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Abstract
We conducted inter-cellular cytokine correlation and network analysis based upon a stochastic
population dynamics model that comprises five cell types and fifteen signaling molecules inter-
connected through a large number of cell-cell communication pathways. We observed that the
signaling molecules are tightly correlated even at very early stages (e.g. the first month) of human
glioma, but such correlation rapidly diminishes when tumor grows to a size that can be clinically
detected. Further analysis suggests that paracrine is shown to be the dominant force during tumor
initiation and priming, while autocrine supersedes it and supports a robust tumor expansion. In
correspondence, the cytokine correlation network evolves through an increasing to decreasing
complexity. This study indicates a possible mechanistic transition from the microenvironment-
controlled, paracrine-based regulatory mechanism to self-sustained rapid progression to fetal
malignancy. It also reveals key nodes that are responsible for such transition and can be
potentially harnessed for the design of new anti-cancer therapies.

It has been increasingly recognized that tumor cells do not develop in isolation, but actively
interact and co-evolve with stromal cells via a complex inter-cellular signaling network. For
example, glioblastoma multiforme (GBM) (1), the most malignant human brain tumor,
consists of a highly heterogeneous mixture of cell types including activated astrocytes and
microglia. These cells play a crucial role in tumor initiation, progression and invasion (2).
They interact with glioma and glioma stem cells through either direct cell-cell contact or
soluble protein-mediated signaling pathways. Neglecting the inter-cellular interaction
network in tumor microenvironment is inappropriate for comprehensive understanding of
tumor development and implicated in the failure of many anti-cancer therapies. A systems
biology approach is highly desired to investigate complex tumor microenvironment and
recapitulate in vivo dynamical evolution of a tumor. Towards this goal, several approaches
have been proposed to model tumor development (3–7), and these mathematical models
have significantly advanced our understanding of tumor microenvironment (8, 9). Discrete
dynamical systems are employed to describe cell proliferation, differentiation and death (10,
11). Continuous, agent based and hybrid tissue level models have been developed in attempt
to assess selected aspects of tumorigenesis such as tumor heterogeneity, selective pressure
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imposed by physical/chemical conditions of extracellular matrix, phenotypic change
triggered by intracellular gene-protein interaction, and growth dynamics (12–19).
Probabilistic models are used to examine the mechanism of mutation-driven tumorigenesis
(20–23). Although a variety of mathematical modeling strategies have been reported,
population dynamics modeling using a set of differential equation best suits the study of
tumor development and progression. Ordinary differential equation (ODE) models have
been formulated to analyze dynamical evolution of human tumors, such as prostate cancer
development with anti-androgen therapy in an intermittent manner (24), stability and
bifurcation analysis in tumor gene regulatory network (25), feedback loops in stem cell
driven carcinogenesis (14, 26), p53 bistability dynamics (27), Myc-p53 regulation system of
cell proliferation and differentiation (28), fitness and selection in a history formulation (29),
multistep mutation transformation to cancer (30), and cell cycle transition in cancer cells
(31). Partial differential equation (PDE) models have also been well established to study
problems involving multiple variables, like spatial dimensions, and thus represent a
favorable method to investigate metastatic invasion (32–34), tumor angiogenesis (35), and
the dynamics of intra-tumoral convection or diffusion (36, 37). Differential equation-based
approaches are also capable of modeling the co-evolution of tumor cell and
microenvironment (38–40). For example, tumor-fibroblast crosstalk via two signaling
proteins TGF-β and EGF was studied using a partial differential equation model and the
result was found to be good agreement with in vitro tumor model created on a semi-
permeable membrane (41, 42).

