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ABSTRACT We consider an isologous enzyme dimer in
which the subunits, if operating independently, would obey
Michaelis-Menten kinetics. However, because of neighbor in-
teractions, the rate constants of the kinetic cycle in either sub-
unit depend on the state (E or ES) of the other subunit. The
steady-state behavior of this dimer system, with interactions,
is investigated. In what is probably the most important special
case, ES-ES is destabilizedconsiderably by the neighbor inter-
action compared to EPES. This leads to half-of-he-sites reactivity
(one subunit is in state ES; the other subunit cycles between E
and ES, negative cooperativity, and a considerable enhance-
ment of enzyme activity relative to the activity of independent
subunits.

Our object in this paper is to study the theoretical steady-state
properties of an isologous dimer composed of two identical
enzyme subunits that interact with each other. The interactions
are such that the kinetic rate constants of either one of the
subunits depend on the state of the other subunit. The novel
feature of our analysis is that we relate explicitly the rate con-
stants of the steady-state cycle to the intersubunit interactions,
without the usual quasi-equilibrium assumption about the state
of the subunits at steady state.

As will be seen from our examples, we anticipate that these
results will be particularly useful in future studies of negative
cooperativity and half-of-the-sites reactivity (1). However, the
method is much more general than this; it can be applied to
multi-enzyme complexes or to one- or two-dimensional enzyme
lattices, with interacting components, of arbitrary size and with
arbitrary kinetic cycles (2-6). Thus, to some extent, the present
paper can serve as an illustrative example of interacting enzyme
systems. A quite different example has been treated recently:
the cooperative regulated tropomyosin-troponin-actin-myosin
ATPase one-dimensional lattice system (7).
The model and its general steady-state properties
To reduce the number of parameters on which the final results
depend, we treat the important special case (Michaelis-Menten)
shown in Fig. la. In this figure we give the rate constants for
each of the subunits when theyfunction independently ofeach
other (the "unperturbed" enzyme). The enzyme E catalyzes
S -W P, where EP is a transient intermediate. Thus we are
concerned, in effect, with a two-state enzymatic cycle (the two
states are E, or 1, and ES, or 2, as in Fig. 1). The rate constant
inverse to k&, in the two state cycle, is k&s We assume, however,
that k_3 is very small; hence it is omitted from the figures
(though it appears below in the text).

All three rate constants in Fig. la are first-order; k, is
pseudo-first-order, and is proportional to [S], the concentration
of free substrate.
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FIG. 1. (a) Michaelis-Menten cycle and rate constants used for
an unperturbed enzyme subunit. (b) Corresponding kinetic diagram
needed for a dimer of these subunits (omitting state EP). Interactions
between subunits are associated with the different conformations,
o and o.

The steady-state rate of production of P (the reaction velocity
or flux), per enzyme subunit, is

Vo = kik3/(k1 + k2 + k3). [1]
The subscript here on V refers to the unperturbed enzyme. The
maximum value of V. (when k1 -- o) is Vom = k3.
The thermodynamic force X driving the reaction S - P is

(8)
eXIRT = kik3/k2kL3, X = ,s - $p, [2]

where ,.ssis the chemical potential of S in solution at [S], etc.
In the dimer, each subunit makes use of the same two-state

cycle as in Fig. la, as indicated schematically by the arrows in
Fig. lb. However, there are four states in the kinetic diagram
of the dimer; also, the rate constants are different. That is, we
assume that when the two subunits are brought together to form
the dimer, interactions between the subunits lead to rate con-
stants of the enzymatic cycle of either of the subunits that de-
pend on the state (1 or 2) of the other subunit. The subunit in-
teractions presumably originate in a conformation change in
the enzyme molecule (schematically 0 13 in Fig. lb) that
is an immediate consequence of the binding of substrate S
(however, the argument below does not depend on this inter-
pretation).
The free energy of interaction of two-subunits in the dimer

in states i and j (i,j = 1,2), relative to infinite separation of the
subunits in the solution, is denoted by wiv. Also, we introduce
the notation y0 = ew41/kT. Because of symmetry, W12 = W21
and Y12 = Y21.
Dependence of Rate Constants on Interactions. Because

of symmetry, there are really only two different sets of (three)
rate constants in Fig. lb. The distinction here is whether the
neighboring subunit of the "active" subunit is in state 1 or in
state 2. In the former case, kli, k2, and k3 become ki', k2', and
k3', because of interactions with the neighbor in state 1, while
in the latter case ki, k2, and k3 become kl#, k2#, and k,3.

