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Abstract
Molenaar (2003, 2011) showed that a common factor model could be transformed into an
equivalent model without factors, involving only observed variables and residual errors. He called
this invertible transformation the Houdini transformation. His derivation involved concepts from
time series and state space theory. This paper verifies the Houdini transformation on a general
latent variable model using algebraic methods. The results show that the Houdini transformation is
illusory, in the sense that the Houdini transformed model remains a latent variable model.
Contrary to common knowledge, a model that is a path model with only observed variables and
residual errors may, in fact, be a latent variable model.

It is usually thought that structural equation models with latent variables and path models
with only observed variables are completely different model types and hence that they
cannot be mapped into each other. We show in this paper that models that contain only
observed and residual variables may in fact be equivalent to latent variable models. To
motivate the development, consider the interdependent system

where the residuals are further structured via δ1 = ε1 − W12ε2 and δ2 = ε2 − W21ε1. For
concreteness, let x1 be (2×1) and x2 be (6×1), with

 and ,

, , and

. There is no hint in that this system might be
equivalent to a latent variable model, although it does have an odd error structure. However,
the Houdini transformation that is developed below can be used to show that this model is

equivalent to the standard orthogonal factor model x = Λζ + ε, where ,

, E(ζζ′) = I,  and .
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It is instructive to focus on the distinction between latent versus observed variable models
using the most well-known latent variable model, namely, factor analysis. A continuing
theme in its 100+ year history (e.g., Cudeck & MacCallum, 2007) has been the key
distinction made between this method and principal components analysis. There is
consensus that factor analysis is a true latent variable model while components analysis,
although in some ways appearing similar to the factor model, simply involves
transformations of observed variables. Although it has recently proven possible to relate
these methods in a precise way (Bentler & de Leeuw, 2011), and although limit theorems
exist on when they become identical (e.g., Bentler & Kano, 1990), in any given empirical
application with a relatively small number of variables they are not interchangeable. It is
then surprising to discover, as Molenaar (2003, 2011) has done, that any common factor
model can be transformed in a 1:1 way so that the resulting model contains no common
factors, only observed variables and residuals. Molenaar's proof was lengthy and invoked
time series theorems of Granger and Morris (1976). Here we provide a simple direct proof
based on manipulations of standard structural equations. We obtain the desired result, but,
extending Molenaar's (2003, 2011) conclusions, we show that the resulting model remains a
latent variable model.

We need to have some clarity on what a latent variable model is, and is not. While there are
several defining characteristics of latent variable models as reviewed by Bollen (2002), we
use the definition provided by Bentler (1982) based on the Bentler-Weeks (1980) model. In
this approach, all variables in a model are either dependent or independent. A variable is a
dependent variable if is expressed in a model as a function of one or more other variables
(i.e., it appears on the left side of an equation), while all other variables are considered
independent variables (i.e., they never appear on the left side of any equation). Then a model
for p observed variables is a latent variable model if, and only if, the dimensionality of the
independent variables is greater than the dimensionality of the observed models.
Specifically, with p observed variables, the covariance matrix of independent variables must
be rank p+k for some k>0. Factor analytic models with p variables and k factors meet this
requirement, while principal components with k components do not. The model resulting
from a Houdini transformation involves equations in observed variables and errors, as is
typical of path models with residual errors. In general, such models are not latent variable
models, implying that the Houdini transformed model is not a latent variable model. But we
will see that the observed variable model with residual errors obtained from a Houdini
transformation remains a latent variable model even though the common factors have
disappeared.

