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Abstract

Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an
endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness
benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial
fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis,
rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions,
at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially
expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a
handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is
mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of
phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals,
we demonstrated that even this small difference in circadian phase significantly influences the results of differential
expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a
cautionary note for all biologists performing genome-level expression analysis.
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Introduction

Circadian rhythms are physiological and behavioral cycles with

period length around 24 hours that are produced by an

endogenous clock [1]. They are widely observed in nature,

presumably because they help organisms prepare for predictable

environmental change such as day/night cycles. Circadian

rhythms can be further classified according to their daily phases,

or times of peak expression [2–5]. Different groups of circadian

rhythms are timed to occur at specific times of day to optimize

physiology and growth. Functional circadian clocks provide a

crucial fitness advantage in diverse organisms: disruption of clock

components results in disorder of sleep/wake cycles in humans [6]

and reduction of photosynthesis and overall survival in cyanobac-

teria and plants [7,8].

Clock systems can be generalized as consisting of three major

parts [1]: (1) input pathways, which sense environmental timing

cues such as light or temperature and can reset the clock, (2) the

central oscillator (or the central clock), which consists of

interlocking transcriptional/translational feedback loops, and (3)

outputs, biological rhythms with a free-running period of

approximately 24 hours. Although the identities of clock genes

vary between different organisms, many clock components are

transcription factors involved in regulatory feedback loops. In

Arabidopsis, the first-identified transcriptional loop of the central

clock is composed of three transcription factors: CCA1 and LHY,

two MYB-like transcription factors highly expressed in the

morning [9,10], and TOC1, a CCT-domain containing transcrip-

tion factor with peak abundance in the evening [11,12]. The two

morning-phased transcription factors repress TOC1 expression by

directly binding to a motif found in the TOC1 promoter called the

evening element (EE) [12,13]. The EE is overrepresented in

evening-phased genes and when multimerized confers evening-

phased expression on a reporter gene [4,13]. TOC1 was recently

reported to be a transcription factor that directly inhibits CCA1

and LHY expression [14,15], revealing that these three proteins

function in a double-negative feedback loop.

In plants as in other eukaryotes, multiple transcriptional

feedback loops are coupled together to generate the circadian

oscillator. A second negative feedback loop in Arabidopsis is

formed between CCA1/LHY and three TOC1 homologs: PRR5,

PRR7 and PRR9 [16]. We recently described another transcrip-

tional loop involving one of these pseudoresponse regulators and

RVE8, a homolog of CCA1 and LHY. RVE8 promotes expression

of PRR5, possibly by binding to the EE found in the PRR5

promoter, and RVE8 expression is in turn repressed by PRR5 [17].

Transcriptional regulation is not only key to oscillator function

in all eukaryotes studied, but also plays an important role in

control of clock outputs. In the past decade, microarrays have

been widely used in many model systems to simultaneously

monitor levels of thousands of transcripts in the genome. These

studies have revealed that 9% to 30% of the transcriptome in

cyanobacteria, Arabidopsis, Drosophila and mammals is con-

trolled by the clock [2,18–21]. Identification of pathways enriched
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for circadian-regulated genes has demonstrated that numerous

essential metabolic and physiological pathways are influenced by

the clock [2,21,22]. The examination of global transcript

abundance over circadian time thus allows the identification of

both components of the circadian oscillator as well as genes and

pathways under circadian regulation.

Here we compare gene expression in the long-period Arabi-

dopsis mutant, rve8-1[17] and in wild-type plants after several days

of growth in constant environmental conditions. This prolonged

time in free-running conditions resulted in a global 4-hour delay,

approximately 17% of a daily cycle, in the phase of both central

clock and output genes in the rve8-1 mutant relative to wild type,

demonstrating that RVE8 acts within the central clock. If we did

not take this phase difference into account, a great number of

genes were identified as differentially expressed; however, only

very few of them showed significant changes in expression levels

and/or patterns of gene expression once we compensated for the

phase difference. This profound influence of phase on global gene

expression prompted us to examine the effects of smaller phase

differences on gene expression. Using publicly available micro-

array data, we demonstrate that even a phase difference as small as

30 minutes (2% of a daily cycle) has a dramatic effect on

expression levels of hundreds of genes, a finding with important

ramifications for the design of all genome-wide studies.

Results

RVE8 Affects Global Circadian-regulated Transcription
To identify target genes controlled by RVE8, we examined the

transcriptional profiles of Col and rve8-1 using AGRONOMICS1

tiling arrays, which cover more than 30,000 annotated Arabidopsis

genes [23]. Plants were grown in light/dark cycles for seven days

and then transferred to free-running conditions (continuous light

and temperature). Since rve8-1 has a period only approximately

one hour longer than wild type, we collected samples on the fourth

and fifth days of free run to ensure easy detection of the circadian

phase difference between Col and rve8-1 [17]. Following prepro-

cessing and normalization of raw array data, genes with very low

expression levels were filtered out. An empirical Bayes statistical

analysis using limma [24] was then performed to identify genes

differentially expressed between the two genotypes, in which we

matched the mutant and wild-type samples according to the time

at which they were harvested (i.e. comparing Col_72 and rve8-

1_72). Using a multiple-measure adjusted p value less than 0.05 as

a cut-off, 1557 genes were identified as significantly differently

expressed between Col and rve8-1. Further analysis of the time

course data (see below) revealed that transcript levels of 86% of

these misexpressed genes are controlled by the circadian clock

(Fig. 1I). These differentially expressed genes include key clock

genes such as TOC1 and CCA1 (Fig. 2G–H) as well as a variety of

output genes (Fig. 2B–2F). Alteration of both central clock and

output genes in rve8-1 is consistent with previous reports that

suggest RVE8 functions close to the central clock in Arabidopsis

[17,25] and thus would be expected to directly or indirectly

regulate all clock-controlled genes (CCGs). Inspection of the most

highly differentially expressed genes that are also clock-controlled

show that they all have a delayed phase in rve8-1 compared to Col,

but reveal no obvious change in overall expression levels (Fig. 1C–

1H), with the exception of RVE8 (At3g09600) itself (Fig. 1C).