5741

The publication costs of this article were defrayed in part by page
charge payment. This article must therefore be hereby marked "ad-
vertisement" in accordance with 18 U. S. C. §1734 solely to indicate
this fact.



5742 Biochemistry: Hill and Levitzki

Consider first k1' and k2' in Fig. 2a. From simple equilibrium
considerations,

kl'/k2' = (ki/k2)(y12/y11) or Kb' = Kb(Y12/Yll). [3]
Here, kj/k2 is equal to Kb[S], where Kb is the unperturbed
equilibrium binding constant of S to E, whereas kl'/k2' is equal
to Kb'[S], where Kb' is the binding constant of S to E in the
presence of a neighbor in state 1 (E). The factor Y12/Y11 contains
the effects of interactions. In general, the interactions will also
influence ki' and k2' separately, but necessarily in such a way
as to be consistent with Eq. 3. We can represent this formally
by (2)

kl' = k1(yI2/yI1), k2' = k2(yuI/y12)' - f, [4]
where f is a constant that usually, but not necessarily, would
have a value between 0 and 1. Actually, if we assume simple
diffusion-controlled binding, we should take f = 0 (as is done
below). This puts all of the equilibrium interaction effect into
k2'.

In the same way we can write
k3' = k3(yll/y12), k.3' = k_3(y12/y11)1 - g [5]

for the other transition pair of the two-state cycle in Fig. 2a.
Here g is a different kinetic constant that relates to ES -- EP
[in general, each transition pair in a cycle has its own constant
of this type (2)]. Unlike f, above, g = 0 would not be expected.
We shall not use k-3' except to note that k1'k3'/k2'k_3' is equal
to eX/RT, as in Eq. 2. This is to be expected because interactions
with the neighboring enzyme subunit, whatever its state, cannot
change the overall thermodynamic force X driving the cycle
(8); X is a property only of S and P in solution and does not de-
pend on the nature of the enzyme subunit that is catalyzing the
transformation S - P.

Similarly, when the perturbing neighbor is in state 2 (Fig. 2b),
the corresponding relations are

kl = k1(y22/y12), k2" = k2(yI2/y22)' - f
k3" = k3(yl2/y22)9, k-3" = k_3(y22/yl2)' -

[6]
[7]

We use the same f and g here as in Eqs. 4 and 5 because only
the perturbing environment has changed, not the nature of the
reactions [this assumption (2), though very plausible, is not es-
sential].

Fig. 3 shows the simplified three-state kinetic diagram we
actually work with from this point on. Because, by symmetry,
states 12 and 21 in Fig. lb are equivalent, we treat 12 + 21 as
a single state in Fig. 3. Also, we take f = 0 (see above) and in-
troduce the simplifying notation

Y - YII/YI2, z - Y12/Y22. [8]
The rate constants in Fig. 3 follow from Eqs. 4-8 and symmetry
considerations.

Neighbor = Q = 1
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FIG. 2. Modified rate constant notation for the two-state cycle
when the neighboring subunit is in: state 1 or E (a); or state 2 or ES
(b).
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FIG. 3. Explicit kinetic diagram and rate constants used for the
dimer, including neighbor-interaction effects on the rate constants.
See text for details.

The parameter y expresses the intermolecular interaction
contribution to the relative thermodynamic stability of the
dimer in state 11 compared to 12 or 21, and, similarly, z refers
to the stability of 12 or 21 compared to 22. For example, if wII
<wi2, state II is more stable than 12 (insofar as intermolecular
interactions are concerned), and y > 1. For example, if y = 100,
W12- W11= 2.73 kcal molh' (at 25°C) (1 kcal = 4.184 kJ).