While most studies concern only a few selected signaling pathways in a tumor, we have
developed the first model to study the co-evolution of tumor and stromal cells at a large
scale and the systems level (43). Herein, based upon this model, we conducted the analysis
of cytokine correlation and inter-cellular signaling network in human glioblastoma to assess
the collective role of cytokine network in regulating tumor - tumor microenvironment
interactions. This model comprises five types of cells, fifteen signaling proteins and 69
signaling pathways (Fig. 1). The in silico results, which are entirely derived from the
stochastic simulations without fitting to the experimental data, reflect many emerging
patterns and observations that are consistent with human glioma development. Most
importantly, we observed the change of cytokine correlation that reveals a rapid transition
from the microenvironment-controlled, paracrine-based regulatory mechanism to self-
sustained, autocrine-dominant progression to malignant states. We detail the findings and
merits of such findings in the following.

Results
Construction of a cell-cell communication network in human glioma microenvironment

The population dynamics model of glioblastoma microenvironment has been described
previously (43). To help understand the further analysis of inter-cellular cytokine network
and the approach toward the discovery of new biological insights, here we briefly re-
describe the basic principles and governing equations of this model. The model integrates
population dynamics and Hill functions to describe soluble protein-mediated inter-cellular
signaling network in tumor microenvironment. This was realized using a coupled stochastic
population dynamics model. The evolution of signaling network is interpreted by population
dynamics, so the concentration of cells/signaling molecules are controlled by a set of
stochastic ordinary differential equations. The details of all ODEs we constructed, their
biological implication, and the references from which input values were derived are
summarized in full detail in Supporting Information. The general mathematic representation
is

Wu et al. Page 2

Integr Biol (Camb). Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

(2)

where

(3)
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is the angiogenesis factor (Supporting Fig. S1(a)). Monte Carlo simulations of one year
evolution under such parameter settings show that glioma cells evolve through three distinct
phases, the pre-tumor phase (1–5 months), the rapid expansion phase (6–10 months), and the
malignancy phase (11–12 months) (Fig. 2(a)). The three-phase dynamics is demonstrated by
our model and consistent with glioblastoma development observed in animal models (44).
The longest period is the pre-tumor phase, which is the stage of accumulate genetic and
microenvironmental prerequisites to initiate neoplastic transformation. In the context of
human glioma, if a tumor microenvironment imposes an evolutionary selection towards
astrocytes, the neoplastic process may be halted or even reversed by the increasing apoptotic
rates of abnormal/neoplastic cells. The abnormal/neoplastic cells that have survived in the
pre-tumor phase gradually gain fitness advantage over astrocytes, and further progress to
rapid expansion phase mathematically characterized by a typical exponential growth mode.
The tumor cells increase in frequency over time and eventually become the most abundant
population. However, the crowded tumor cells compete for resource and, if confined in a
given volume, will approach an equilibrium state with a large mass of tumor, which is
defined as the malignancy phase.

Since the tumor cells and microenvironment co-evolve in a gradual and continuous manner,
there is no distinct boundary between adjacent phases. In this study, we use the following
rules to calculate the length of three phases and the results are rounded to the nearest month.
First, the boundary between pre-tumor phase and expansion phase is the time point when the
tumor cell proliferation enters the typical exponential growth mode and achieve a moderate
density, but still below the theoretical detection limit of MRI (10 labeled cells per 100 µm3

volume (45)) and enhanced CT (40,000 cells/cm2 (46)). Second, the boundary between
expansion phase and malignancy phase is the time point where tumor cells deviate from the
exponential growth trajectory. Afterwards, tumor cells enter a saturated logistic growth
mode and the tumor cell population is close to 95% of equilibrium.

Population dynamics of cells and cytokines in glioma microenvironment
Among the five types of cells included in the modeling, glioma, microglia and ASC all show
population increase, whereas astrocyte and QSC present a continuous depletion of
population (Fig. 2). Glioma has the most drastic sigmoid-shaped growth among all (Fig.
2(a)). Microglia shows comparatively marked increment, reflecting an active role in the
development of GBM (Fig. 2(b)). QSC upon stimulation undergoes a reversible process to
be activated into ASC conferring self-renewal capability. Under the initial conditions of the
model, it favors activation direction, thus QSC continuously decreases in sizes (Fig. 2(d)) to
give rise to ASC (Fig. 2(e)). To reveal the underlying cell fate and the switch of tumor
phases, we also use “fitness” to represent per capital growth rate:

(4)

Glioma, microglia and ASC all show positive fitness, with Glioma maintaining the highest
order of fitness (Fig 2(a, b, and e)). Tightly following the initial expansion phase of tumor,
all three cells have sharp peaks in fitness. The decline of fitness curves at the end of sixth
month is due to the density-dependent effect as the population approaching the carrying
capacity. As the cells compete for nutrition, the ones acquire relatively high fitness gain
superiority at the price of others, thus QSC and astrocyte score negative fitness values,
accompanying the continuously decreasing population (Fig. 2(c and d)). Though being
infiltrated by tumor cells, astrocytes strive for keeping abundance until their throne is
usurped by glioma due to accumulated tumorigenic agents (Fig. 2(c)).
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Autocrine to paracrine transition in tumor development
Glioma cells do not develop in isolation, but co-evolve with stromal cells in tumor
microenvironment mediated by autocrine/paracrine signaling network. A specific
intercellular signaling could be either autocrine or paracrine depending on their secretion
source. To reflect the effect of autocrine and paracrine, we define “autocrine to fitness
index” (Eq. 4) and “angiogenesis factor (Eq. 3) with the autocrine indices” as follows:

(5)

(6)

We define “paracrine index” Pi (t*, Δt) and the “total intercellular signaling index” Ti (t*, Δt)
similarly. The one year simulation of fitness of

 are shown in Supporting Figs. S1(b–
d). Paracrine contributes to the major part of glioma fitness and angiogenesis in the pre-
tumor phase. However, it is gradually substituted by autocrine since the expansion phase.
The breakdown of the driving force facilitates examining the contributions of all the
paracrine/autocrine loops associated with tumor development, therefore we calculate the
“proportion of autocrine” by the following definition

(7)

We show the proportional contribution of autocrine and paracrine in Figure 3. The results
surprisingly suggest a rapid but smooth transition from paracrine-driven to autocrine-driven
tumor progression. Glioma is initiated and primed in a paracrine condition, thus in the pre-
tumor and early expansion stage, its fitness is significantly dependent on the
microenvironment. However, once the paracrine-triggered tumor progression enters mid-
expansion phase, the accumulated autocrine signaling replaces paracrine and the tumor
progression will be resistant to interventions from the microenvironment.

It is of interest to investigate how paracrine loops are established and promotes
tumorigenesis. We further breakdown the paracrine driving force and classified them
according to their source cell type. The results shown in Supporting Figure S2 demonstrate
heterogeneity in paracrine contributors. For example, microglia and astrocyte are the major
paracrine donors of glioma fitness at the very beginning. However, their effects turn
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negative at the end of the sixth month, while the ASC starts to make positive paracrine
contribution to glioma fitness. The heterogeneity stems from the fact that autocrine and
paracrine do not evolve in isolation, but actually nonlinearly coupled via feedback loops in
the complex cell-cell communication network (Fig. 1). This observation suggests that the
microenvironment-specific anti-cancer therapy is likely to hit a moving target, and its
success requires a careful study of evolution of the intercellular molecular network due to
such intervention.

Cytokine correlation map reveals active cell-cell communication and also exhibits an
abrupt transition

Signaling molecules are interwoven into complex networks. They work in concert to achieve
intercellular communication and regulate cell behaviors. To assess the heterogeneous
behavior of signaling molecules and the association with tumor development, we design a
correlation matrix analysis – at a given time, the concentration of the signaling molecule, x,
is perturbed by ±Δx; the resulting concentration change of another signaling molecule, y,
after 72 hours is Δy+ and Δy−, corresponding to perturbing +Δx and −Δx, respectively. The
correlation factor cx→y is defined as

(8)

where a= Δx/x.