Hierarchical clustering of the 1557 differentially expressed genes

showed a strong circadian signature. That is, the Col samples

harvested after 76 and 100 hours in free run (24 hours apart)

cluster with each other, as do the rve8-1 samples harvested after 80

and 104 hours in free run (Fig 2A). Notably, these four time points

also cluster with each other. A similar relationship was seen

between all the other time points; i.e., the Col samples cluster most

tightly with the rve8-1 samples collected four hours later.

Validation of microarray results using qRT-PCR on CCGs that

cycle with both low and high amplitudes showed good agreement

between the two techniques (Fig. 2B–H), indicating the microarray

results are reliable. These data show that after four days in free-

run, global circadian gene expression in rve8-1 is delayed about

four hours when compared to Col. The four-hour phase difference

after four days in free run can be attributed to the approximately

one hour longer period in rve8-1 mutants [17,25]. The lack of

apparent overall expression level differences in most of the

‘‘differentially expressed’’ genes once phase is considered

(Fig. 1D–I and Fig. 2B–H) and the close clustering of the wild-

type and rve8-1 samples (Fig. 2A) imply that the majority of the

1557 genes identified as differentially expressed simply have a

different circadian phase in rve8-1, rather than an overall change in

expression levels.

Identification of RVE8 Targets with Altered Expression
Levels

Since we wished to identify genes with overall alterations in

expression levels in rve8-1, not just those with altered phases, we

adjusted the two time series to compensate for the observed four-

hour difference in phase (Fig. 1 and 2) and then carried out

differential expression analysis. That is, we used limma as

described previously, but this time compared Col_72 with rve8-

1_76, Col_76 with rve8-1_80, etc. (Fig. 3A) We expected four

possible types of outcomes for genes previously identified as

differentially expressed: (1) genes controlled by the clock that do

not have appreciable differences in overall expression levels in rve8-

1 would no longer be identified as differentially expressed,

(compare Fig. 1F and Fig. 3C); (2) differentially expressed genes

that are not controlled by the circadian clock would still show

expression level differences (compare Fig. 1A and Fig. 3B); (3)

genes controlled by the clock that also have changes in expression

levels (like RVE8, compare Fig. 1C and 3D) or a change in phase

other than a four hours delay in rve8-1 would be still recognized as

differentially expressed genes; and (4) genes that are clock-

regulated in only one of the genotypes (Fig. 4C, 4G, and 4H)

might also be differentially expressed. After comparison of these

‘‘offset’’ Col and rve8-1 time courses, only 13 genes passed the

significance criteria for differential expression (adjusted p value ,

0.05; Fig. 3B, 3D, and Fig. 4). Given that most of the 1557 genes

initially identified as differentially expressed are also circadian

regulated (Fig. 1I), the vast majority of these genes fall into our

class 1, simply having a phase delay in rve8-1 rather than an overall

expression level difference between wild type and the mutant.

The 13 genes that are differentially expressed in the phase-offset

datasets fall into each of the above classes 2 – 4. Two of the 13

(At4g29610, and At5g47240) are clock-regulated in both genotypes

(4J–L). The two genes upstream of the RVE8 locus, At3g09580 and

At3g09590 (Fig. 4B and 4C), are also misregulated in rve8-1,

suggesting the T-DNA insertion in RVE8 not only disrupts RVE8

expression but also affects nearby genes. Interestingly, expression

of At3g09590 is clock-regulated with a dawn phase in rve8-1 but not

in Col, suggesting that the enhancer elements within the T-DNA

inserted in the RVE8 locus have imposed RVE8-like expression

patterns on this adjacent gene. Four evening-phased CCGs

(At5g20740, At1g52040, At4g29610, and At5g47240) have reduced

expression levels in rve8-1; two of them lost rhythmic expression in

rve8-1 (Fig. 4G and 4H) and two are still classified as clock-

regulated despite reduced levels in rve8-1 (Fig. 4J and 4K). None of

these 13 differentially expressed genes (except RVE8 itself) have

Circadian Phase Effects on Differential Expression
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been reported to affect the circadian clock and are annotated with

diverse functions in plants (Table 1). Our results show that after

correcting for circadian phase only a handful of genes have

significantly altered expression levels in rve8-1.

Investigation of Rhythmic Expression and Generation of a
More Complete Clock-regulated Gene List

In addition to expression levels, we also examined circadian

waveforms in Col and rve8-1. Given that only a dozen genes have

different expression levels between the two genotypes once phase is

taken into account, we expected little or no difference in rhythmic

pattern change except the phase delay in rve8-1. We first compared

the performance of a commonly used method, COSOPT [26],

and a relatively new algorithm, JTK_CYCLE [27], for detecting

cycling genes in Col. Both algorithms test correlations between the

experimental time course data and a series of cosine models

[26,27], however, JTK_CYCLE uses a nonparametric test and

was reported to identify rhythmic genes more reliably with

enhanced resistance to outliers and improved computational

efficiency [27]. Based on previous studies [2,4,27,28] and our

empirical tests, a pMMCb , 0.05 for COSOPT and multiple-

measure adjusted p vlaue , 0.05 for JTK_CYCLE were chosen as

significance thresholds. JTK_CYCLE identified slightly more

cycling genes than COSOPT in Col (4082 found by JTK_CYCLE

compared to 3923 found by COSOPT) with 68 to 71% of the

genes shared between the two lists (Fig. 5A). We also examined the

agreement between these gene lists and that obtained in a previous

study by Covington et al. performed using ATH1 arrays [2]. This

previous list was produced using COSOPT to analyze a meta-

dataset generated by combining two independent time courses,

both from Col plants [2]. Considering only genes also represented

on the ATH1 array, our current CCG lists produced by

JTK_CYCLE and COSOPT have similar overlaps with the

Covington gene list, with slightly better coverage provided by the

JTK_CYCLE list (Fig. 5B – C). The agreement between either our

COSOPT or our JTK_CYCLE list with Covington’s list (,50%)

