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Mini-Review

The AMP-Activated Protein Kinase

The first catalytic subunit of mammalian AMP-activated pro-
tein kinase (AMPK) was cloned in 1994.1,2 It is a ubiquitously 
expressed Ser/Thr kinase, which exists as a heterotrimer com-
posed of a catalytic α-subunit and regulatory β- and γ-subunits.3 
Two α-, two β- and three γ-subunit isoforms exist. While the 
α1 isoform is expressed in all tissues, the α2 isoform is primarily 
found in skeletal and cardiac muscle and in the liver.4

AMPK phosphorylates target proteins containing a Φ(X, β)
XXS/TXXXΦ (Φ, hydrophobic; β, basic) consensus motif.5 It is 
activated in response to an elevated AMP:ATP ratio and phos-
phorylation of the α-subunit at S172 by upstream kinases such 
as LKB1 and Calmodulin-dependent protein kinase kinase-β.6-12 
Binding of AMP to the γ-subunit allosterically activates the 
kinase. In addition, AMP-binding promotes phosphorylation 
of S172 by upstream kinases13 and also prevents dephosphoryla-
tion of S172 by protein phosphatases.14 This complex regulation 
allows AMPK to detect relatively small changes in the AMP:ATP 
ratio,15 making AMPK an excellent regulator of cellular energy 
homeostasis. Indeed, the first described AMPK substrates were 
pivotal metabolic enzymes, where AMPK was found to shut off 
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Ion transport processes are highly energy consuming. It is 
therefore critical to couple ion transport processes to the 
metabolic state of the cell. An important player in this coupling 
appears to be the AMP-activated protein kinase (AMPK). 
This kinase becomes activated during conditions of cellular 
metabolic stress and is well-known for its role in promoting 
ATP-generating catabolic pathways while turning off ATP-
utilizing anabolic pathways. Over the past decade AMPK has 
also emerged as a key regulator of ion channel activity as an 
increasing number of ion channels are reported to be either 
directly or indirectly regulated by the kinase. AMPK therefore 
provides a necessary link between cellular energy levels and 
ion channel activity.
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ATP-utilizing anabolic pathways and turn on ATP-generating 
catabolic pathways.

In addition to its effects on cellular metabolism, AMPK influ-
ences a great deal of other cellular processes including cell growth 
and division, apoptosis, gene transcription, protein synthesis and 
cell polarization.16 This review will focus on one of the more 
recently recognized functions of AMPK, which is its impact on 
ion channel activity. An overview of the AMPK regulated ion 
channels reported to date is provided in Table 1.

AMPK Inhibits Ion Channel Activity by Direct 
Channel Phosphorylation

The concept of AMPK as a regulator of ion channel activity 
emerged in 2000 with the discovery by Hallows and cowork-
ers that the kinase inhibits the cystic fibrosis transmembrane 
conductance regulator (CFTR), the ATP-gated chloride chan-
nel mutated in cystic fibrosis.17,18 By a yeast two-hybrid screen, 
they identified the AMPK α1 subunit as an interaction partner 
of CFTR.19 Functional studies in Xenopus oocytes demonstrated 
that AMPK can inhibit channel activity by reducing the open 
probability of the channel. AMPK directly phosphorylates CFTR 
in vitro and two subsequent studies have identified S768, a previ-
ously described inhibitory PKA site, as the primary site of AMPK 
phosphorylation.20,21 Phosphorylation at S768 inhibits PKA stim-
ulation of CFTR gating thereby allowing AMPK to influence the 
level of CFTR activation caused by the PKA pathway.

