry based
multiscale models for charge transport. One main new feature of the present variational
multiscale formulation is the inclusion of the chemical potential related energy in the total
energy functional. Consequently, the entropy of mixing is able to drive the solvent-solute
interface and influence the surface morphology. By the variation of the new total free energy
functional, we derive coupled Laplace- Beltrami and Poisson- Nernst- Planck (LB- PNP)
equations for the modeling of charge transport.

Another main new feature of the proposed variational multiscale formulation is the
consistency between the equilibrium Laplace- Beltrami and Poisson Boltzmann (LB- PB)
model and the non-equilibrium LB- PNP model. The present LB- PNP model is designed to
reproduce LB- PB model at equilibrium. It is believed that this consistency is a crucial
criterion for validating new non-equilibrium theories. In the present formulation, we show
that when the charge distribution reaches its equilibrium profile, the LB-PNP system can be
well described by the LB- PB model.

The other main new feature of the proposed variational multiscale models is the reduced
representation of charge species at non-equilibrium. In our recent work,196 we have shown
that for multi-species ion channel transport, the computationally expensive PNP model can
be replaced by an inexpensive Poisson- Boltzmann- Nernst- Planck (PBNP) model. In the
PBNP model, we describe the density of charge species of interest by the NP equation,
while, represent the density of other ion species by the quasi-equilibrium Boltzmann
distribution obtained from the Poisson- Boltzmann (PB) equation, which avoids the
expensive solution of NP equations. The validity of our PBNP model has been confirmed
with Monte Carlo simulations by independently researchers.111 In the present work, we have
incorporated this approach into our variational multiscale models. It is easy to demonstrate
that the resulting LB- PBNP model recovers the LB- PB model at equilibrium. However, our
goal is to have the LB- PBNP model to fully reproduce the prediction of the LB- PNP model
at non-equilibrium settings so as to dramatically reduce computational cost for multi-species
chemical and biological systems.

Finally, we present a differential geometry based chemo- electro- fluid model for charge
transport in nanofluidic, fuel cell and other systems where the fluid motion contributes to the
charge transport. It is found that both the generalized Nernst- Planck equation and the
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generalized Navier- Stokes equation have new features that are not accounted for in the
classical governing equations for electro- osmotic flows.

To implement the above mentioned variational multiscale models, we have designed a
number of computational algorithms. Both the Eulerian formulation33 and Lagrangian
formulation34 of our new models are considered in the present work. In the Lagrangian
formulation, the second-order PNP solver developed in our earlier work195 plays a
significant role. The Dirichlet to Neumann mapping and matched interface and boundary
(MIB) methods are also employed in the present work to deal with sharp interfaces. A
successive over-relaxation like algorithm is used to ensure the convergence in solving the
coupled equations.

To validate the abovementioned new variational multiscale models, we have considered two
types of realistic numerical tests. In the first type of numerical tests, we explore the free
energies of ten protein molecules computed with equilibrium PB, equilibrium LB- PB, and
non-equilibrium LB- PNP models. The consistency among the predictions of these models
has been observed. We further examine the surface morphology and surface electrostatic
potential profiles generated by a number of models: solvent excluded surface based PB, LB-
PB and LB- PNP approaches. The results obtained from PB and LB- PB models agree
within 3% deriations. Excellent consistency between LB- PB and LB- PNP model
predictions is found. The present differential geometry based surface models are able to
overcome the well known defects of many other traditional surface models, namely,
geometric singularities and unphysical features (i.e., no energy minimization). Finally, we
demonstrate the decay of the total free energy with respect to the time integration or the
iteration of coupled equations, which indicates the reasonable design of the total free energy
functional.

To further validate the proposed variational multiscale models for ion channel transport, we
have employed a standard test case, the Gramicidin A (GA) channel, in our numerical
experiments. We first illustrate the consistency between the equilibrium LB- PB model and
the non-equilibrium LB- PNP model in terms of electrostatic potentials and ion
concentration profiles along the channel pore direction, and surface electrostatic potentials
of the GA channel. Additionally, we demonstrate the ability of the quasi-equilibrium LB-
PBNP model to faithfully reproduce the predictions of the non-equilibrium LB-PNP model.
Such an ability enables us to reduce computational cost for multi-species systems.
Moreover, we explore electrostatic potentials and density profiles under different
experimental settings for the GA channel. A number of external voltages and bulk
concentrations are considered in our investigation. Finally, we show that the proposed
variational multiscale models provide excellent predictions of current-voltage (I-V) curves.
In electrophysiology, I-V curves are major experimental measurements. They are frequently
used to validate theoretical models in biophysics. The agreement between the present
theoretical predictions and experimental measurement further validates the proposed
variational multiscale models.