The influence of a signaling molecule on the other is quantitatively defined by a correlation
factor. Experiments over all these signaling molecules yield a heat map of correlations, also
called the correlation matrix (Fig. 4). Each row of the matrix represents the responses of all
signaling molecules including itself upon a signal perturbation experiment, at a given
simulation time. The snap-shot heat-map results indicate these signals are indeed interlinked
and the perturbation of one may significantly influence the production of the other signaling
molecules, presumably via cells as the nodes. More importantly, the time course of signaling
correlation network (Supporting Fig. S3) exhibits a striking dynamic behavior that cannot be
easily revealed by the collective behavior shown in Fig. 3. Substantial correlations between
a number of signaling molecules emerge at a very early stage (month 1) and become much
greater during the period of rapid glioma expansion (month 6), but quickly diminish when
the tumor reaches a steady state (month 7–12). Also the correlation pattern changes
drastically along the course of tumor development (Supporting Fig. S4). For example, many
factors (such as SCF) negatively regulate TGF-β, EGF and VEGF in the first month, but
turns to positively modulate these signaling molecules in the sixth month when glioma cells
reach the rapid expansion stage. On the other hand, MCP1, which appears independent of
any other signaling molecules in the early and mid stages, is the only cytokine that remains
actively interacting with other signaling molecules in the late stage. Such striking pattern
switch implies that therapeutic intervention that targets cytokine signaling need to be
executed at the early or mid stages when they are inter-linked, whereas such treatment at a
slightly late stage may not show efficacy due to the diminishment of cytokine regulatory
network. We further analyzed the evolution of signaling correlation pattern (Supporting Fig.
S4). The signaling correlations were found to be in cooperation (e.g. IL-6 and EGF at the
sixth month (47, 48)), competition (e.g. IL-1 and PGE2 at the sixth month), or equilibrium
(e.g. IL-10 and TNF-α at the sixth month) (Supporting Fig S5), reflecting their different
regulatory functions in the tumor microenvironment.
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Cytokine network identifies key nodes in dictating tumor development
While heat-maps convey overall impressions of the correlation matrix, reconstructed
correlation networks may reveal encoded connections more directly. The fifteen signaling
proteins can be classified into five sub-sets according to their cellular function; these subsets
are growth factors (EGF, VEGF, HGF, FGF, and SCF), proinflammatory cytokines (IL-1,
IL-6, and TNF-α), anti-inflammatory cytokines (IL-10, TGF-β), chemokines (MCP-1, MIF,
GCSF, and GMCSF) and Prostaglandin E2. Perturbation on one signaling molecule will
exert regulatory effect on the others via intercellular signaling network. We define the
impact factor, the capability of one signaling molecule to regulate others and change the
network topology, as the sum of the correlation factors:

(9)

To deliver a global view of the intra- and inter-group signaling regulation, we construct a
correlation network (Fig. 5), which integrates concentration, impact factors, and the
directional connections of signaling molecules. The time evolution of correlation network
reveals several interesting findings (Supporting Fig. S6).

Firstly, in the first three months, the growth factor, proinflammatory and anti-inflammatory
cytokine groups have unilateral regulation on the chemokine group. There is no mutual
effect between the former three groups until the fourth month, exhibited by the growth factor
- pro-inflammatory cytokine and the growth factor – anti-inflammatory cytokine
connections. The chemokine group gradually strengthens its influence, and becomes the sole
dominant inter-group connector in the late expansion phase and malignancy phase. The
observation suggests that the signal network is not random, but orderly organized and
coordinates with cytokine function. Secondly, there is no necessary link between the impact
factor and concentration. The cytokine with high plasma/cerebrospinal fluid concentration
may not have significant influence on the intercellular signaling network, suggesting
acquiring of expression level at only one time point can not reflect dynamic trend and may
lead to misjudgment. Thirdly, the dynamic processes evolve fast in the pre-tumor and
expansion phase, and become stable in the malignancy phase. Drastic changes are observed
in the fifth to seventh months. This process is in line with the establishment of tumor
robustness.

