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ABSTRACT A computer method is presented for-finding
the most stable secondary structures in long single-stranded
RNAs. It is 1-2 orders of magnitude faster than existing codes.
The time required for its application increases as N3 for a chain
N nucleotides long. As many as 1000 nucleotides can be
searched in a single run. The approach is systematic and builds
an optimal structure in a straightforward inductive procedure
based on an exact mathematical algorithm. Two simple half-
matrices are constructed and the best folded form is read di-
rectly from the second matrix by a simple back-tracking pro-
cedure. The program utilizes published values for base-pairing
energies to compute one structure with the lowest free en-
ergy.

Due to the rapid increase in our knowledge of the nucleotide
sequence of many long single-stranded RNAs, it is of interest
to attempt to predict the secondary and tertiary structure of
these molecules.
A simple method for estimating the free energy of loops

found in single-stranded RNA based on their sequence was
developed several years ago (1-6). By utilizing this method, the
most probable loop structure for a given sequence is obtained
from comparison of the relative stability of all of the possible
structures that can form. Although this approach alone works
easily for short nucleotide sequences, longer sequences require
that many alternate structures be assessed and computer as-
sistance becomes essential.
A number of algorithms have been developed to apply free

energy rules to polynucleotide chains (2, 7-9). The basic method
in all of these approaches has been similar. Perfectly matched
helices in the sequence are identified. Consistent sets of these
helices are then assembled, and the overall free energy of each
assembled structure is calculated individually. For long chains,
the combinatorial aspects of this approach are very large (10,
11) and the time required for the calculations is extremely
long.
We have developed an approach to computer folding of large

polynucleotide chains in which the algorithm is about 100 times
faster than existing approaches. Two simple half-matrices are
constructed by an inductive procedure which considers the
energy contributions of individual base pairs. The loop structure
with the lowest free energy is read directly from the second
matrix in a simple fashion. The basic algorithm and its math-
ematical proof have been presented (12). It was developed
initially simply to maximize base pairing along a polynucleotide
chain. More recently, we realized that the rules for calculating
loop stability based on free energy can be incorporated into the
algorithm as well.

This presentation provides a simplified explanation of the

original algorithm for maximal matching as well as a description
of the procedure developed for incorporating energy rules.

METHODS
Basic Formulation of the Method. The algorithm is de-

signed to evaluate the contribution of individual base pairs to
the secondary structure of a polynucleotide chain. The basic
principle on which it rests is best understood by considering a
sequence of nucleotides B1 to B. which lie on the circumference
of a circle (Fig. 1A). Nonintersecting arcs, drawn inside the
circle, link individual base pairs. This type of structure corre-
sponds to a simple planar secondary structure. Knotted or
pseudoknotted structures are not allowed (9). A more conven-
tional representation of the structural features in Fig. 1A is
obtained by shrinking each of the connecting arcs in the circle
to one fixed length (Fig. 1B). A structure with one arm results.
The various features common to this type of structure are shown
in the figure.

In order to find the best folded form of the sequence B, to
B., we will consider whether any bond BBy will be included
in the optimal structure. Such a bond will make a direct local
contribution to the free energy of the region in which it is
formed. There is, however, a more important global effect. The
arc connecting B. and By divides the circle (Fig. 1A) into an
upper and a lower portion. Due to simple planarity require-
ments, further arcs can only be drawn inside each part sepa-
rately. Thus, the total free energy of the folded structure formed
will be determined by the energy of the lower and upper sec-
tions and the local contribution of BBy The best folded form
will be obtained when the free energy of each of these three
components has been minimized. The algorithm provides a
systematic inductive search procedure to realize these condi-
tions.

Algorithm for Maximal Matching. Any algorithm for
folding a long single-stranded polynucleotide chain depends
in part on folding rules which specify the manner in which the
individual nucleotides are allowed to pair with one another. In
addition, it contains a search procedure that is used to find the
best folded form in an efficient manner. The algorithm for
maximal matching utilizes a simple set of folding rules. The
stability of G-C pairs is considered to be equal to that of A-U
pairs. Contributions due to stacking are ignored, as are the
destabilizing effects of single-stranded loops. Under these
conditions, the problem of folding a nucleotide sequence into
a structure with minimal free energy becomes the simpler
problem of finding a structure with the maximum number of
base pairs.
The search procedure utilized by the algorithm proceeds in

a simple inductive manner from short subsections of a given
nucleotide sequence to sections of increasing length. Optimal
folding is determined for each section until the optimal folding
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FIG. 1. Base pairing in a simple planar structure. (A) Extended form. Base pairs are represented by arcs which join nucleotides located
along the circumference of the circle. (B) Condensed form. The individual bonds from the structure shown in A were shortened and set to a
fixed length, resulting in a more conventional representation of a base-paired structure with one branch. Single-stranded loops are labeled according
to the nomenclature of Tinoco et al. (2).