Subsequent studies demonstrated that CFTR is not the only 
ion channel, which is inhibited by AMPK by direct channel phos-
phorylation. In type I cells of the carotid body, hypoxia is known to 
cause K+ channel inhibition leading to membrane depolarization, 
calcium entry and subsequent neurosecretion ultimately result-
ing in changes in respiration.22 In 2007, Wyatt and coworkers 
reported that the observed K+ channel inhibition was mediated by 
AMPK.23 They furthermore found that the BK

Ca
 channel, which 

is partly responsible for the O
2
-sensitive K+ current of type I cells, 

was inhibited by AMPK activation in HEK293 cells. Though no 
direct interaction between the kinase and BK

Ca
 could be detected 

in HEK293 cells, the inhibition appears to be a result of direct 
channel phosphorylation, as AMPK was able to phosphorylate the 
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AMPK Inhibits Ion Channel Activity by Nedd4-2 
Activation

In 2005, AMPK-mediated inhibition of the epithelial sodium 
channel ENaC was reported in Xenopus oocytes and polarized 
mouse collecting duct mpkCCD

C14
 cells.28 Interestingly, ENaC 

did not appear to be a direct target of AMPK as the channel was 
not phosphorylated by AMPK in vitro and no direct interaction 
between the kinase and ENaC could be detected. Of note, a 
Liddle’s syndrome ENaC β-subunit mutant did not respond to 
AMPK activation. This mutant is characterized by its inability 
to interact with the E3 ubiquitin ligase Nedd4-2, which nor-
mally ubiquitinylates ENaC marking it for endocytosis and 
degradation. As this mutant is insensitive to Nedd4-2 regulated 
endocytosis, it suggested that AMPK inhibits ENaC through 
Nedd4-2. Indeed, this was confirmed in a subsequent study, 
which reported that Nedd4-2 is a direct target of AMPK and 
that AMPK activation increases the interaction between the 
ENaC β-subunit and Nedd4-2.29 The exact mechanism behind 
the observed AMPK-induced increase in Nedd4-2 binding to 
ENaC is currently unknown as are the AMPK phosphorylation 
sites in Nedd4-2. That ENaC is physiologically regulated by 
such an AMPK-Nedd4-2 pathway was confirmed by Almaca 
and coworkers.30

More recent studies have demonstrated that the described 
AMPK-Nedd4-2 pathway is not unique to ENaC. The two 
potassium channels Kir2.1 and Kv7.1 can also be regulated by 
this pathway.31-34 We demonstrated that during the polarization 

channel in vitro. Interestingly, a follow-up study demonstrated 
that AMPK regulates BK

Ca
 in a splice variant specific manner,24 

which could allow for cell-type specific responses of BK
Ca

 to 
AMPK. In accordance with the proposed role of AMPK-mediated 
BK

Ca
 channel inhibition in the carotid body, the AMPK-sensitive 

BK
Ca

 ‘ZERO’ variant is reportedly expressed in type I cells whereas 
the non-responsive ‘STREX’ variant is not.24

In the report by Wyatt and coworkers, O
2
-sensitive leak K+ 

currents of type I cells were also found to be inhibited by AMPK 
activation.23 The molecular identity of the currents is still under 
debate, but most likely is of a TASK-like type. In agreement with 
an AMPK-regulation of these channels, Dallas et al. reported 
AMPK-mediated inhibition of TASK-3 channels when expressed 
in HEK293 cells.25 This observation is in contrast to data from 
Kreneisz and coworkers, who found that TASK-1 and TASK-3 
channels as well as TASK-1/TASK-3 heteromers did not respond 
to the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-
4-carboxamide (AICAR).26 Instead, they found that AMPK acti-
vation inhibited the activity of the two related channels TREK-1 
and TREK-2. The authors therefore suggest that TREK chan-
nels represent the AMPK-inhibited background K+ channels of 
type I cells. The reason for the different observations on TASK-3 
remains unresolved, but might reside in different experimental 
conditions, in particular the exposure time to AICAR.

Finally, the AMPK γ1 subunit has been demonstrated to bind 
to the potassium channel KCa3.1 and AMPK inhibits KCa3.1 
currents in lung epithelial tissues.27 The mechanism behind the 
inhibition has not been determined.

Table 1. Overview of ion channels affected by AMPK activation. 

