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Abstract
New tools for analysis of oscillatory networks using phase response theory (PRT) under the
assumption of pulsatile coupling have been developed steadily since the 1980s, but none have yet
allowed for analysis of mixed systems containing nonoscillatory elements. This caveat has
excluded the application of PRT to most real systems, which are often mixed. We show that a
recently developed tool, the functional phase resetting curve (fPRC), provides a serendipitous
benefit: it allows incorporation of nonoscillatory elements into systems of oscillators where PRT
can be applied. We validate this method in a model system of neural oscillators and a biological
system, the pyloric network of crustacean decapods.

I. INTRODUCTION
The topic of synchronization and patterned organization of oscillators is of general interest
in physics [1–6]. More specifically, the study of pulse-coupled oscillators has commanded
substantial interest [7–14]. Networks of pulse-coupled oscillators are used to study many
natural phenomena [15], e.g., plate tectonics [16], heart rhythms [17], and neural networks
[18]. Synchrony is a dynamical feature of such networks [19–21]. These systems consist of
oscillators coupled by discrete pulses. Phase response theory (PRT) is often used to study
network synchrony. PRT breaks the network into its component oscillators and analyzes the
response of each to input. In the past and as referenced above, only systems consisting of
oscillatory components have previously been amenable to analysis using PRT. Most
physical systems, however, consist of a mixture of components, some nonoscillatory. To
overcome this limitation, we propose that a recently established metric, the functional phase
response curve (fPRC), provides a means to extend PRT to analyze networks with
nonoscillatory components. We validate this method in both a computational model and a
biological network comprised of an oscillator coupled to a nonoscillatory element. In each
system, we show that knowledge of the fPRC is sufficient to determine the existence,
stability, and precise timing of a 1:1 mode of phase-locking, even in the presence of noise
seen in the biological preparation.
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II. METHODS
A. How the fPRC predicts phase-locking

As recently defined, the functional phase response curve (fPRC) is tabulated as the steady-
state phase shift of an oscillator in response to a dynamically generated train of stereotyped
input pulses precisely timed relative to a dynamical reference point such as a spike or a burst
from this oscillator [22]. The fPRC is a variant of the single-pulse PRC (spPRC) [23]
wherein transient effects such as adaptation are allowed to stabilize during the experimental
protocol so that the fPRC is a direct measure of steady-state behavior.

In Fig. 1, we schematize the prediction of phase-locking using the fPRC method. First, we
measure the fPRC from each neuron in an isolated state. In the case of a bursting neural
oscillator, an online protocol is created to detect burst initiation and deliver an artificial
synaptic input to the target neuron i at a fixed delay Δ after each burst initiation for several
cycles [22] [Fig. 1(a)]. For the given burst shape, we detected bursts using a threshold on the
upward edge of the slow oscillation (vertical dotted lines). Response time trk is measured in
each of N = 10 cycles and then averaged; resulting in Fig. 1(b), where each point of the
fPRC represents the average response time t̄r for the neuron to burst after stimulus initiation
at the given value of Δ. For the remainder of the paper, we use tr to refer to this average. In
our example, the neuron is silent until after the first pulse forces a response, then subsequent
inputs are delivered as described above for an oscillatory neuron. In a 1:1 mode of phase-
locking, Δ represents the delay from burst initiation to receipt of input [Fig. 1(c)].

We solve for the existence of the fixed points graphically [Fig. 1(d)] by plotting Fi(Δi) = tri

together with , where F is a function of Δ and F−1 is the inverse of F, and
looking for the intersections (tri = Δj, Δi = trj). These intersections represent fixed points in
the system’s behavior, which may be stable or unstable.

To determine stability, we construct the following map (for cycle n) Δi[n] = Fj{Fi(Δi[n −
1])} by substitution, following Ref. [22] (p. 393). Taking the first term of its Taylor

expansion to linearize the system around a fixed point of interest ( ), we analyze the
eigenvalues resulting from an infinitesimal perturbation δΔ, which describe whether the
system will relax back to the fixed point or move away from it, resulting in the stability

criterion −1 <  < 1, where an asterisk indicates a fixed point and a prime
indicates the slope at that point [22].

To compare the newer fPRC method against the classic spPRC, we provide an analogous
example trace of spPRC measurement protocol (E) and the tabulated spPRC (F). Modes of
1:1 phase-locking can be predicted graphically [26] in an analogous manner to fPRCs (not
illustrated).