Figure 1. Most of the genes differentially expressed between Col and rve8-1 are clock-regulated. Plants were entrained in light/dark
cycles for 7 days before release to constant light and temperature (free run). Samples were harvested at 4-hour intervals over two days, starting after
72 hours in free run. RNA was extracted and labeled and then hybridized to tiling microarrays. (A–H) The expression patterns of the 8 most
differentially expressed genes. The 72 and 96 hours in the x-axis correspond to subjective dawn. Genes expressed with a circadian rhythm (C–H)
display a phase delay of about four hours in rve8-1, but only At3g09600 (RVE8) also has an obvious expression level difference (C). (I) A weighted Venn
diagram presents the relative portion of clock-controlled genes (CCGs) among differentially expressed (DE) genes.
doi:10.1371/journal.pone.0049853.g001
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is greater than a previous report showing around one-third of

CCGs overlapping between independent circadian microarray

studies [2], suggesting our CCG lists generated using Agronomics1

arrays are reliable. Since JTK_CYCLE takes only about 1/32 of

the computing time required by COSOPT and the performance

of the two algorithms is similar (Figure 5), we believe

JTK_CYCLE to be better suited for analysis of large data sets.

To compare rhythmic gene expression in Col and rve8-1, we

determined the cycling genes lists in rve8-1 by JTK_CYCLE using

the same criteria as described above. A similar number of cycling

genes are found in rve8-1 and in Col (3635 and 4082, respectively).

Furthermore the overlap between the CCGs found in Col and in

rve8-1 is about 44 and 49% of each data set (Fig. S1), which is

similar to what we observed when comparing our Col data set with

a previously published list generated using Col plants (Fig. 5B–C).

These results suggest circadian expression patterns are not strongly

different between Col and rve8-1, consistent with the very small

number of genes we find differentially expressed between these

genotypes after we have compensated for phase (Fig. 4). Inspection

of the genes only classified as clock-regulated in one genotype

suggest that these genes are actually clock-regulated in the other

genotype as well. For example, FT is classified as cycling in Col but

not in rve8-1 by JTK_CYCLE, but the transcript shows reasonable

cycling in both genotypes by both microarray and qRT-PCR

analysis (Fig. 2E). This suggests that circadian analysis of single

genotypes, with only 12 time points considered per time course,

results in many CCGs being missed due to insufficient statistical

power.

Covington et al have reported a solution to improve the low

statistical power common in many circadian microarray studies:

combining data sets from different time courses with similar

growth conditons to create a meta-time course allowing more

reliable and robust detection of circadian rhythms [2]. Since there

is little appreciable difference in the transcriptional profiles

between Col and rve8-1 once phase is accounted for (Fig. 2A),

we combined these two time courses to create a four-day meta-

time course consisting of 24 separate samples. Upon analysis of

this four-day meta-time course with COSOPT and JTK_CYCLE,

we identified 7021 (Table S1) and 6608 genes (Table S2) as clock-

controlled, respectively (Table 2). Notably 5836 genes overlap

between the two CCG lists (corresponding to 83% and 88% of

genes identified by COSOPT and JTK_CYCLE, respectively,

Fig. 6A). We next compared the lists of cycling genes generated

using our 24 sample (Col + rve8-1) meta time course with that

generated by Covington et al. using a 25 sample (Col + Col) meta

time course [2]. Restricting our analysis to genes represented on

the ATH1 arrays, we found that the CCG lists generated by either

COSOPT or JTK_CYCLE cover about 71–72% of the genes

defined as CCGs by Covington using COSOPT (Fig. 6B–C). This

is much better agreement than we found using only our Col time

course (Fig. 5B–C), suggesting that combining the Col and rve8-1

time courses to generate one meta data set enhanced identification

of CCGs.

We next compared the CCGs identified by both COSOPT and

JTK_CYCLE with those only identified by either one or the other

method. Genes found to be clock-regulated only by COSOPT or

only by JTK_CYCLE have significantly lower amplitudes than

Figure 2. The circadian transcriptome of rve8-1 has a 4-hour phase delay relative to wild type. (A) Hierarchical clustering of the 1557
genes differentially expressed between the Col and rve8-1 time courses. Gene identifications are on the y-axis, time of sample collection and
genotype are on the x-axis. The color key indicates the expression level in log2 scale (red to light yellow: low to high expression) and overall
frequency of each expression level. (B–H) Validation of microarray results using qRT-PCR on clock-controlled genes with a range of amplitudes (shown
from low to high amplitude). For each panel, the left part shows microarray data and the right shows qRT-PCR results (mean 6 SEM from three
technical replicates) for the gene examined.
doi:10.1371/journal.pone.0049853.g002
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those identified by both methods (Fig. S2). This suggests that genes

only identified by one method are less robust cyclers than those

identified by both methods. We therefore considered the list of

genes identified as CCGs by both COSOPT and JTK_CYCLE as

CCGs for subsequent analyses; although we are likely omitting

true clock-regulated genes, we have high confidence in the genes

included in this group. Indeed this gene set, representing the

intersection between the COSOPT and JTK_CYCLE lists, still

includes ,68% of Covington’s CCGs (Fig. 6D). The 1281 genes

excluded from our CCG list but present in Covington’s list

(Fig. 6D) might include genes whose rhythmic expression damps

after a few days in free-run, as Convington’s meta set combines

two circadian time courses collected on days 2 and 3 of free run

while our samples were harvested on days 4 and 5 of free-run. Our

meta list created using the Agronomics1 array includes 3133 genes

not previously reported as CCGs by Covington et al. (Fig. S3), of

which 699 genes are not represented on the ATH1 array. These

additional CCGs include many well-documented clock-regulated

genes, such as PRR5, GI, LUX and CO (Table S1 and S2). Overall,

our cycling list shows good agreement with the previously

identified CCG list, with a similar fraction of the transcriptome

estimated to be clock-regulated in the two experiments [2]