Although the present multiscale models originate from geometric flow theory, differential
geometry theory of surfaces, and geometric measure theory, they are akin in spirit to earlier
variational models in implicit solvent theories80,150 and phase field models proposed by
Cahn and Hilliard in 1958. In fact, our hypersurface function is quite similar to the phase
field function, of which a similar treatment of smooth boundaries dates back to 1893 by van
der Waals (see Ref.143 for a translation and critical discussion). However, it is well-known
that phase field models in materials science or Landau-Ginzburg models in physics are
phenomenological approaches. Whereas the present variational multiscale models are based
on the fundamental laws of physics with realistic physical descriptions, which is essential
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because the model prediction is to be quantitatively, rather than qualitatively, compared with
experimental measurement. For example, in standard phase field models, interfacial tension
density is represented as K|∇S|2 with K being a parameter, while in our approach, we deal
with the physically measurable surface energy as defined in Eq. (1). The mathematical
realization using the geometric measure theory given in Eq. (6) leads to surface energy
density γ|∇S|, which gives rise to the mean curvature term after the variation. Nevertheless,
diffuse interface methods and energy variational approaches offer a powerful qualitative
description for complex physical and chemical systems, including electrochemical
systems,87 electrodeposition136,153 and electro-osmotic fluid flows.83 For example, phase-
field models have found their success in describing ion intercalation phenomena in
batteries.22,89,156 It is interesting to note that in phase field models, volume-exclusion
correlations can be treated with nonlocal kernels, e.g., as the “weighted density
approximation”.5 However, it is not clear if a similar nonlocal approach is appropriate for
the biomolecular systems due to the constraint of physical interactions.

This paper presents only an introduction to variational multiscale models for charge
transport in complex systems. Many important aspects are not considered or not numerically
implemented in the present work. First, the flow transport and its coupling to the charge
transport are of crucial importance to the mass and charge balance of living cells and to the
water management of fuel cells. In fact, fluid dynamics is an essential ingredient in
nanofluidic systems. Therefore, an obvious task is to numerically implement fluid dynamics
and validate new governing equations against experiment data in future work.

Additionally, in the present work, ion channels are treated as rigid and channel structural
response to the ion permeation is not accounted. The theoretical framework for such a
development has been given in our earlier work.182 Numerical implementation of multiscale
molecular dynamics or implicit molecular dynamics has been developed in our recent
work.77 It is interesting to incorporate such a molecular dynamics to allow local
modifications of channel protein structures.

Moreover, although non-electrostatic interactions among various species, including part of
the so called size effects in the continuum description of ion densities, are considered in the
present models, our numerical simulation does not include the numerical test of finite size
effects. This type of interactions has been numerically studied in terms of “generalized
correlations” in our other variational multiscale formulation, namely, the quantum dynamics
in continuum model.26 It is desirable to explore the impact of finite size effects in the
present models as well. Typically, correlations produced by the size of particles lead to
atomic scale corrections to the density distributions of liquids.75 More expensive integral
equation theories, such as hyper-netted chain equation, Carnahan-Starling equation, Percus-
Yevick equation and density functional theory of liquids, are employed to deliver
corrections at equilibrium.18,75,79,141,167 However, it takes much additional effort to
construct effective integral equation approaches for the description of charge transport in
large scale complex chemical and biological systems.

Further, the correction of ion correlation to electrostatic potential due to nonlinear
polarizations is needed for a dense multivalent ion fluid.6,85 An interesting variational
“Landau- Ginzburg” model for electrostatic correlations leads to a higher order Poisson
equation.15 Recently, we have proposed a nonlinear Poisson equation to account for
hyperpolarization effects in heterogeneous media.94 These effects can be considered in our
variational multiscale models too.

Furthermore, it is useful to consider quantum effects in the solvation process, which will
lead to an extra scale in the present formulation of change transport. Similar multiscale

Wei et al. Page 39

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2012 November 19.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



variational model for solvation analysis has been studied by using the electronic DFT131 in
our recent work.35 Indeed, the consideration of quantum effects significantly improves the
prediction of solvation free energies.35 Anotrher related approaches include polarizable
continuum models (PCM)127,165 and Poisson-Boltzmann based quantum solvation
models.31,177

Yet, another interesting issue is the quantum effect in charge transport processes, concerning
light charge carriers such as electrons and protons. When the thermal De Broglie wavelength
is of the same scale as the channel length and/or Debye length, the quantum effect becomes
important. Variation multiscale models have been proposed in our recent work to account
for quantum effects in nano-electronic devices27 and proton channels.25,29 The incorporation
of quantum effects in the present charge transport models can be easily formulated.

Finally, the other important issue associated with charge transport is the protonation, ligand
binding, Stern layer and/or chemical reactions. This issue becomes increasingly important
for fuel cells and many ion channels, such as potassium and proton channels.55 The present
work gives a simplified account to this issue in Section II.D. More sophisticated
considerations of chemical reactions are needed to address localized reaction, reaction
induced charge transport, charge transport induced reaction, and strongly coupled reaction
and transport.