Discussion
We constructed a large-scale, intercellular signaling network in brain tumor
microenvironment that includes major cell types and important signaling molecules related
to the tumorigenesis events. A stochastic population dynamics model is used to recapitulate
the co-evolution of tumor and tumor microenvironment. The model enables the
quantification of tumor fitness and unveils the underlying mechanism driving tumor
progression. Without fitting to experimental data, this fully predicable model yields
emerging patterns that are consistent with experimental observations, demonstrating its
merits in physical sciences of cancer.

One of the most important findings is the gradual change of dominant signaling from
paracrine to autocrine that starts from the tumor expansion phase to the malignancy phase in
which glioma cells become self-sustained and auto-driven. This agrees well with recent
studies showing cooperative cell-cell interaction-induced tumorigenesis (48, 49) and
epithelial-mesenchymal transition in tumor development (50). More importantly, the model
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serves as a tool to study the fundamental questions in respect to the role of tumor
microenvironment by perturbing this system one molecule at a time and examining the
collective responses accordingly. The metrics of correlation matrix was developed to
analyze the intercellular signaling network and we observed a striking mechanistic
transition: the signaling network emerges at the very early stage, peaks at the mid stage of
expansion, but quickly diminishes when the tumor grows to a clinically-detectable size
(1×106/ml) (45, 46, 51). Further analysis suggests that paracrine represents a dominant force
during tumor initiation and priming, while autocrine supersedes it and supports a robust
tumor expansion. Network analysis of all five functional clusters identifies the key nodes
responsible for such change. All these studies indicate a possible mechanistic transition from
the microenvironment-controlled, paracrine-based regulatory mechanism to self-sustained
rapid progression to malignancy stages.

The proposed modeling method and protein correlation analysis provide a mathematic
framework to study the dynamics of multi-cellular systems and protein correlation network.
Therefore it should be able to be generalized and applied to other disease systems, which
involve heterogeneous cellular environment and communication network. The current
modeling results also provide new insights into the design of personalized therapy. While
most anti-cancer therapeutic strategies focus on direct targeting of cancer cells, this study
suggests an alternative approach that targets the microenvironment of a tumor. To utilize the
current model to design therapy, there are two major steps. First, evaluate the dynamic
protein levels and determine all the potential targets that can maximize the efficacy and
minimize the side effects; Second, perturbation analysis to examine the effect of deleting or
enhancing these potential targets in a combinatorial fashion. To do so, we have utilized a
sensitivity analysis to assess the effect of multiple signals on tumor cell growth rate (43).
The most dominant signals can be identified by changing one factor at a time, and the
synergistic effect can be revealed by perturbing multiple factors simultaneously to infer the
design of combination therapy. It is also worth noting that the sensitivity analysis can be
performed over the entire time course to longitudinally assess the changing effect of
perturbations on the whole system. As shown in Fig. 3, the one that contributes the most to
tumor fitness in pre-tumor phase belongs to paracrine signaling, while in later stages it
changes to autocrine signaling. Therefore, this modeling approach not only provides the
targets for therapeutic intervention but more importantly the timing of treatment. When the
model is applied to monitoring of patient response, the levels of proteins and cell
populations can be quantified by measuring clinical tumor specimens. The results can be fed
into the model such that it becomes individualized and can predict targets for the specific
patient. Once the model is trained with clinical data, it could become a tool to guide the
therapy and predict outcomes on the individual patient basis.

Materials and Methods
Assumptions and model construction

A well-mixed species system is considered to capture the time evolution of tumor. We
assume that the species included in the model evolve independently of species excluded
from the model (oligodendrocyte, etc.). The regulatory effect of cytokines to cell
proliferation is expressed by Hill functions (52). The stochastic parameters in Eqs. 1 and 2
are

(10)
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(11)

(12)

(13)

(14)

(15)

where W(t) is a standard Wiener process, and ξ(t) is a zero-mean Gaussian white noise with
unit intensity.