(Table 2). We also validated some newly identified CCGs with

either low or high amplitudes using qRT-PCR (Fig. 2B–2F). The

reproducible detection of rhythmic gene expression using both

microarray and qRT-PCR techniques further suggests our CCG

list generated by analysis of the combined data sets is reliable. This

more complete list of CCGs may enable new insights into plant

physiology.

Phase Differences as Small as Half an Hour can Result in
Significantly Different Levels of Gene Expression

The phase difference between Col and rve8-1 after four days in

free-run is around four hours [17], which had a strong effect on

differential expression analysis despite limited changes in overall

gene expression levels (Figs. 1 and 4). To further investigate

potential effects of phase on determination of differential

expression, we used publicly available microarray datasets to

compare gene expression in Col vegetative shoots harvested at 30-

minute intervals [29]. In this experiment, plants were grown in

light/dark cycles and time 0 was defined as three hours after lights

on, which corresponds to circadian time 3 (CT3). We examined

gene expression levels in Col sampled at times 0, 0.5 and 1 hours.

Comparing the 0 and 0.5 hour (CT3 and CT3.5) samples, 790

genes are differentially expressed according to our criteria

(adjusted p value , 0.05, with analysis carried out using limma).

Of these, 483 are classified as clock-controlled in our meta data set

described above (,61%), much more than the ,1/3 expected by

chance (Fig. 7A and Table 3). We also found a greater fraction of

CCGs than expected when we compared the 0.5 hour and 1 hour

(CT3.5 and CT4) time points (,50% of the 1859 differentially-

expressed genes are clock regulated) (Fig. S4A and Table 3). In

both gene lists, CCGs are significantly overrepresented (p , 2.2 e-

16; Table 3).

If these CCGs are classified as differentially expressed solely due

to a phase difference between the times the plants were harvested,

we would predict that the up-regulated genes would be enriched

for a certain range of phases while the down-regulated genes

would be enriched for the opposite/complementary phases. In

Figure 3. Comparison of transcriptional profiles after compensation for the phase difference. (A) Diagram shows the time points
compared to each other using limma either without phase adjustment (upper panel) or with phase adjustment (lower panel). After compensating for
the phase difference, Col_72 is compared to rve8_76, and so on. (B–D) New time course data alignments of genes previously classified as the most
significantly differentially expressed after adjusting for the phase difference. The time shown on the x-axes is that of the Col samples.
doi:10.1371/journal.pone.0049853.g003
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accordance with this prediction, genes with peak circadian

expression 4 to 8 hours after dawn (CT4 – CT8) are

overrepresented and oppositely phased genes are underrepresent-

ed amongst the genes that are up-regulated in our ‘‘0.5 vs 0 hour’’

comparison (Fig. 7C). Thus clock-regulated genes with peak

expression during the day (CT4–CT8) have higher expression

Figure 4. Genes differentially expressed between Col and rve8-1 after phase adjustment. (A-K) Genes with overall differences in
expression levels in rve8-1, graphed with the phase adjustment described in the main text. The time shown on the x-axes is that of the Col samples
(72 and 96 hours corresponds to subjective dawn). These 11 genes (along with At1g53480 and RVE8 shown in Fig. 3B and 3D) are the only ones
identified as misexpressed in rve8-1. (L) Two out of the 13 differential expressed genes (DE) are classified as clock-controlled genes (CCGs) in both Col
and rve8-1 (At4g29610 in Fig. 4J, and At5g47240 in Fig. 4K). Note that At5g20740, At1g52040, and At3g09600 (RVE8, Fig. 3D) which cycle in Col but not
in rve8-1 (G, H), are not classified as CCGs in Fig. 4L.
doi:10.1371/journal.pone.0049853.g004

Table 1. Annotations for the genes with differential expression levels in rve8-1 after correction for circadian phase.

AGI Short description

At1g53480 unknown protein

At5g11330 monooxygenase family protein

At3g09600 myb family transcription factor (RVE8)

At3g09580 amine oxidase family protein

At3g09590 pathogenesis-related protein, putative

At3g30720 QQS (QUA-QUINE STARCH)

At3g42658 transposable element gene

At1g14250 nucleoside phosphatase family protein / GDA1/CD39 family protein

At5g20740 invertase/pectin methylesterase inhibitor family protein

At1g52040 MBP1 (MYROSINASE-BINDING PROTEIN 1); protein binding

At1g52400 BGLU18 (BETA GLUCOSIDASE 18); catalytic/ cation binding / hydrolase, hydrolyzing O-glycosyl compounds

At4g29610 cytidine deaminase, putative / cytidine aminohydrolase, putative

At5g47240 atnudt8 (Arabidopsis thaliana Nudix hydrolase homolog 8); hydrolase

doi:10.1371/journal.pone.0049853.t001
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levels in the samples collected slightly later in the day (0.5 hr, or