of the entire molecule is obtained. To illustrate the approach
we will consider the sequence B,... .Bn containing the subsec-
tionA... .Bj of length p. The method used to find the maximal
number of base pairs occurring in B ... .Bj is shown in Fig. 2.
The variable k is allowed to assume each position from Bi to
B1-,. At each point the algorithm tests the ability of Bk to pair
with B;. It further determines the total number of base pairs

in the section by checking for the number of base pairs present
in the subsections B ... .Bk-1 and Bk+ 1.. .B1,. After all posi-
tions of k have been tested, the best value obtained is saved and
stored in the matrix M(i,j). If Bj cannot pair with any k in
Bi... .B1, then M(i,j) = M(i, - 1). Information on base pairing
for additional sections of length p is obtained by incrementing
i and j successively. The maximum number of base pairs that
can form in sections of increasing length is obtained by incre-
menting p to p + 1 and repeating the search. Thus, for each
interval Bj... .Bj within the sequence:

JM(i,k -1) + M(k + 1,j-1) + 1

Because M(i,j) is filled with sections of increasing length, the
values M(i,k - 1), M(k + 1,j - 1), and M(i,j- 1) are known
and can be read directly from the matrix. This results in an

extremely efficient search procedure. The value 1 corresponds
to the base pair BkBj. The last value in M(i,j) is obtained when
the section B ... .Bi corresponds to B,... .Bn. This value of M(i,j)
specifies the maximum number of base pairs that can be found
for the entire sequence.

Bk-l Bk Bk.1

Bi

FIG. 2. Various possibilities for BkBj bonds as k sweeps across

the sequence Bi ... Bj- and the separate simple planar structures
(i, k - 1) and (k + 1,j - 1), obtained this way.

An example of the actual structure of a simple matrix is
shown in Table 1. It was constructed for the 25 nucleotide se-
quence: C-G-G-G-C-G-G-C-C-G-G-C-C-C-C-G-G-G-C-C-
G-C-G-G-C. The data are stored in the lower left half of the
matrix M(Qj). The first values were obtained by letting p = 1
and scoring pairs formed between adjacent nucleotides along
the sequence. These values were stored in the uppermost di-
agonal of the matrix. Successive diagonals were obtained by
increasing p in a stepwise fashion. In each case the base pair
BkBj (from Fig. 2) divides the segment under consideration into
two subsections. The maximal pairs in each subsection were
learned by reading values previously recorded in the matrix
M(i,j) for these smaller sections. The maximum number of base
pairs found for the entire 25 nucleotide sequence is located in
M(1,25) and is equal to 12.
The method outlined above provides a procedure for de-

termining the maximum number of base pairs that form within
a known sequence of nucleotides. To fold this sequence, it is also
necessary to identify the individual nucleotides that pair. For
this, the algorithm produces a second NXN matrix K(i,j) which
contains the numerical position of the base Bk that allows
maximal base pairing within each segment Bi... .Bp. This in-
formation is used to find the best folded form in the following
manner. The algorithm begins with the entire nucleotide se-
quence B1... .B,. The information stored in K(1,n) gives the
position of k which, when paired with Bn, leads to optimal
folding of the entire sequence. The formation of this base pair
divides the entire sequence into two subsections. Optimal
folding of each subsection is found in a similar fashion by
reading the value of K(ij) for the subsection. The process is
illustrated in Fig. 3. The first base pair formed is BnBK(l,n)
which divides the sequence into two subsections B1... BK(1,n)-l
and BK(1.n)+ 1 .. Bn_
The section (B ... BK(ln)-l ) is further subdivided by the

formation of a base pair between BK(1,n)-1 and BK(1,[K(1,n)-1]).
As shown in Fig. 3, the repetition of this procedure for sections
of decreasing size generates a group of nested structures. In each
case, the base pair chosen is the one that leads to maximal base
pair formation for the entire section. Thus, the final folded form
contains the maximum number of base pairs that can be found
for the entire nucleotide sequence, and the individual base pairs
are precisely specified.