B. Model systems
In a basic demonstration of this theory, we constructed Izhikevich-type bursting neurons

with after-spike resetting
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where υ and u are dimensionless variables, and a = 0.02, b = 0.2, c = −50, and d = 2, and ′ =
d/dt, where t is time [24]. We set one neuron in the oscillatory regime (J = 10) and set one in
a nonoscillatory regime (J = 3). A post-inhibitory rebound (PIR) neuron is silent or
irregularly firing at rest, and when released from inhibition it becomes active, firing a
stereotyped spike or burst, in this case, a burst ([25], p. 64). When isolated, the PIR neuron
is silent, but after receiving an inhibitory input, it rebounds with a burst. Two neurons i and j
were coupled by reciprocal inhibition Ii = gji(υi − E), which activated a square conductance
pulse at a threshold θ as follows: if υi > θ then gij = ḡ, else gij = 0, where E = −85, θ = −55,
and ḡ = 50 is the interaction strength equivalent to gs , below. Conductance pulse length was
chosen to match a typical burst duration in the oscillatory neuron.

C. Biological system
To show that our method is robust to experimental conditions, we applied it in a biological
system. We chose a well-studied system that can be decomposed into an oscillating
component and a PIR component. The pyloric network of the stomatogastric ganglion (STG)
is a central pattern generator in decapod crustaceans, mediating aspects of digestion that
consists of an oscillatory component—the AB/PD complex, a tightly electrically coupled
group composed of one anterior burster (AB) and two pyloric dilator (PD) neurons—and
two nonoscillatory components—the lateral pyloric (LP) neuron and a group of eight
electrically coupled pyloric (PY) neurons (Fig. 2; [25]). In the intact network, the AB/PD
complex rhythmically inhibits the LP and PY components, which then become active via the
PIR mechanism and inhibit each other. LP alone provides feedback to the AB/PD complex.
In the Results section, we refer to the AB/PD complex as the oscillator “Osc” and LP as
“PIR” for consistency.

This network is well suited to analysis here because the rhythm of active phases in each
component is robust and stereotyped [26–28], yet the nonoscillatory nature of the PIR
components previously prevented analysis using PRT. Due to the fact that PY plays a lesser
role in the timing of network activity, we were able to simplify our analysis by examining
only AB/PD and LP while ignoring PY, resulting in a two-node network analogous to the
model system described above. We performed the following experiments in either Homarus
americanus (American lobster) or Cancer borealis (Jonah crab).

Dissection of the nervous tissue and electrophysiology was done using standard procedures
as in [29]. In all experiments, AB/PD was accessed by impaling one PD neuron with an
intracellular electrode, and LP was also impaled. In lobster, nonreversible synaptic isolation
of AB/PD was achieved by bath application of 10−5 M picrotoxin (PTX), and further
isolation of LP was done by photoinactivation of both PD neurons using Alexa 568 dye
(Invitrogen; [30]). In crab, reversible isolation of both network components was achieved by
hyperpolarizing the complementary neuron.

III. RESULTS
We present our results as proof of concept in Fig. 3 and summary statistics in Fig. 4. For
model and biological neurons, Fig. 3 shows (i) time-series data from the isolated component
neurons, (ii) the graphical method for prediction of phase-locked behavior, and (iii) time-
series data from the coupled network (iii).
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In Fig. 3(a)(i), it can be seen that one model neuron is bursting (see legend, Osc), while the
other is silent. As described in the Methods section, this neuron is a post-inhibitory rebound
(PIR) neuron, which responds to inhibition with a rebound burst. Transient activity due to
initial conditions not on the limit cycle was allowed to dissipate prior to showing the model
data. Figure 3(a)(ii) shows the result of the graphical method for prediction of phase-locked
modes. Essentially, the fPRC for each component neuron is plotted on the appropriate axes
such that an intersection of the curves gives a fixed point (see Methods for further detail).
We calculated the stability of these fixed points as described in the Methods and annotated
the plot appropriately. In this case, note that there are two predicted modes of 1:1 phase-
locking; however, only one is stable. The asterisk (*) on the plot marks our result from
numerical simulation, which is close to the stable fixed point calculated from the fPRCs
(intersection). Figure 3(a)(iii) shows simulated time series of the connected network.
Intervals of phase-locking are indicated by the asterisk in Fig. 3(a)(ii). In the coupled
network, the neurons fire alternately phase-locked in a 1:1 pattern.