It should be noted that y/z = Y1Yy22/y122 is the well-known
interaction parameter (9) that appears in the theoretical
treatment of equilibrium cooperative systems at the molecular
level. When y/z > 1, one obtains positive cooperativity; and
when y/z < 1, one encounters negative cooperativity (9).
Clearly, y/z is related to the relative stability (see above) of 11
+ 22 compared to 12 + 21 (9).
General Steady-State Properties of the Dimer. We now

derive the steady-state properties of the model in Fig. 3.
Transient properties could also be considered, but we omit this
subject in the present analysis. The parameters are k2, k3, y, z,
g, and k1 - [S]. The steady-state probabilities of the three states
are designated as shown in the boxes in Fig. 3, with P 1 + 2P12
+ p22 = 1. The p0t are easy to obtain because the linear ar-
rangement of states in the diagram leads to simulated "detailed
balance" (4) relations:

2kipl, = Fy - 2P12, k1 * 2p12 = 2FzP22,
where

Fy - k2y + ksyg, Fz = k2z + kaz .
Then we find

Pll = 1/2, P12 = Y/, P22 = YZ/2,
where

Y = k1/FY, Z = kl/Fz, 2 - 1 + 2Y + YZ.

[9]

[10]

[11]

[12]
As can be seen from Fig. 3, the reaction velocity per subunit

is

V = VI + V2; VI = k3ygp12, V2 = kszgp22, [13]
where VI is the contribution from 12 + 21 - II and V2 is the
contribution from 22 -- 12 + 21. If V2/VI is either very large
compared to unity, or very small, "half-of-the-sites" reactivity
is obtained (10). In the former case, only one subunit cycles at
a time while the other is almost always in state 2; in the latter
case, the noncycling subunit is usually in state 1.
More explicitly, the reaction velocity is given by

[14]

Because both Y and Z are proportional to ki, when k, is very
large, V kgzg. This is usually the maximum velocity Vm (see
below). From Eqs. 11 and 13, an explicit expression for V2/V1
is

V2/Vl = kl/(y/z)gFZ. [15]

Thus V2/V1 is always proportional to k1 (or to [S]). Another

V = k3Y(yg + zgZ)/2;.

Proc. Natl. Acad. Sci. USA 77 (1980)
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quantity of importance is V/V. (from Eqs. 1 and 14). We are
particularly interested in cases in which V/V. is large compared
to unity; in such cases the catalytic efficiency of the dimer is
much higher than that of the separated subunits.
We designate the fractional extent of binding of S to E, in the

dimer at steady state, by O.. This is given by

o@=P12+P22=Y(l + Z)/.. [16]
The dependence of Ass on k, can be quite different than that of
V/Vm (1, 11), as will be seen in the examples. For comparison,
if we put k3 = 0, we obtain the equilibrium extent of
binding

q = X[(z/y)l/2 + X]/[1 + 2X(z/y)'/2 + X2], [17]

where X kl/k2(yz)'/2. Here X - [S] is defined in such a way
that Oq = 1/2 at A = 1. The steady-state As has this same de-
pendence on A, with k2 replaced by k2 + k3 in the definition
of A, in the special case g = 1. But in general, when g 0 1, O.
does not have this equilibrium form.

If z > 1 (the same comments can be made about y), it is ap-
parent from Fig. 3 that the equilibrium binding constant of S
to 12 or 21 to form 22 is reduced from the unperturbed value
because of the larger dissociation rate constant 2k2z. This is a
reflection of increased thermodynamic instability of 22 (w22)
relative to 12 or 21 (W12). But it should be noted that this in-
stability has at the same time an enhancing effect on the reac-
tion velocity through the rate constant 2k3zg.
On examining ?V/akj = 0, from Eq. 14, one finds that V(kl)

passes through a maximum at finite ki if and only if G > 2,
where, for convenience below, we define C. (y/z)g. Assuming
g is positive, this means that such a maximum cannot occur in
negative cooperativity cases (y/z < 1) but may occur if there
is strong enough positive cooperativity (an example is consid-
ered below). The value of kj at the maximum is
klmax = fFy + Fy[I + (Fz/FY)G(C - 2)]1/2j/(G - 2). [18]
In most of the examples studied below, C < 2 and V reaches

its maximum, Vm = k3zg, at k, = xo. Then, from Eq. 14,
V/Vm = Y(G + Z)/". [19]