CT3.5) than those collected at 0 hr (CT3), because these genes are

approaching their peak levels. Also as predicted, the phase

distribution of the down-regulated genes shows the opposite

pattern as the up-regulated genes: the down-regulated genes are

enriched for those with peak expression between CT14–20 and

deficient for genes with peak expression between CT2–10

(Fig. 7D). Thus clock-regulated genes with peak expression during

the night have higher expression levels in the samples collected

earlier in the day (0 hr, or CT3), consistent with the differential

expression being due to a phase difference. Similar patterns were

observed when comparing the 1 and 0.5 hour time points, but with

slightly shifted enriched phase distributions (Fig. S4C–D). This

slight shift in the enriched phase is expected as genes peaking at

times close to the new time points being examined will be affected

more strongly, indicating time of sampling is also critical for phase

effect. Also consistent with the differential expression of CCGs

being due to a phase difference, these differentially expressed

genes have on average higher amplitude circadian expression than

do all CCGs in the genome (Fig. 7B and Fig. S4B). In conclusion,

Figure 5. Comparison between lists of clock-regulated genes identified using separate algorithms. (A) A weighted Venn diagram
comparing clock-controlled genes (CCGs) identified using COSOPT and JTK_CYCLE from our Col data. (B-C) Comparing the CCG lists generated from
our Col data using either COSOPT or JTK_CYCLE, including only genes also represented on the ATH1 array, with the list of CCGs generated by
Covington et al. [2]. Covington’s CCG list was generated using COSOPT to analyze a meta time course dataset, which combined two independent
circadian time course experiments performed using the ATH1 microarray platform.
doi:10.1371/journal.pone.0049853.g005

Table 2. Summary of the Agronomics1 array data generated in this study.

Transcripts represented on
Agronomics1 array

Transcripts also represented on
ATH1 array

Transcript number 30237 22591

Expressed transcripts 19961 16341

CCGs identified by COSOPT1 7021 6169

CCGs identified by JTK1 6608 5840

CCGs identified by both COSOPT and JTK_CYCLE1 5836 5137

CCG percentage (%)2 29.2 31.4

1CCGs identified using the meta time course data.
2CCG percentage based on the genes identified by both COSOPT and JTK_CYCLE.
doi:10.1371/journal.pone.0049853.t002
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these results demonstrate that even very small differences in

circadian phase (30 minutes in this example) can cause significant

differences in expression in large numbers of genes, especially

those with high circadian amplitudes.

Discussion

The Role of RVE8 in the Central Clock in Arabidopsis
Previous studies have shown that RVE8 affects the phase of

both central clock genes (CCA1, LHY, and TOC1) and output genes

(CCR2) in both loss-of-function T-DNA mutants and in overex-

pression lines [17,25]. Since the light input pathway was not

appreciably altered in these genotypes [17], these data suggested

RVE8 functions close to the central oscillator in Arabidopsis. By

determining the transcriptional profiles of Col and rve8-1 in the

current study, we have found that as expected given the one hour

long period phenotype of rve8 mutants, all of the central clock

components and output genes display an approximately four-hour

delay in rve8-1 after four days in free-run (Fig. 1 and Fig. 2). This

further supports the hypothesis that RVE8 plays a role in the

central clock in Arabidopsis.

After adjusting for the phase difference between these two time

courses, we identified very few genes with altered expression levels

or patterns in the rve8-1 mutant (Fig. 3 and Fig. 4). Among the 13

genes that do show defects in gene expression not accounted for by

phase, we identified four evening-phased CCGs (At5g20740,

At1g52040, At4g29610, and At5g47240) (Fig. 4G–H and 4J–K).

All four genes have reduced expression levels in rve8-1, while two

of them also lose the rhythmic pattern. RVE8 has been shown to

bind the EE in vitro and in vivo, and has peak protein levels in the

subjective afternoon [17]. Intriguingly, one or more EE-like

sequences (AAATATCT or AAAAATCT) are found within

1500 bp upstream of the transcriptional start sites of all four of

these genes (Figure S5), suggesting they might be direct targets of

RVE8. The reduced levels of these four evening-phased genes in

rve8-1 supports the idea that RVE8 promotes evening gene

expression, perhaps via modulation of histone 3 (H3) acetylation

[25].

Given the clear circadian phenotype in rve8-1 after four days in

free-run, it was surprising that only a few genes show overall

changes in expression levels. One explanation for this might be

partial genetic redundancy within the RVE/CCA1/LHY gene

Figure 6. Comparison of circadian-regulated gene lists generated using meta time course data. Col and rve8-1 time courses were
combined (in the order Col_76…Col_116, rve8_76, rve8_80, …, rve8_116, rve8_72) to create a meta time course data set spanning four days. Clock-
controlled genes (CCGs) were identified either using COSOPT or JTK_CYCLE. (A) A weighted Venn diagram comparing CCGs in the meta time course
data identified using either COSOPT or JTK_CYCLE. (B) Comparison of CCGs identified using COSOPT to analyze the combined Col and rve8-1 meta
data set with CCGs identified in a previous study done using ATH1 arrays [2]; only genes also represented on ATH1 arrays were considered. (C)
Comparison of CCGs identified using JTK_CYCLE to analyze the combined Col and rve8-1 meta data set with CCGs identified in a previous study done
on ATH1 arrays [2]; only genes also represented on ATH1 arrays were considered. (D) Comparison of CCGs identified by both COSOPT and JTK_CYCLE
with CCGs identified in a previous study done on ATH1 arrays [2]; only genes also represented on ATH1 arrays were considered.
doi:10.1371/journal.pone.0049853.g006
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family. There are 11 members in this family in Arabidopsis, each

containing a signature single MYB-like domain followed by a

proline-rich region. The closest homologs to RVE8 are RVE3,

RVE4, RVE5, and RVE6, of which all but RVE3 have also been

reported to associate with EE motifs [17]. Another possible

explanation could be that RVE8 acts in the afternoon to promote

evening-phased gene expression, affecting the timing of onset of

transcript accumulation, but does not appreciably influence peak

or trough transcript levels. According to this model, the rve8-1 long

period phenotype might be due to a delay in accumulation of

evening-phased clock genes rather than to overall changes in their

expression levels. Important future directions will be to examine

the expression levels of evening genes in plants mutant for multiple

RVE genes and to investigate the role of RVE8 on the precise

timing of clock gene expression.