Proc. Natl. Acad. Sci. USA 77 (1980)
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Table 1. Matrices M(i~j) and K(jji) for the 25-nucleotide illustration shown in Fig. 4
Ii1 2 3 4 5 6 7 8 9 10 11 12- 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 3 0 0 3'3 0 0 3 3 3 0 1 0 -3 3 0. 3 0 0 (0

10 020 02 200 2 2 2 2 00 02 2 02002

1 0 03 0 033 0 033 3 015 0 033 03 0033
1 0 4 0 0 44 04 )0 14141 4 0 4 0 (a 0 4

2 1 11 07 0 5 0 000 05 5 50 0 50 550

21 111 0 6 6 006600141414 6601 40114 06

2 11 1 10 7 09 070 0 09 99 0 09 09909

32 22 211 0800 00 08 8 80 0 80 880

4 3 3 3 2 2 1 0 0 11 0 0 0 9 9 9 0 0 9 0 9 9 0

4 3 3 3 3 2 2 1 1 10 10 0 0 14 14 0 10 0 14 0 14 0 10

4 33 33222 21 0 110 001 31313001130113 130
5 4 44 43332 211 0001 212 12001120112 120

65 5 54 43 22 2 10 0 01313 130 0130113 130

76 6 544 32 22100 0 14 14 018 0 14 0 14 018

77 6 544 32 22 1 0 00 0 01717 0© 0 017

8 7 76 5 543 33 2 1111 0 016 1601690116
8 77 76 6 544 43 2 2 210017 17 017 9017

8 7 77 76 65 54 4 3 3 2 100 0 20 018

98 8 87 765 5 54 33 3 2 111 0 19 01919 0

109 9 877 65 5 543 33 32 2 1020 020 024

1099 98 87 6 66 544 43 2 2 211 21 0021

111 0 1098 8 6666544 4443 32 1 11 22 024

111 0 1 01099877 7 7765 5 5 5433 32 2 1 023

11 1010 010 4366 4 3 3 3 3 2 1 1 24

12 11 11 11 10 10 9 8 8 8 7 6 6 6 5 4 4 4 3 3 2 2 1 1

K(iji)

The base pairs in the final folded form are: 3 and 25, 1 and 2, 14 and 23, 13 and 24, 17 and 22,7 and 12, 15 and 16,20 and 21,5 and 6,8 and 11,

18 and 19, and 9and 10.

Fig. 4 shows the best folded form obtained for the 25-nu-

cleotide example discussed above. The manner in which it was

obtained is shown in Table 1. The values for K(iQ) are stored

in the upper right-hand side of the table. Because M(iQ) and

K(iQ) are constructed forti < j, both matrices were half empty

and were combined. To save space, M(lQ) = K(j,i). The values

of K chosen for the final folding are indicated by circles. The

base pair that occurs between nucleotides 3 and 25 was found

in K(1,25). It divides the entire sequence into two sections.

Subsequent base pairs were obtained for subsections as de-

scribed above.

Algorithm for Structures with Minimal Free Energy. In

the preceding discussion, two basic strategies were utilized in

BK(1,(Ko,7nK(1,-l)-

(BK1,fl)

B1 Bn,

FIG. 3. The backtracking procedure. Full lines indicate first-

generation backtracking steps numbered according to the order in

which they are obtained. These yield the main branches of the sec-

ondary structure tree. Broken lines indicate second-generation

backtracking done for each branch separately.

searching for maximally paired loop structures. Inductive op-

timization was used to fill the matrices M(iQ) and K(Q~) with

information on the number and position of the base pairs

formed in nucleotide segments of increasing size. Backtracking
was utilized to obtain the structure with the best folded form

from the K(iQ) matrix. A similar search procedure can be used

to obtain structures with minimal free energy. Only one simple

backtracking routine has been added to determine the location

of each newly formed base pair with respect to its neighbors.
In addition, a mechanism for closing single-stranded loops has

been introduced.