The value of k1 at which V = Vm/2 is found to be

kl(1/2) = -Fz(G - 1) + [FZ2(G- 1)2 + FYFZ]1"2. [20]
This ki can be used to calculate other properties at V =
Vm/2.
The Special Case z >> y. This is probably the most impor-

tant special case: there is negative cooperativity, half-of-the-sites
reactivity, and a large enhancement of enzymatic activity in
the dimer, all as a result of intersubunit interactions.
We note first that G = (y/z)g is very small and that Fz >> Fy.

Then Eq. 20 gives kj(1/2) t 2F,. At ki = kl(1/2)$
P1 -l1, 2P12 = p22 - 4Fz/FY.

Consequently pl1 is very small except when k, << kl(1/2). That
is, except at the very beginning of the binding of S to the dimer
(ki -p 0), the important states are 12, 21, and 22. Over almost
all of the significant range in ki, k1 is of order Fz. As a good
approximation, then, we have the following simple properties
for this system (using . = 2Y + YZ):

P12 = 1/(2 + Z), p22 = Z/(2 + Z)
V/Vm = Z/(2 + Z), V/V0 = zgZ/(2 + Z)
V2/Vl = Z/G, Oss = (1 + Z)/(2 + Z),

[21]

[22]
[23]

where, it will be recalled, Z = k1/Fz [S]. In Eq. 22, V/VR has

1 2 3 4 5
kI/k1(1/2)

FIG. 4. Reaction velocity (V/Vm) and substrate saturation (O.)
as a function of substrate concentration (proportional to kj), in an
important special case (see box). The abscissa is chosen so that it has
the value 1 when V = Vm/2. The upper-left curve (VJV0m) refers to
the unperturbed enzyme, using the same abscissa scale as for the other
curves. See text for details.

essentially the conventional Michaelis-Menten form. As the
reader can easily verify, these properties (except for V2/V1)
can be derived directly as those of a dimer that uses only the
right-hand half of the diagram in Fig. 3 (one subunit cycles
while the other is in state 2, or ES).
With z large and G small, V/VO and V2/V1, above, are both

large compared to unity. In fact, at ki = kl(1/2), where Z = 2,
we have simply V/VO = z9/2 and V2/V1 = 2(z/y)g. The ap-
parent experimental correlation (1) between enhanced reac-
tivity (V/Vo) and half-of-the-sites reactivity (V2/V1) may thus
be attributable to large values of both z and z/y.
An explicit comparison of Vm and kl(1/2) with the values

for the unperturbed enzyme is instructive. Here (z >> y) we
have

Vm = k3zg, kl(1/2) - 2(k2z + k3g ),

whereas, for the unperturbed enzyme,

Vom = k3, klo(1/2) = k2 + k3.

[24]

[25]
If z >> 1, the dimer exhibits a much higher Vm than the inde-
pendent (unperturbed) enzyme, but at the same time the value
of ki required to reach V = Vm/2 is also much higher in the
dimer with interacting subunits.

Finally, we note that V/Vm and tk5 behave rather differently
here. Half-saturation of the sites (On = 1/2) is attained at very
low kI, before V/Vm reaches a significant value. Then satura-
tion of the second site and V/Vm proceed together, according
to Z/(2 + Z).
The numerical case in the next section provides an explicit

example of the above properties.