Identification of Circadian-regulated Genes
A number of time course microarray experiments on Arabi-

dopsis have been conducted to identify circadian-regulated genes

[3,4,22,30,31]. However, only a low percentage of genes (32–37%)

were found to overlap between clock-regulated gene lists generated

using separate datasets [2]. This could be due to insufficient

Figure 7. Small differences in circadian phase have profound effects on differential expression analysis. Differential expression analysis
using a publicly available dataset of Col harvested at time 0 (corresponding to circadian time 3, i.e., 3 hours after dawn, herein defined as ‘‘0 hr’’) and
30 minutes later (herein defined as ‘‘0.5 hr’’) [29]. (A) A weighted Venn diagram presenting the proportion of clock-controlled genes (CCGs) among
genes found to be differentially expressed between the 0 and 0.5 hour samples (DE[0.5 hr-0 hr]). (B) A box plot comparing the circadian amplitudes
of the differentially expressed CCGs (DE.cyc[0.5 h-0 hr]) and those of all CCGs. The differentially expressed CCGs have on average significantly higher
circadian amplitudes (p , 2.2e-16, Wilcox test). (C–D) The phase distributions of the CCGs classified as ‘‘up-regulated’’ or ‘‘down-regulated’’ between
0.5 and 0 hours are plotted alongside the observed phase distribution of all identified CCGs (expected).
doi:10.1371/journal.pone.0049853.g007

Table 3. Summary of differential expression analysis in the
Col short sampling interval datasets.

Comparison DE1 CCGs2 CCG%3
Median
amplitude4

0.5 hr - 0 hr 790 483 *** 61.1 0.2934 ***

1 hr - 0.5 hr 1859 930 *** 50.0 0.2482 ***

1Differentially expressed in the indicated comparison and passing the
expression filter in our Agronomics1 tiling array experiment;
2clock-controlled genes identified in the meta time course set by both COSOPT
and JTK_CYCLE;
3the percentage of CCG in DE list;
4Amplitudes were determined using JTK_CYCLE.
Clock-controlled genes (CCGs) are overrepresented among the genes
differentially expressed in samples harvested at 30 minute intervals (Fisher’s
exact test on both sets, p , 2.2e-16, ***) when compared to the approximately
1/3 of CCGs in the genome. These differentially expressed cycling genes also
have significantly higher circadian amplitudes (Wilcox’s test on both sets, p ,

2.2e-16, ***) than all CCGs in the genome (median amplitude for all
CCGs = 0.2001).
doi:10.1371/journal.pone.0049853.t003
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statistical power given the low sampling resolution (four hour

intervals), small number of replicates, and short time courses (two

days) in these experiments [2,28]. By combining two independent

microarray datasets followed by detection of rhythmic expression,

Covington et al. found a higher number of cycling genes (3975

genes) that captured 79–87% of the clock-regulated transcripts

identified in individual datasets [2]. These results demonstrate that

the use of meta-data allows the more reliable identification of

cycling genes and significantly increases the agreement between

different data sets.

Given the close similarity between our wild-type and rve8-1

datasets, we used the approach previously described by Covington

et al. [2] and integrated these two independent datasets before

identification of CCGs. We found that 6608 out of 19961

expressed genes (33%) are classified as CCGs using JTK_CYCLE

and a similar number of cycling genes (7021, 35%) are identified

using a second method, COSOPT. This ratio of cycling genes is

similar to the 36% of the expressed genes identified as CCGs by

Covington et al. [2]. Notably, 5835 genes were found in common

between the CCGs identified by either COSOPT or

JTK_CYCLE. Furthermore, when we restricted our CCG list to

the intersection of CCGs identified by both methods, our gene list

still contains 68% of the genes identified in the Covington’s study.

This is remarkably good agreement considering this previous study

used a different microarray platform and identified CCGs using

only COSOPT. Indeed, the agreement between our CCG list and

that of Covington et al. is greater than that previously found when

comparing independent circadian microarray studies [2].

In addition to reliably identifying genes previously designated as

CCGs, we also identified 3133 CCGs not included in the

Covington et al. list. 699 of these are not represented on ATH1

arrays; the remaining 2434 may have been identified as CCGs in

our but not previous experiments because Agronomics1 tiling

arrays are reported to yield more reliable expression levels than

ATH1 arrays [23]. In contrast, Covington’s list contains 1135

CCGs that are not identified in our data sets. This may in part be

due to differences in sampling times, as Covington’s list was

generated from two time courses collected on the 2nd and 3rd day

in free-run while our samples were harvested on the 4th and 5th

day in free-run, at which point some less robust circadian rhythms

may have damped. Despite this, our analysis has generated a more

complete cycling list that includes a number of previously missed,

well-documented, clock-regulated genes as well as novel clock-

regulated genes. This more complete gene list will provide a useful

reference for future study, especially for analysis of genes not

represented on the ATH1 array.

Even Small Differences in Circadian Phase have Strong
Effects on Gene Expression

We have demonstrated that without taking phase into account,

1557 genes are identified as differentially expressed between Col

and rve8-1, although follow-up analysis revealed that very few

genes showed alterations in overall expression levels or patterns

between these genotypes. Remarkably, we also found that even a

30-minute difference in phase (just 2.1% of a 24 hour period)

results in the statistically significant misexpression of hundreds of

genes. Most of these differentially expressed genes (50–61%) are

CCGs (Fig. 7A and S4A, and Table 3), underscoring the

importance of the circadian clock in genome-wide regulation of

transcription. However, the effect of circadian phase on the

observed differential expression could still be underestimated.