Monte Carlo simulation
The stochastic dynamics are studied using Monte Carlo simulations. The Eqs. 1 and 2 have
been integrated using both routine ode4 (fixed-step classical fourth-order Runge-Kutta
schemes) with Matlab code and solver ode45 (variable-step Dormand-Prince 4–5 pair
method) in Simulink modules. The fixed step size for ode4 is 0.01, and the relative error
tolerance for ode45 is 1E-6. They gave almost the same results. The generation of Gaussian
and Poisson white noise in Eqs. 1 and 2 are involving employing of functions randn and
poissrnd, respectively. The Wiener process in Eqs. 10 and 11 is further generated by
integrating Gaussian white noise.

Parameter selection
We tried our best to identify all input values or ranges from published experimental data.
However some parameters are still unavailable to our best knowledge. We have to make the
best estimation based on indirect experimental observations or related studies. Other
parameters, for example, the activation/deactivation rates of stem cells, are highly dependent
upon the exogenous stimuli, thus could vary in a quite wide range. However we would argue
that the initial settings of many parameters only change the quantitative timeline of the
dynamics but would not affect the general trends observed in our model that properly reflect
the dynamics of human glioma. Thus, without the loss of generality we assigned moderate
values to these parameters. We also calibrated our model by adjusting the Hill function
parameter scytokine and matching the simulation to published in vitro dynamics data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Insight, innovation and integration

Tumor cells do not develop in isolation, but actively interact and co-evolve with stromal
cells via a complex intercellular signaling network. Although the role of individual
stromal cells or soluble mediators has been investigated, a systems-level picture showing
the collective effect of cellular and molecular components in tumor microenvironment is
yet to be realized. Here we exploit an integrative model that recapitulates the complex
cell-cell communication network in human brain tumor microenvironment to assess the
collective behavior of inter-cellular signaling pathways. We observed a sharp change of
cytokine correlation network during tumor development indicative of a possible
mechanistic transition from the microenvironment-controlled, paracrine-based regulatory
mechanism to self-sustained rapid progression to fetal malignancy. It also reveals key
nodes that are responsible for such transition and can be potentially harnessed for the
design of new anti-cancer therapies. Finally, this study can serve as a generic approach to
integrate experimental data and reveal underlying mechanisms of tumor
microenvironment at the systems level.
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Fig. 1.
Intercellular signaling network in human glioblastoma microenvironment. a. Schematic
depiction of human glioblastoma. b. Flow chart showing the construction of a quantitative
OED model of intercellular signaling network. c. Detailed depiction of inter-cellular
signaling network in human glioma microenvironment. QSC, quiescent glioma stem cell.
ASC, activated glioma stem cell.
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Fig. 2.
Stochastic dynamics and fitness evolution of glioma, microglia, astrocyte, QSC, and ASC,
respectively. The different grayscale zones represent three distinct phases of glioma
development revealed by the dynamics modeling; they are pre-tumor phase (white),
expansion phase (light gray), and malignancy phase (dark gray). The blue solid curves are
the stochastic dynamics of cells, whereas the red dashed lines represent the evolution of
fitness, defined as per capita cell growth rate.
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Fig. 3.
The evolution of the driving force for glioma progression. The paracrine signaling is the
dominant force during the pre-tumor stage, while autocrine signaling becomes the major
driving force in the expansion and malignancy phases. The transfer of leadership results in
the significant enhancement of the robustness of tumor in a self-sustained manner.
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Fig. 4.
Signaling correlation matrices. Heat maps show the signaling correlation matrices at
selected times. A profound intercellular signaling correlation emerges at the very early stage
(month 1), but almost diminishes as soon as the tumor development enters the rapid
expansion phase (month 6).
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Fig. 5.
Evolution of correlation network of signaling molecules in five functionally classified sub-
sets, including growth factors (purple circle), proinflammatory cytokines (yellow), anti-
inflammatory cytokines (cyan), chemokines (magenta), and PGE2. Each blue circle (node)
represents a signaling molecule. The diameter of the node is proportional to the
concentration of the molecule, and the color indicates the impact factor of the cytokine
according to the blue color bar. The arrow link between two nodes represents the directional
regulation of the two signals. The green-red color bar shows the strength of the up-
regulation (red) and down-regulation (green).
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