120

10 V2/V1/100

80 g=0.8
60 =10= 1

60

40 V/VO
20

1 2 3 4 5
k1/k1(1/2)

FIG. 5. Half-of-the-sites index (V2/V1) and dimer activity en-
hancement (V/Vo), plotted as in Fig. 4, and for the same case (see
box).
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Table 1. Effect of variation ofg (at V = VJ/2)
g V21V1 V/Vo on

0.30 6.01 2.02 0.713
0.50 18.10 5.05 0.736
0.65 38.1 10.06 0.742
0.80 77.9 20.05 0.7461
0.90 124.6 31.7 0.747
1.00 198.5 50.3 0.748

Table 3. Effect of variation of z (with y = 1) (at V = Vm/2)
z V2/Vl 2(z/y)g V/Vo z9/2 0n
0.4204 0.391 1.000 0.945 0.250 0.320
1.0 1.000 2.000 1.000 0.500 0.500

10.0 11.06 12.62 3.38 3.16 0.720
1100.0 77.9 79.6 20.05 19.91 0.746
1000.0 500.6 502.4 125.7 125.6 0.749

The Special Case z = y. In this case, y/z = 1, though dif-
ferential intermolecular interactions may be present (i.e., y #
1, z 1), these interactions will not be apparent operationally
because we have

Fy = Fz, Y = Z = k1/Fy, k1(1/2) Fy [26]
V/Vm= fs = Y/(1 + Y) [27]

V2/V1 = Y, Oeq = X/(1 + X). [28]
That is, the behavior is of the simple Michaelis-Menten type
(12), with no distinction between V/Vm and O.; the interactions
between subunits do not result in cooperative behavior either
in substrate binding or in catalytic activity.
Numerical calculations in a reference example
In this section we calculate various properties in a special case
with plausible parameters. In the following section we shall then
use this case as a standard or reference in a study of the effect
on several properties at k, = kl(1/2) of varying one parameter
at a time.

In the present example, we take z = 100, y = 1, k2 = k3 = 1,
and g = 0.8. This corresponds to negative cooperativity. The
magnitude chosen for k2 and k3 is unimportant; this merely sets
the scale for k1 and V, as can'be seen from Eqs. 10, 12, and 14.
The choice g = 0.8 is rather arbitrary. For reference, we note
that the physical significance of a value g = 0 would be that the
interaction free energy w22- W12 > 0 that destabilizes the
bound state 22 or ES-ES (see the paragraph following Eq. 17)
is also fully present in the activated complex that is intermediate
between the states ES-ES and ES-EP. In this case (g = 0), we
would have k3o = k3zg = k3. If this interaction free energy in
the actviated complex were (w22- W12)/2, that is, reduced by
a factor of two, then g = 0.5, etc. Larger values of g (say, be-
tween 0.5 and 1.0) give larger values of V2/V1 and V/VO (see
the next section).
With the above parameters we find k1(1/2) = 273.6 and Vm

- 39.8. By contrast, in the unperturbed enzyme, klo(1/2) = 2
and Vom = 1. Fig. 4 shows plots of Vo/Vom. ss, and V/Vm
against k1/ki(1/2) [S], as calculated from Eqs. 1, 16, and 19,
using kl(1/2) = 273.6 in all curves. The-behavior of V/Vm and
0. is as predicted by the approximate Eqs. 22 and 23: both
V/Vm and 0, - 1/2 are close to Michaelian. But the full Os
curve shows strong negative cooperativity. Both 0, and VO/Vom
rise much more quickly than V/Vm, which is delayed by the
interactions (z = 100). Incidentally, Oeq differs very little from
0SS (with horizontal scales adjusted to agree at 0, = Oeq = 1/2)
because g = 0.8 is near to g = 1 (see the discussion of Eq.
17).

Table 2. Effect of variation ofy (with z = 100) (at V = Vm/2)
y V2/V1 2(z/y)g V/Vo z9/2 0n.
0.1 500.6 502.4 20.05 19.91 0.749
1.0 77.9 79.6 20.05 19.91 0.746

10.0 11.04 12.62 20.07 19.91 0.720
100.0 1.000 2.000 20.19 19.91 0.500
237.8 0.404 1.000 20.26 19.91 0.322

Fig. 5 shows V2/V1 and V/V0 plotted against kl/kl(1/2).
Note the vertical scale. Both of these quantities are large, thus
indicating half-of-the-sites reactivity and strong dimer
enhancement of reactivity, for k1 greater than about
0.4k1(1/2).