Inhibitory effects of AMPK

Ion channel AMPK effect Mode of action References

BKCa Reduction in current amplitude Direct channel phosphorylation 23

CFTR Decreased open probability Direct channel phosphorylation (S768) 20,19,21

ENaC Reduction in cell surface expression Activation of Nedd4–2-mediated endocytosis 29,28

KCa3.1 Reduction in current amplitude ? 27

Kir2.1 Reduction in cell surface expression Activation of Nedd4–2-mediated endocytosis 33

Kir6.2 Reduction in current amplitude Direct channel phosphorylation (S385) 45,44

Kv7.1 Reduction in cell surface expression Activation of Nedd4–2-mediated endocytosis 32,31,34

TASK-3 Reduction in current amplitude ? 25

TREK-1 Reduction in current amplitude Involves the phosphorylation sites S300 and S333 26

TREK-2 Reduction in current amplitude Involves the phosphorylation sites S326 and S359 26

Stimulatory effects of AMPK

Ion channel AMPK effect Mode of action References

Kir6.2 Increased open probability ? 40

Kir6.2 Increased surface expression ? 43,42

Kv2.1
Hyperpolarizing shifts in the current-voltage relationship for 

channel activation and inactivation
Direct channel phosphorylation (S440) 38

Nav1.5
Slowing of open-state inactivation and a hyperpolarizing shift in 

the voltage-activation curve
? 37

Shown is a list of the ion channels reported to date to respond to AMPK activation. It is summarized how AMPK activation affects the individual ion 
channels and what the molecular background for the observed regulation is.
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AMPK Regulation of KATP Currents  
in Cardiomyocytes and Pancreatic Beta Cells

Very recently, AMPK was reported to be part of the macromo-
lecular K

ATP
 channel complex of rat cardiomyocytes and AMPK 

activation was shown to increase the K
ATP

 current in these cells.40 
In inside-out patches from the cardiomyocytes, ZMP (the intra-
cellular metabolite of AICAR) caused strong activation of K

ATP
. 

Furthermore, recombinant AMPK activated Kir6.2/SUR2A, 
the molecular component of the cardiac K

ATP
 current, in tran-

siently transfected COS7L cells demonstrating that the kinase 
can promote K

ATP
 opening.40 In agreement with a stimulatory 

role of AMPK on K
ATP

 channels in heart, the kinase has also 
been reported to promote K

ATP
 surface-expression in cardio-

myocytes.40 In hypoxia-induced preconditioning of the heart, 
which protects against myocardial infarction, activation and 
recruitment of sarcolemmal K

ATP
 channels is involved.41 Using 

transgenic mice overexpressing a dominant-negative form of the 
AMPK α2 subunit, Sukhodub and coworkers demonstrated that 
the activation and increased surface-expression of K

ATP
 channels 

observed after preconditioning requires AMPK activity.42 The 
mechanism behind the increased surface-expression was, how-
ever, not determined.

In pancreatic β cells, the picture is more clouded as AMPK 
activation has been reported to both promote and inhibit K

ATP
 

channel activity. Like reported in cardiomyocytes, AMPK acti-
vation also appears to promote K

ATP
 surface-expression in rat 

pancreatic β cells.43 However, two other reports suggest an 
inhibitory role of AMPK. Wang and coworkers observed that 
application of AICAR to mouse islets in 5–10 mM glucose 
inhibited K

ATP
 activity and stimulated insulin secretion.44 In 

agreement, Chang and coworkers reported that Rosiglitazone, 
an anti-diabetic drug, caused an AMPK-dependent inhibition of 
K

ATP
 channels in rat islets.45 They additionally identified S385 in 

the Kir6.2 subunit, a previously suggested ERK2 phosphoryla-
tion site,46 as a substrate phosphorylation site for AMPK. The 
reason for the discrepancy on AMPK mediated effects on K

ATP
 

channels in pancreatic β cells has not been solved, but most 
likely involves differences in the experimental set-ups or possibly 
non-AMPK related effects of the drugs used. In any case, the 
contradictory results suggest that regulation of K

ATP
 activity in 

pancreatic β cells is complex.