MODEL SETUP
For some model generality, let us consider a standard factor analytic measurement model for
p variables

with latent factors ξ and residual errors or unique variates ε, and latent variable regressions

Thus this is a factor analytic simultaneous equation model. As usual, we assume that ζ, ε are
mutually uncorrelated, and that (I − B) is full rank, so that ξ = (I − B)−1 ζ. It follows that x =
μ + Λ(I − B)−1 ζ + ε, where now the ζ play the role of common factors.
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With the covariance matrix of the ζ given as Φ, and that of ε given as ψ (taken here as
diagonal), both assumed full rank, the covariance structure of the model is given by

(1)

In this model, the independent variables ζ and ε are of order k and p, respectively. With p
observed variables we have p<(p+k), and hence this is a latent variable model.

HOUDINI MANIPULATIONS

To simplify model (1) prior to our manipulations, we rewrite , where
Φ5Φ5′ = Φ. Then it follows that model (1) can be written in a version that looks like an
exploratory factor analysis model, namely,

(2)

Without loss of generality, if necessary, we permute the rows and columns of Σ so that when
we write

(3)

the kxk part Λ1 has full rank. Thus the structural equations can be written as

(4)

It follows that , and hence

(5)

Since (5) provides a way of expressing the factors in terms of observed and residual error
variables, it can be used to eliminate the factors completely from the model. To accomplish
this, we substitute (5) into the second set of equations in (4), obtaining

(6)

We also do some manipulation of (6) to obtain an expression for x1. This is

(7)

These two equations, (6) and (7), are key results. They express the observed variables as an
interdependent system relating observed variables and residual errors only. The common
factors are gone. This is the Houdini transformation, considered in a more general SEM
context as compared to Molenaar (2003, 2011).

THE ILLUSORY ABSENT FACTORS
The fundamental question in this paper is whether the Houdini transformation has resulted in
a model (equations (6) and (7)) that is a latent variable model or not. To answer this
question, it should be noted that each of the above steps is reversible. That is, starting out
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with a model of the form (6) and (7) with no common factors, a model with common factors
can be obtained. Hence it would seem that if one model is a latent variable model, so must
be the other one.

We look at this by investigating the dimensionality of the independent variables. Clearly, the
dependent variables in the model are x1 and x2, and the independent variables are ε1 and ε2.
By the original assumptions, they are uncorrelated, and hence they span a p-dimensional
space. At first glance, it seems that we do not have a latent variable model. But what about
the variables (x1 − ε1) and (x2 − ε2) ? They are not dependent variables, but are they
independent variables? To investigate this, from (4) we note that (x1 − ε1) = Λ1ζ and (x2 −
ε2) = Λ2ζ are linear transformations of the k common factors ζ and hence both of these
variables are k-dimensional latent variables. Furthermore, since they are two linear
transformations of a single vector variate ζ that is independent of the unique variates ε1 and
ε2, the dimensionality of the space of (6) and (7) is p + k. Hence the Houdini transformation
did not reduce the space spanned by the independent variables.

We complete this section by relating equations (6) and (7) to our opening example. The
abstract algebra can be mapped into the numbers of the example with the calculations

 and .

DISCUSSION
A universally accepted distinction in structural modeling is between observed variable path
models, or simultaneous equation models, and latent variable models. What the Houdini
transformation shows is that a model that contains only observed variables and residual
errors actually can be a latent variable model. To our knowledge, this observation is new.

While the results in this paper provide one view on the Houdini transformation, we want to
recognize that we have dealt with a specialized approach to eliminating latent factors from a
model. Molenaar actually provided a broader view of this transformation which emphasizes
the following additional features. The Houdini transformation involves a principled
approach to derive a family of equivalent structural equation models which have not been
considered before in the published literature. The equivalence relationship concerned is
reminiscent of the relationship between state space models with latent state processes and
transfer function models directly linking input and output processes (cf. Heij et al., 2007).
The way in which the set of equivalent models is obtained implies that all models with latent
factors are nested. This has important consequences for model selection. Moreover, the
Houdini transformation of a model with q latent factors is obtained in a sequence of steps,
where in each step the dimension of the

latent space is reduced. This raises new questions about the proper definition of the
dimension of spaces spanned by common latent variables.
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