Variation of parameters in reference examples
In this section we examine the effect, at the characteristic point
V = Vm/2, k, = kl(1/2) in the V(kl) curve, of varying pa-
rameters in the above example one at a time.

In Table 1, g is varied, keeping z = 100, y = 1, k2 = k3 = 1.
Of course, for each g, k1(1/2) is recalculated (Eq. 20) and used
for the k1 value. We see that both V2/V1 (half-sites criterion)
and V/VO (dimer enhancement) increase with g and are fairly
large for g > 0.5. The boxed values are the reference values
from the previous section (see Figs. 4 and 5). Also, 0. - 3/4
because 2p12 ; P22 - 1/2 (see Eqs. 16 and 21).

Tables 2 and 3 show the effect of varying either y or z,
holding g = 0.8, k2 = k3 = 1, and either z = 100 or y = 1, re-
spectively. The third and fifth columns give approximate values
for V2/V1 and V/VO, respectively, when z >> y (seeabove). The
approximate formulas 2(z/y)g and z9/2 make it clear why
V2/V1 is very sensitive to both y and z, whereas V/V0 depends
essentially only on z. The limiting values y = 237.8 and z =
0.4204 that appear in these tables correspond to the upper limit
G = 2 (see Eq. 18). When C > 2, k1(I/2) has to be calculated
in a different way.

Turning now to the variation in k2 and k3, we remark first
that V2/V1, V/VO, and 0. all depend, at k, = kl(1/2), on the
ratio k2/k3 only (i.e., not on k2 and k3 separately). Furthermore,
when k2/k3 is varied from 10-3 to 103, these three quantities
all change by less than 0.5% from the reference values (at k2/k3
= 1).

A numerical example with positive cooperativity
In this example we reverse the values of y and z; y = 100, z =
1, k2 = k3 = 1, and g = 0.8. We include this example for con-
trast; it is unlikely to be important for real systems. The choice
of y and z corresponds to positive cooperativity; also, V passes
through a maximum (see Eq. 18), Vm = 2.63 (compare Vom =

I
0

I-

4 5 6
k1/k,(1/2)

- 0

1.6 --

'-1.2 I,^

0.8

0.4

FIG. 6. An example with positive cooperativity (see box), in which
V passes through amaximum as a function of substrate concentration.
Note left and right scales. See text for details.
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1) at kima = 21.2. The value of kl(1/2) (i.e., at V = Vm/2) is
5.04. This is not much larger than the unperturbed value
klo(1/2) = 2.

Fig. 6 gives plots of V, V/Vo, V2/V1, VO/Vom, and Oss against
k1/ki(1/2). Positive cooperativity is evident in the Os curve.
Again (see Fig. 4) (h- and As (with adjusted horizontal scales)
are very close to each other because g = 0.8 is near tog = 1. On
the other hand, the curves As and V (or V/Vm, not shown) are
again quite different in shape.
The reaction velocity drops down from Vm = 2.63 to the

asymptotic value V = 1 ask- 00. The velocity enhancement
ratio V/Vo is never very large; the maximum value is 2.9. Also,
V2/V1 = 0.266 at V = Vm, so that we do not have clean-cut
half-of-the-sites reactivity in this example.
Recapitulation
We believe that the most important case here is z >> 1 and z/y
>> 1. Interactions between subunits destabilize state 22 of the
dimer compared to 12 + 21. There is strong negative cooper-
ativity and half-of-the-sites reactivity: only one subunit cycles
significantly while the other is in state ES or 2. Quantitatively,
this is indicated very simply by V2/V1 ; 2(z/y)g at V = Vm/2.

The considerable enhancement of reactivity in this case is also
given by a simple relation: V/V0 - z9/2 at V = Vm/2.
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