Hughes et al. compared the numbers of CCGs identified using

samples collected at 1-, 2-, 3-, or 4-hour intervals over two days

[28]. They found that many fewer clock-regulated transcripts were

identified using samples collected at 4-hour intervals, as done in

our and most other circadian studies, than in the other sampling

regimes. In addition, genes with ultradian rhythms (periods of 8 or

12 hours) could only be detected when samples were collected at

intervals of less than 4 hours [28]. Therefore even more of the

genes identified as differentially expressed in these samples may be

clock-regulated than we estimate. Furthermore, other biological

periodic rhythms may contribute to phase differences between

samples. For example, 416 genes (out of 6220 genes in the

genome) in Saccharomyces cerevisiae and approximately 700 genes in

human cells grown in tissue culture have been reported to show

cell-cycle-associated rhythms [32,33].

Our study provides a cautionary note for all biologists: one

should meticulously take the ‘‘time’’ into account when designing

experiments, always harvesting control samples at the same time

(more precisely, at the same phase) since differences as small as 30

minutes in time of sampling can have profound effects on

experimental results. For large experiments that require a lengthy

sample collection times, randomization of genotypes and replicates

will help minimize the profound effects of phase on expression

levels. We further suggest that investigators determine if CCGs are

overrepresented amongst their differentially expressed genes; if so,

this might be a sign that the differential expression is at least

partially due to phase differences between the samples. Finally,

while our current study has focused on transcriptional regulation,

the circadian phase difference that we observed would likely also

affect other physiological processes such as metabolic events,

suggesting it is important to take time of day into account when

designing all types of large-scale experiments.

Materials and Methods

Plant Material, RNA Processing and Array Hybridization
Seeds of rve8-1 [17] and Col-0 (originally obtained from Lehle

Seeds) were sterilized, plated on Murashige and Skoog (MS) agar

media containing 3% sucrose, and stratified at 4uC in the dark for

two days. Seedlings were then grown under 12 hours light (50–

60 mmol m22s21 white fluorescent light):12 hours dark conditions

at 22uC for 7 days before being released into constant white light.

Samples (,50 plants per samples) were collected every four hours

on the 4th and 5th days in free-run, immediately frozen in liquid

nitrogen, and then stored at –80uC until being processed. Total

RNA was prepared with TRIzol reagent (Invitrogen), treated with

RNase-free DNase I (Qiagen), and further purified using the

RNeasy MinElute Cleanup Kit (Qiagen). The quality of the

isolated RNA was determined by NanoDrop ND 1000 (NanoDrop

Technologies) and Bioanalyzer 2100 (Agilent). Samples with a

260 nm: 280 nm ratio and a 260 nm: 230 nm ratio between 2 and

2.3, and an RIN (RNA integrity number) value greater than 8

were processed further. Biotin-labeled cRNA was prepared using

the GeneChip 39 IVT Express kit (Affymetrix) and hybridized

onto Affymetrix AGRONOMICS1 Arabidopsis tiling arrays as

previously described [23].

Agronomics1 Array Data Analysis
Analysis was performed using an open source software under

the Bioconductor [34] project with the statistical programming

language R version 2.13 [35]. The poorly performing probes (since

probes on the tiling array are restricted to fixed windows along the

chromosome, the sequences of 25mer oligonucleotides may not

have optimal hybridization properties) were dynamically masked

during the analysis using the scripts provided by Rehrauer et al.

[23] and were excluded from probe set summaries. Background

correction, normalization, and summarization of probe sets were
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based on the Agronomics1 ‘‘all genes’’ CDF files with TAIR.9

annotation [23] and Robust Multichip Averaging (RMA) [36]

implemented in the Aroma.Affymetrix package [37]. After this

low-level analysis, genes with at least four time points showing

expression levels greater than log24.5 in either the Col or the rve8-1

time course were considered to be expressed, and were used for

the downstream analysis. Differential analysis was performed using

the limma (Linear models for microarray data) package [24]:

briefly, the 5th day data were treated as replicates of the 4th day

data in each genotype. Accordingly, six time points with two

replicates in Col and rve8-1 were included in the linear model, and

then empirical Bayes statistics were applied to determine the

differential expression between the comparisons. An adjusted p

value of less than 0.05 was used as a significance threshold. A heat

map of the hierarchical clustering of the differentially expressed

genes was created using the heatmap.2 function implemented in

gplots package [38]. For comparing gene lists, weighted Venn

diagrams were created using the Vennerable package [39]. For

determining the significance of the relative proportions of clock-

controlled genes in the differentially expressed gene lists in a given

comparison and in the whole transcriptome, Fisher’s exact test was

performed using the fisher.test function in R.

The raw data and normalized results have been deposited in the

Gene Expression Omnibus database (GEO) (http://www.ncbi.

nlm.nih.gov/geo) with accession number GSE37278.

qRT-PCR
RNA was isolated using TRIzol (Invitrogen) and was treated

with DNase I (Qiagen). cDNA was synthesized using Super-

Scriptase II (Invitrogen) following the manufacturer’s protocol.

qRT-PCR was performed as previously described [40]. Three

technical triplicates for each sample were run using an iQ5 Real

Time PCR machine (Bio-Rad), and starting quantity was

estimated from critical thresholds using the standard curve

method. Data were normalized to the respective PROTEIN

PHOSPHATASE 2A (PP2A) expression levels in each sample. The

primer sets for each transcript are listed in Table S3.