The basic approach is similar to the one described for the

algorithm for maximal matching. For the nucleotide sequence

B1 .B,, we wish to know whether the bond BxBY will be found

in the structure with minimal free energy (Fig. 1A). To obtain

G

G
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G~~~~~

C G

FIG. 4. Secondary structure for the 25-nucleotide chain with

maximal pairings as deduced from the algorithm for maximal

matching.
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this information, the folding rules of the algorithm are modified
to allow an estimate of the free energy of loop structures based
on sequence data. The method for doing this is well established
(1-6) and is determined from the sum of the contributions from
helices, single-stranded loops, and bulges. The algorithm is
further modified so that it can identify the location of a given
base pair with respect to adjacent helical or single-stranded
regions.
The search procedure is conducted in the following manner.

Each nucleotide segment is examined for the structure with
minimal energy by the inductive method described above. Eq.
1 becomes:

E(Q)r=min. E(k-1) + E(k+ IJ-1) + Ek, [2]
t(q, -1i) i < k <ji 1min.

That is, the energy (E) of the minimal energy structure formed
between BA and B1 is determined by examining each possible
base pair BkBj within the region. In each instance the energy

of the entire segment is determined by adding the energy
contributions of the segments to the left and right of BkBj to that
of BkBj itself. The lowest energy value found is stored in the
matrix M(Qj). The position of Bk that achieves this value is
stored in K(ij). The minimum hairpin loop allowed is 1 min
= 3. The final folding of the molecule is determined by the
same backtracking procedure as described in the algorithm for
maximal matching.
The value of Ekj will vary depending on whether the base

pair BkBj is associated with an adjacent base pair, a single-
stranded bulge, or an internal loop or a branched structure. A
partial backtracking procedure is utilized to locate and evaluate
the position of BkBj with respect to base pairs adjacent to it The

backtracking procedure is similar to the one used to find the best
folded form from the K matrix. However, in this instance, only
one generation of backtracking is required. We begin by al-
lowing k1 to equal K(k + Lj - 1); i.e., k1 is the nucleotide be-
tween k + 1 and j -1 which gives a structure with minimal
energy when paired with j - 1. Because the entire sequence

is analyzed in an inductive manner, this information was stored
in the K matrix during a previous run. Should K(k + ,j - 1)
= 0, the search is continued with decreasing values of j. For
nonbranched loops, the value of k1 alone is sufficient to locate
the structure adjacent to BkBj as illustrated in Fig. 5. In the
simplest case, = k + 1 and Bk+l pairs with Bj-1; i.e., BkBJ
lies adjacent to a base pair (Fig. SA). When k1 > k + 1, a sin-
gle-stranded region occurs on the left side of the loop. This re-

gion can form a bulge or be part of an internal loop, depending
on whether the opposite strand also contains nonpaired nucle-
otides. A single-stranded region is formed on the right side when
Bkl pairs with B1 <j - 1. Fig. 5 B-D illustrates several of these
situations.

Branch structures occur when several independent hairpin
loops can form between Bk and Bj. These are identified by
completing the first generation ofbacktracking as illustrated
in Fig. 3. We let k2= K(k + 1,k1 - 1), etc., and continue until
the last element is found. [Because at least five nucleotides are

required to form a hairpin loop, the search procedure is stopped
when kn - (k + 1) <5.] The number of branches is given by
n. Fig.5E illustrates the identification of a structure with two
branches.
The value thatEkj assumes when it closes a bulge or internal

loop is always higher than the energy value of the preceding.
helix. To allow closure of these structures, we have assigned an

energy value to unpaired nucleotides in the section Bi.. .Bk
equal to a bulge loop containing the same number of nucleo-
tides. The value is used temporarily and does not enter in the
final energy calculation of the correctly folded structure. This

FIG. 5. Illustration of the partial backtracking procedure utilized
to identify the structure located adjacent to the base pair BIBj. The
left and right sides of each panel represent the same hydrogen-bonded
structure drawn either in an extended or condensed form. (A) ki =
1. The base pair BkBj lies adjacent to the pair Bk+ZBj-,. (B) k1 = 3.
The base pair BkBj lies adjacent to a single-stranded bulge of two
nucleotides on the left side which forms when Bk+3 pairs with Bj_1.
(C) k1 = 1. The base pair BkBj lies adjacent to a single-stranded bulge
of two nucleotides located on the right. It is formed when Bk+1 pairs
with Bi.s. (D) k, = 3. The base pair BkBj lies adjacent to an internal
loop formed when Bk+3 pairs with Bj-4. (E) n = 2. A branched
structure. The two bonded pairs closest to BkBj are Bj-3,Bk, and Bk1
Bkt As indicated in the text, the five unpaired nucleotides in the
center of the junction are evaluated as if they belong to a five-mem-
bered internal loop.

simple device has allowed us to fold a number of large RNA
structures correctly (see below). However, other methods of
loop closure are still under investigation.
The computer instructions for the above algorithm are simple

and consist, in essence, of three nested "do" loops which shift
the length and position of the nucleotide segment being ana-
lyzed and optimize base-pairing within each segment. The time
requirement is -N3 for a chain N nucleotides long. This is
substantially faster than other existing codes (2, 7-9) and allows
massive applications. The core requirement is N2. The actual
write-up contains approximately 500 instructions (it can be
obtained from the first author upon request).