Giving the importance of charge transport to physical, chemical, and biological systems, as
well as nano-technology and device engineering, we expect increased interest and rapid
progress in terms of theoretical modeling, numerical algorithms, mathematical analysis and
realistic applications in the near future.
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Figure 1.
Illustration of ion channel and its multiscale simplification. (a) Atomic view of the
Gramicidin A channel in the membrane and aqueous environment; (b) A cross section of the
multiscale representation of the system.
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Figure 2.
Illustration of surface function S and solvent characteristic function 1 – S in a 1D setting.
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Figure 3.
Consistency of electrostatic free energies of 10 proteins among the PB, LB-PB and LB-PNP
predictions (protein IDs are listed in Table 1).
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Figure 4.
Surface representations for protein 1ajj. (a) Molecular surface generated by the MSMS
package with probe radius 1.4 and density 10; (b) Variational surface extracted from the
isovalue of S = 0.5 based on the LB-PNP model.
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Figure 5.
Comparison of surface electrostatic potentials computed at ρ0 = 0.1molar for protein 1ajj. (a)
Surface electrostatic potential profile obtained from the LB-PNP model; (b) Surface
electrostatic potential profile obtained from the LB-PB model.
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Figure 6.
Convergence history of total free energy (kcal/mol), electrostatic energy (kcal/mol) and
scaled volume (Å3) at ρ0 = 0.1 molar for protein 1ajj.
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Figure 7.
Surface representations of the Gramicidin A channel protein structure. (a) MSMS Surface
with probe radius 1.4 and density 10; (b) Surface extracted from the LB equation with S =
0.7.
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Figure 8.
Concentration profiles along the cross section of the Gramicidin A channel at different
numbers of iterations with ρ0 = 2.0 molar, Φ0 = 0 mV. Two vertical dashed lines indicate the
channel region. (a) Cation; (b) Anion.
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Figure 9.
Convergence history of the peak concentration value along the cross section of the
Gramicidin A channel with ρ0 = 2.0 molar, Φ0 = 0 mV. (a) Maximal concentration values
for cations; (b) Minimal concentration values for anions.
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Figure 10.
Comparison of cross sections of electrostatic potential and concentration profiles with Φ0 =
0mV and ρ0 = 0.1molar for Gramicidin A channel. The concentrations of cations and anions
are labeled with green and yellow dots, respectively. Two vertical dashed lines indicate the
channel region.. (a) Electrostatic potential profiles; (b) Concentration profiles.
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Figure 11.
Comparison of surface electrostatic potential profiles with Φ0 = 0mV and ρ0 = 0.1molar for
Gramicidin A channel. (a) Surface electrostatic potential profile of the LB-PB model; (b)
Surface electrostatic potential profile of the LB-PNP model.
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Figure 12.
Comparison of surface electrostatic potential cross sections with Φ0 = 0 mV and ρ0 =
0.1molar for Gramicidin A channel. (a) Surface electrostatic potential profile of the LB-PB
model; (b) Surface electrostatic potential profile of the LB-PNP model.
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Figure 13.
Comparison of cross sections of electrostatic potential and concentration profiles with Φ0 =
100mV, ρ0 = 0.5molar. The concentrations of cations and anions are labeled with green and
yellow dots, respectively. (a) Electrostatic potential profiles; (b) Concentration profiles.
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Figure 14.
Comparison of the top views of surface electrostatic potentials with Φ0 = 100mV and ρ0 =
0.1molar. (a) Surface electrostatic potential profile of the LB-PBNP model; (b) Surface
electrostatic potential profile of the LB-PNP model.
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Figure 15.
Comparison of the cross sections of surface electrostatic potentials with Φ0 = 100mV and ρ0
= 0.1molar for Gramicidin A channel. (a) Surface electrostatic potential profile of the LB-
PBNP model; (b) Surface electrostatic potential profile of the LB-PNP model.
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Figure 16.
Electrostatic potential and concentration profiles with Φ0 = 150mV for Gramicidin A
channel. (a) Electrostatic potential profiles; (b) Concentration profiles.
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Figure 17.
Electrostatic potential and concentration profiles with ρ0 = 0.1molar for Gramicidin A
channel. (a) Electrostatic potential profiles; (b) Concentration profiles.
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Figure 18.
A comparison of simulated I-V curves and experimental data from Ref.45 for Gramicidin A
channel.
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Table 1

Comparison of electrostatic energies (in kcal/mol) computed with three models for 10 protein molecules

PDB ID PB LB-PNP LB-PB

1ajj -1142.69 -1121.24 -1121.45

1bbl -989.35 -984.12 -984.20

1bor -854.93 -839.80 -839.87

1cbn -303.90 -295.15 -295.16

1frd -2867.84 -2832.13 -2832.73

1r69 -1089.81 -1068.40 -1068.55

1sh1 -756.61 -732.49 -732.54

1hpt -812.56 -787.23 -787.24

1mbg -1354.62 -1343.01 -1343.29

1neq -1733.12 -1710.26 -1710.45
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