Identification of Cycling Genes Using JTK_CYCLE and
COSOPT

The Col and rve8-1 two-day time course data were first analyzed

separately using JTK_CYCLE to identify clock-controlled genes in

each genotype. Genes with a period ranging from 20 to 28 hours

and an adjusted p value less than 0.05 are considered cycling. In

order to obtain more statistical power for the identification of

clock-regulated genes, the Col and rve8-1 time courses were

combined (in the order Col CT_72, 76, …116, followed by

rve8_76, 80, … 116, 72) to create a four-day meta time course, and

circadian-regulated genes were identified using two independent

cycling-detecting algorithms, JTK_CYCLE and COSOPT. In

both cases, we required the estimated circadian period to be

between 20–28 hours. Based on previous studies [26,27] and our

empirical tests, the significance thresholds for identification of

clock-regulated genes were set to an adjusted p-value , 0.05 for

JTK_CYCLE and a pMMC-b , 0.05 for COSOPT. For genes

with estimated periods other than 24 hours, phase was adjusted

according to the ratio of its period to 24 hours.

Analysis of AtGenExpress Data
The raw data from AtGenExpress ME00325 [29] was

normalized using RMA [36] before differential expression analysis

was carried out using limma [24]. All time points (0, 0.5, 1, 3, 6,

12, and 24 hrs) of the Col shoot control samples were included in

the linear model. The contrasts comparing ‘‘0.5 and 0 hrs’’ and ‘‘1

and 0.5 hrs’’ were then made. Genes with differential expression

given a statistical threshold of an adjusted p-value , 0.05 for

either comparison were separated into up- and down-regulated

genes. The Wilcox test was performed to examine if the circadian

amplitudes of differentially expressed CCGs and those of all CCGs

are significantly different. The phase distributions of these up- and

down-regulated CCGs were plotted in comparison to those of all

CCGs to determine if any particular phase was overrepresented or

underrepresented. Amplitudes and phases were determined by

JTK_CYCLE using the meta time course data as described above.

Supporting Information

Figure S1 A weighted Venn diagram indicating the overlap

between the CCG lists identified from the separate Col and rve8-1

datasets using JTK_CYCLE. The overlap is 44 and 49% of each

data set. This level of agreement compares favorably to the one

third overlap observed between two similar, independent data sets

generated in Col [2], implying that the circadian rhythms in

transcript levels between these two genotypes are unlikely to be

significantly different.

(PDF)

Figure S2 Box plots presenting amplitudes of genes classified as

clock-regulated in Col either by COSOPT alone (A) or

JTK_CYCLE alone (B) and those of genes identified by both

algorithms (JTK/COSOPT overlap). Genes only identified as

cycling by one method have significantly lower amplitudes than

those identified by both methods. The lower amplitudes indicate

those genes are cycling less robustly and might explain why they

are only found using one or the other method. The amplitudes are

significantly different with p , 2.2e-16 (significance determined

using Wilcox test).

(PDF)

Figure S3 A weighted Venn diagram presenting the overlap

between CCGs identified in the meta time course data with all the

transcripts present on Agronomics1 tiling array and the CCGs

identified by Covington et al. [2] using the ATH1 array.

(PDF)

Figure S4 A thirty minute difference in circadian phase has

profound effects on differential expression analysis. Differential

expression analysis using a publicly available dataset of Col plants

harvested at time 0.5 (corresponding to circadian time 3.5, herein

defined ‘‘0.5 hr’’) and 30 minutes later (herein defined ‘‘1 hr’’)

[29]. (A) A weighted Venn diagram presenting the proportion of

clock-controlled genes (CCGs) among genes differentially ex-

pressed between the 1 and 0.5 hour samples (DE[1 hr - 0.5 hr]).

(B) A box plot comparing the amplitudes of the differentially

expressed CCGs (DE.cyc[1 h - 0.5 hr]) and those of all CCGs.

The differentially expressed CCGs have on average significantly

higher amplitude than all CCGs (p , 2.2e-16, Wilcox test). (C–D)

The phase distributions of the CCGs classified as ‘‘up-regulated’’

or ‘‘down-regulated’’ between 1 and 0.5 hours are plotted

alongside the observed phase distribution of all known CCGs

(expected).

(PDF)

Figure S5 The promoters of the four evening-phased genes that

are differentially expressed in rve8-1 contain one or more EE

(AAATATCT) or EE-like (AAAAATCT) sequences. The graph

shown is the output of the SCOPE motif finder (http://genie.

dartmouth.edu/scope/) [41].

(PDF)
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Table S1 The circadian analysis by COSOPT. Agronomics1

microarray expression data for individual genes, normalized using

RMA, and circadian parameters as determined using COSOPT.

Phase indicates time of (day) peak expression, Beta indicates

rhythmic amplitude, and pMMC.Beta indicates the agreement of

the time series data with a cosine wave; the lower the pMMC.Beta

value, the better the fit of the data to the best-matching cosine

wave model tested. For our analyses, genes were defined as

‘expressed’ if more than four time points have expression levels

higher than log2 (4.5). Genes with an pMMC.Beta value less than

0.05 were classified as circadian-regulated.

(CSV)

Table S2 The circadian analysis by JTK_CYCLE. Agronomics1

microarray expression data for individual genes, normalized using

RMA, and circadian parameters as determined using

JTK_CYCLE. PHASE indicates time of (day) peak expression,

AMP indicates rhythmic amplitude, and ADJ.P (adjusted p value)

indicates the agreement of the time series data with a cosine wave;

the lower the ADJ.P value, the better the fit of the data to the best-

matching cosine wave model tested. For our analyses, genes were

defined as ‘expressed’ if they have at least four time points of

expression levels greater than log2(4.5). Genes with an ADJ.P value

less than 0.05 were classified as circadian-regulated.

(CSV)

Table S3 Primer sequences used in this study.

(XLS)
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