Future Perspectives

Over the past 12 y AMPK has emerged as an important regu-
lator of ion channel activity. A general aspect appears to be its 
function to downregulate ion channel activity to preserve energy 
and prevent dissipation of ionic gradients when transporter and 
exchanger functions might be compromised during conditions of 
metabolic stress. In addition, more recent research has expanded 
the role of AMPK-mediated ion channel regulation to transmis-
sion of oxygen-sensing in carotid body cells and stimulation of 
potassium channel activity to reduce neuronal excitability in 
energy-lacking conditions. Overall, all of these functions are 
in line with the role of AMPK as a metabolic sensor that tries 

process of MDCK cells, AMPK activation leads to Nedd4-2-
dependent endocytosis of surface-expressed Kv7.1 channels fol-
lowed by lysosomal degradation.35,31 Similar results of AMPK 
activation was reported in polarized mpkCCD

C14
 cells and col-

lecting duct principal cells from rat kidney slices.34 In addition, 
endogenous AMPK activation in Xenopus oocytes co-expressing 
Kv7.1 and Nedd4-2 downregulated Kv7.1 currents in a Nedd4-2 
dependent manner.31,34 Altogether the data suggest that Kv7.1 is 
regulated by a pathway similar to ENaC. Similarly, an AMPK-
Nedd4-2 pathway was also reported to inhibit the potas-
sium channel Kir2.1 when exogenously expressed in Xenopus 
oocytes.33

Intriguingly, an increasing number of ion channels are 
reported to be regulated by Nedd4-2 including Nav1.5, Kv1.3, 
Kv1.5 and Kv7.2/336 raising the possibility that these channels 
are also sensitive to AMPK activation through Nedd4-2. AMPK 
mediated Nedd4-2 activation could thereby be speculated to be 
a general cellular mechanism to remove ion channels from the 
membrane during cellular stress.

AMPK Can Increase Ion Channel Activity

The first ion channel reported to display AMPK-facilitated acti-
vation was the cardiac sodium channel Nav1.5. Prompted by 
the observation that mutations in the AMPK γ2 subunit are 
associated with potentially fatal cardiac arrhythmias, Light 
and coworkers examined the effects of overexpressing a con-
stitutively active AMPK mutant (CA-AMPK) in rat ventricu-
lar myocytes and observed a prolongation of the cardiac action 
potential.37 Patch clamp measurements on Nav1.5-expressing 
TsA201 cells revealed that the CA-AMPK mutant caused a 
slowing of channel inactivation and a hyperpolarizing shift of 
the voltage activation curve, which could provide the expla-
nation for the CA-AMPK-induced action potential prolonga-
tion. They therefore suggest that Nav1.5 is a target of AMPK 
and could contribute to arrhythmias observed in patients with 
AMPK γ2 mutations.

A recent study added the Kv2.1 potassium channel to the 
list of AMPK targets. This potassium channel provides the 
major component of the delayed rectifier Kv current in cortical 
and hippocampal pyramidal neurons, thereby having a major 
impact on the firing of action potentials. Ikematsu and cowork-
ers demonstrated that AMPK activation in HEK293 cells 
resulted in hyperpolarizing shifts in the voltage dependence 
of Kv2.1 gating.38 By combining in vitro phosphorylation, 
mass spectrometry and the use of phosphospecific antibodies, 
direct phosphorylation of two serine residues (S440 and S537) 
in the Kv2.1 C-terminus was demonstrated with S440 being 
the primary site responsible for the observed AMPK effect. In 
accordance with an AMPK-induced activation of Kv2.1, intro-
duction of active AMPK into cultured hippocampal neurons 
caused a decrease in the frequency of evoked action potentials. 
As action potential firing can account for 25–50% of neuronal 
ATP-turnover,39 the authors suggest that AMPK regulation of 
Kv2.1 could serve a protective role by reducing neuronal excit-
ability during conditions of metabolic stress
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to maintain energy homeostasis. There is no doubt that future 
studies will reveal even more ion channels as targets of AMPK 
regulation. Together with investigations of the molecular mech-
anisms involved in ion channel regulation by AMPK, this will 
provide important insight into the coupling between AMPK and 
ion channel activity as well as the physiological aspects of this 
regulation.
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