RESULTS
The present fast algorithm first arose in efforts to solve the stable
loop structures seen by electron microscopy in the RNA bac-
teriophage MS2 (13). The results will be presented in detail
elsewhere. The program was run on an IBM 370/168 computer
for MS2 sections between 100 and 350 nucleotides long. The
time (T) required was 15 sec for N = 100,54 sec for N = 200,

BkBk1 Bji-ii
Bk Bj-i Bkjj

Bk1
Bk1 Bk
Bk Bj Bj

Bk B 3-4 Bk1 Bj-4

Bk Bj Bk Bj

EB -2 Bk,
Bk2 Bj-,3 Bk2

Bk Bj Bk Bj
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3 min for N = 300, and 5 min for N = 350 nucleotides. Thus,
these results fit well with the expected T - N3 behavior.
The program has also been applied to the potato spindle tuber

viroid (N = 359 nucleotides). More than two-thirds of the base
pairs found were identical with those suggested in the original
publication on the structure of this RNA (13). The differences
were located in three small regions of the structure. In one case,
the computer found an equally stable alternate structure; and
in two cases slightly better structures were obtained. However,
all of the differences observed were minor in nature, and the
overall appearance of the folded molecule was virtually iden-
tical with the published structure. The whole folding of the
viroid RNA was carried out in a single run and required exactly
5 min, illustrating the efficiency of the approach.

DISCUSSION
We have presented an approach to the combinatorial problem
of finding a planar secondary structure with the lowest free
energy that is systematic and builds an optimal structure in a
straightforward inductive procedure based on an exact math-
ematical algorithm. Our approach is both simpler and faster
than other existing procedures and allows application on a scale
that could not be contemplated previously. It is subject to one
serious limitation. The computer core required is N2. This
prevents folding sequences whose length exceeds 1000 nucle-
otides in a single run on existing computers. Very large runs
could be performed on computers with virtual memory but the
running time would be extremely long.
The algorithm was tested for its ability to fold a number of

sequences of biological interest. The loop structures predicted
by the algorithm for several sections of RNA from bacterio-
phage MS2 were compared with structures obtained by visual
inspection and with those generated by other computer pro-
grams. The structures generated by the algorithm were always
found to be identical with or better than structures obtained by
other procedures. As described above, the folding obtained for
the RNA from the potato spindle tuber viroid was also similar
to the structure that has been published (13). The additional
tests were performed with a number of different tRNA se-
quences. The minimal energy cloverleaf form was not obtained
for any of these structures. The source of the difficulty with
tRNA sequences is not yet clarified. Recent studies show that
a simple modification of the algorithm which allows it to look
forward when closing single-stranded loops permits us to fold
many tRNAs correctly. These results will be described in detail
elsewhere.
The approach we describe here is different than others in that

it leads to the formation of one optimal structure rather than
a series of related, alternate structures. Despite the limitations
discussed above, the advantage of our approach lies in its ex-
treme rapidity and the fact much larger sequences can be

searched than with other programs that have been developed
to date. it is clear, however, that some biological applications
may require information on alternate, less-stable conformations
in addition to an optimal structure. In such situations, a com-
bined approach with other programs may prove useful, al-
lowing examination of the nature of particular structures in
more detail once they have been located within larger se-
quences.
The present algorithm was developed to facilitate our studies

on loop structures seen by electron microscopy of single-
stranded RNA from bacteriophage MS2. The structures that
have been visualized differ completely from those predicted
previously from sequence data (14). It will be of interest to
determine whether the use of high-speed algorithms that can
scan large sequences for optimal structures will improve our
ability to predict these structures correctly. Alternatively, in-
formation from electron microscopy could be utilized to guide
a computer search for the nucleotide sequences most compat-
ible with electron microscopic data.
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