Our biological results are conceptually similar to the modeling results but illustrate the
broader applicability of the method. Whereas the model PIR neuron is silent when isolated,
the biological PIR neuron exhibits an irregular spiking mode [Fig. 3(b)(i)]. This is
nonoscillatory for our purposes, because the bursting oscillation is the relevant oscillation
for the purposes of the central pattern generating circuit. Several fPRCs are shown in Fig.
3(b)(ii). Due to the uncertainty regarding the precise value of this parameter in the intact
circuit, we measured families of fPRCs for each neuron by varying gs [Fig. 3(b)(ii)]. The
fPRC for the PIR neuron was increased at higher values of gs (arrow, plotted are gs =
{50,100,150}nS), while there was a complex relationship in the Osc neuron (plotted gs
={50,60,100}nS).All intersections occurred in a small area of the state space (inset), where
we show noise envelopes (+/− standard error) for one fPRC from each neuron as a shaded
area. All intersections were determined to be stable. Three asterisks (*) appear. Due to
experimental variability, we measured the connected network activity over the course of 1.5
h and we show that data as three points, each representing the average intervals of a window
10 min in duration. Each shaded area represents a noise envelope. For clarity, noise
envelopes are plotted for only two fPRCs. While there is some variability, network activity
stayed within the noise in the measured fPRCs over 1.5 h. Figure 3(b)(iii) shows a time
series of the connected network behavior.

In Fig. 4, we summarize our biological results over four preparations. Noise measured in the
fPRC is compared to the noise measured in the intact network. Prep 1 is the exemplar from
Fig. 3(b). As explained previously [26,27], we expect that variability will destroy a fixed
point only if the edge of the noise envelope in Fig. 3, column (ii) falls off of the intersecting
curve. It is interesting to note that the observed noise (shaded region around the asterisk) has
an area of similar size to the region bounded by both noise envelopes. We use the terms
noise and variability interchangeably because it is unknown why the signal varies in this
system, yet it is understood that noise sources are important in characterizing dynamics of
the behavior of the system. The Δ-tr curve (fPRC) of the PIR component tends to be flat
because of its stereotyped response to input.

IV. DISCUSSION
In model networks, we verified that the fPRC predicts the observed phase-locked mode of
activity (and no other modes; Fig. 3(a)(ii). The predictions are accurate, but they are not
precise due to small changes in burst shape between isolated (open loop) and coupled
(closed loop) configurations [Fig. 3(a)(ii), asterisk]. Burst PRCs can be more complicated
than PRCs of spiking neurons due to the possibility of an added or deleted spike in the burst
[31].
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In biological experiments, as opposed to the model systems above, we must deal with
variability. We have included measures of experimental variability at two time scales: first
as +/− standard error around fPRC and experimental interval measurements, which
represents variability in the short-term recording on the order of 10 min [Fig. 3(b)(ii),
shaded areas; Fig. 4, error bars]; and second as a set of three experimental interval
measurements taken over the course of 1.5 h [Fig. 3(b)(ii), asterisks].

Under the assumptions of pulsatile coupling, it is necessary to measure the PRC in an open
loop using the same input perturbation as would be received by the component in a closed
loop; however, it is currently impossible to know the exact coupling in these neurons
because they interact at a location that is electrotonically distant from our electrode. For this
reason, we chose our input perturbation carefully for each component, using a square pulse
of conductance with duration equal to the burst length of the complimentary neuron and
repeating the entire fPRC protocol while varying the synaptic strength gs. Our goal was to
survey the Δ-tr space within reasonable boundaries, and see if the functional coupling of the
intact network fell within our survey. For this reason, we plot six fPRCs in Fig. 3(b)(ii), a
family of three for each component.

Our methods implicitly assume that the system is stationary over the duration of the
experiment. Consider that our experiment takes almost 2 h to complete, including isolation
of network components, measurement of fPRCs for each component, network
recomposition, and observation of network activity. Although the pyloric network ranks
among the most stationary neurobiological systems to our knowledge, it is not perfectly
stationary; however, the drift is acceptable during the experiment. In the time interval
between fPRC measurement and observation of network activity, changes occur in the
biological system that we are unable to measure. To gain an understanding of how this
affects our predictions, we recorded 10-min segments of unperturbed activity of the intact
network at three times during the experiment—before, during, and after our fPRC
measurements—and found that while the system drift was negligible during each segment, it
was important over the 1.5-h experiment [Fig. 3(b)(ii), asterisks]. Thus, considering the
measured nonstationarity of the system, the predictions are accurate.

The effect of noise in networks of coupled oscillators has been an area of recent interest
[32–37]. We do not go into detail to determine how noise magnitude or phase dependence in
the fPRCs, measured from isolated neurons, interact in the coupled network. It is interesting
to note that the scale of noise (standard error) measured in a 10-min segment from the intact
network is on the order of the area on the Δ-tr plot enclosed by the fPRC’s noise envelopes
(Fig. 3(b)(ii), shaded areas), which each required 6 min to record. This may indicate that the
noise measured is an effect of a drifting set point for the system.

The pyloric circuit has been widely studied. The biological implications of our work for
understanding the pyloric circuit are that the PY group contributes little to network
patterning but that pharmacological or electrical manipulation of LP or the AB/PD group
should impact patterning in a predictable way. The reason PY has no effect on the timing of
LP is clear from the fPRC, which corresponds to a fixed recovery interval; at the end of a
long-lasting hyperpolarization, all memory for previous input is lost. In the pyloric circuit,
the firing order is PY-AB/PD-LP, therefore we are justified in ignoring the effect of PY on
LP in this context.

V. CONCLUSIONS
Previously [22], fPRC methods were derived as a way to incorporate spiking neural
oscillators exhibiting adaptation on the scale of one period into a framework allowing
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examination using tools from PRT. We assert that this recent advance gives a serendipitous
benefit. The key insight we provide is that when the same protocol used to measure the
fPRC in a network component with an adaptation mechanism is applied to a nonoscillatory
component such as an irregularly spiking or silent neuron or a PIR neuron, the resulting
fPRC gives a valid measure of phasic response to input in an oscillatory regime even though
the subject is not itself oscillatory and thus does not have a defined phase. This relatively
simple observation and the validation presented in this paper greatly extend the potential for
application of PRT. To validate our assertion, we show results from one model and one
biological system. Both are from neurobiology, the area that motivated Cui et al.’s work
[22]; however, the methods are generally applicable to any system containing mixed
oscillatory and nonoscillatory components. This work thus addresses mixed systems in the
context of PRT. Applications extend to any pulse coupled system and not just to synaptic
coupling between neurons. Recent work by others [38] applied the fPRC to light pulses used
in optogenetic techniques.

As stated in [22], the strength of the fPRC is to reduce the set of assumptions necessary
when using the spPRC from three to one. Previously, the assumptions were as follows: (1)
each neuron in the network can be represented as a limit cycle oscillator, (2) the trajectory of
each neuron returns to its limit cycle between inputs (this is the assumption of pulsatile
coupling), and (3) the input received by each neuron has the same effect in the closed-loop
circuit as in the open-loop circuit used to generate the phase response curves. Under the
fPRC, only the third assumption is necessary; however, this is not always a good
assumption. Even in simple models [Fig. 3(a) and unpublished data], there is some error due
to changes in spike or burst shape between open- and closed-loop configurations.

Phase resetting theory is broadly defined here, as we use it to include the characterization
using our framework of defined time intervals in neurons that are not endogenous bursters,
such as PIR neurons. Nevertheless, to our knowledge, these methods have been used so far
only to gain general insights, and not to work out in detail the operation of a specific
biological circuit. In this paper, we apply our methods to an intact and biologically relevant
network, the pyloric network from the STG. We did not include the entire circuit in our
analysis, only the pacemaker neuron complex and the main input to that complex, but
nonetheless obtained a reasonable explanation of the observed electrical activity of the intact
circuit.
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FIG. 1.
(Color online) Schematized protocols for PRC measurement in neurons. (a) Protocol for
fPRC measurement: isolated nonoscillatory neuron i is silent at rest, but emits a burst in
response to an initial input. An online protocol detects this burst and thereafter delivers a
stimulus at fixed delay Δ after the initiation of each subsequent burst for N cycles. Response
times trk are measured after each input. (b) The fPRC consists of averages t̄r tabulated across
Δ. (c) Definition of terms: stimulus delay Δ and response time tr during 1:1 phase-locking
are shown for bursting neurons i and j . The shaded and hatched regions correspond to the
burst duration. (d) Graphical method for prediction: fPRCs for each component neuron are
plotted on the appropriate axes such that any point of intersection gives a solution mode of
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1:1 phase-locking. Stability is calculated as described in the text. (e) Protocol for spPRC
measurement provided for comparison: phase shift to an ongoing oscillatory rhythm with
period P0 is measured in isolated neuron x by delivering a single-pulse stimulus at delay Δ
and measuring the resulting interval P1. (f) The spPRC consists of the relative change in
period P1−P0 tabulated across delay Δ. Both terms are scaled to phase ϕ on [0,1) by
normalizing by P0.
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FIG. 2.
Schematic of the pyloric network.
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FIG. 3.
(Color online) Comparison of (a) model and (b) biological results showing that fPRCs
measured in (i) isolated component neurons make (ii) predictions that match (iii) simulated
or experimental observations of network activity. Summarized observations from column
(iii) are indicated by asterisks (*) plotted in column (ii). Parameter gs was varied to produce
families of three fPRCs for each neuron in (b)(ii). All intersections in (b)(ii) were calculated
to be stable. To avoid clutter in (b)(ii), confidence bounds of +/−1 standard error are shown
as the shaded area for only one fPRC from each component neuron and for the observed
activity. Observations at multiple points in experimental time were necessary in (b) to
determine the degree of stationarity of the biological system.

Sieling et al. Page 11

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2012 November 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



FIG. 4.
(Color online) Summary of results. Predicted (Pred) network (a) phase and (b) period are
compared to observed (Obs) behavior for four experimental preparations.
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