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Characterization of Two Virulent Phages of Lactobacillus plantarum
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We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously
isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains
tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems
were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type
phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has
97% identity with that of Pediococcus damnosus phage cIP1 and 77% identity with that of L. plantarum phage JL-1; these phages
were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type
phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as
well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Addition-
ally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins.
To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lac-

tic acid bacteria.

Lactobacilli are widely used in a variety of food fermentation
processes, where they contribute to the flavor and texture of
final products. They also produce organic acids, and the resulting
low pH protects fermented products from degradation by spoilage
microorganisms (15). In recent years, the industrial relevance of
lactobacilli has been significantly enhanced by their increasing use
as probiotics (12) or as a biotechnological tool (32).

Lactobacillus plantarum is commonly found as part of the nat-
ural microflora of fermented foods (dairy, vegetables, and meats)
(12, 53, 68). This lactic acid bacterium may also be added as a
starter or adjunct culture, in both cases improving the organolep-
tic characteristics of the final products (2, 12, 14, 15, 48, 49). Ad-
ditionally, many L. plantarum strains possess documented probi-
otic properties, and marketed functional foods contain these
strains (12, 53). L. plantarum can be used as a probiotic starter
culture in the production of functional foods, taking advantage of,
among others, its ability to grow in milk. However, the increasing
use of L. plantarum as a starter or adjunct culture can lead to phage
infections in industrial environments, with adverse effects on the
final product (25, 51).

Phage infection is still one of the persistent causes of substan-
dard dairy fermentation processes (60). Virulent phages can lyse
starter cultures, yielding low-quality products that lead to eco-
nomic losses. Consequently, efficient control measures to mini-
mize problems caused by phage attacks become essential. In order
to carry out successful antiphage strategies, knowledge about
phage population and biology is needed (27, 39).

To date, over 30 L. plantarum phages, isolated from several
sources, have been reported (16, 70, 72). All belong to the Caudo-
virales order (tailed phages, double-stranded DNA genome) (1,
70), and members belonging to each of the three Caudovirales
families have been isolated: Siphoviridae (19 phages), Myoviridae
(5 phages), and Podoviridae (1 phage). Other L. plantarum phages
have been reported but not classified (70). Therefore, L. planta-
rum phages are relatively diverse and found in a wide variety of
niches.
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To our knowledge, only four L. plantarum phage genomes have
been sequenced. Phage gle (Siphoviridae, temperate) was isolated
from plant materials and has a 42,259-bp genome with a G+C
content of 43.1% and 62 open reading frames (ORFs) (37). Phage
Shal (Siphoviridae, temperate) was isolated from kimchi and has a
41,726-bp genome with a G+ C content of 40.6% and 58 putative
OREFs (72). Phage JL-1 (Siphoviridae, virulent) was isolated from
fermented cucumbers (43) and possesses a 36,700-bp genome
with a G+C content of 39.4% and 52 ORFs. Finally, phage LP65
(Myovidiae, virulent) was isolated from fermented meat and has a
very large genome of 131,573 bp with a G+C content of 37.3%
and 165 ORFs (10).

Other L. plantarum phages have been analyzed in some detail;
studies mainly included thermal and chemical sensitivities, and
there were some preliminary genetics studies (9, 16, 44, 54, 65,74).
Opverall, research on Lactobacillus phages has progressed over the
past decade, but our knowledge of their biology and genetic com-
position is still limited and lags somewhat behind that of other
industrially relevant phages (70).

The aim of this work was to carry out the characterization of
two available L. plantarum phages. Phages ATCC 8014-B1 and
ATCC 8014-B2 (herein referred to as Bl and B2, respectively)
were previously isolated from corn silage and anaerobic sewage
sludge (21).

MATERIALS AND METHODS

Bacterial strains, phages, and culture conditions. L. plantarum strains
were grown at 37°C in MRS broth (Difco). L. plantarum ATCC 8014 was
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used as the host strain for phages Bl and B2. For phage amplification,
MRS was supplemented with 10 mM CaCl, (MRS-Ca). Phage stocks were
prepared as described previously (56) and stored as lysates at 4°C. Phage
counts, expressed as PFU per milliliter, were obtained using the double-
layer plaque titration method (64). Bacterial strains are maintained at the
INLAIN Collection (Argentina) and the Félix d’Hérelle Reference Center
for Bacterial Viruses of the Université Laval (Canada; www.phage.ulaval
.ca) as frozen stocks in MRS broth containing 15% (vol/vol) glycerol.
Phages B1 and B2 as well as the host L. plantarum ATCC 8014 were pur-
chased from the American Type Culture Collection (Manassas, VA; www
.atcc.org).

Electron microscopy. Ten microliters of 2% phosphotungstic acid
(pH 7.0) was put in a clean sterile petri dish. A 200-mesh Formvar-car-
bon-coated copper grid (Pelco International) was deposited face down on
the staining solution for 30 s. Then, 10 pl of a purified phage suspension
(10" PFU ml ') was mixed with the stain by pipetting up and down. After
90 s, the grid was deposited face up on blotting paper. The grid was dried
for 5 min and observed at 80 kV using a JEOL 1230 transmission electron
microscope (62).

Microbiological assays. The host range of L. plantarum phages Bl and
B2 was assessed by spotting 5 microliters of 10> and 10~ * dilutions of a
high-titer lysate (10° PFUml ') on top of agar containing one of the eight
L. plantarum strains tested (see Table 1). To study the phage adsorption
process, L. plantarum cultures were grown in MRS to an optical density at
600 nm of 0.6 to 0.8, after which they were in contact with phage B1 or B2
at a final concentration of 10> PFU ml™'. The phage-containing cultures
were incubated at 37°C for 15 min, and then we proceeded as described
elsewhere (22). To determine the presence of active natural defense mech-
anisms against phages B1 and B2, the efficiency of plaquing (EOP) was
calculated by dividing the phage titer on the test L. plantarum strain by the
titer of the phage on the phage-sensitive host strain L. plantarum ATCC
8014. For phage-host systems showing reduced EOP values, two phage
plaques obtained on the restrictive strain were purified and propagated on
the same strain. The lysate obtained (modified phage) was titrated on both
strains (original sensitive host and the restrictive strain) to determine a
second EOP value. Modified phages were then propagated again on L.
plantarum ATCC 8014, and the resulting lysate (unmodified phage) was
titrated on both strains (4).

Phage DNA preparation and sequencing. Genomic DNA of phages
B1 and B2 was isolated using a Maxi lambda DNA purification kit (Qia-
gen) with modifications (19). The restriction profiles of phage B1 and B2
DNA were compared to confirm differences. Restriction endonucleases
(Roche Diagnostics) were used as recommended by the manufacturer.
The DNA fragments were separated in a 0.8% agarose gel, stained with
ethidium bromide, and photographed under UV illumination. Ge-
nome sequencing was performed at the Plateforme d’ADN génomique
de I'Université Laval (Université Laval, Québec, Canada) using a GS-
FLX Titanium apparatus (Roche) and the 454 pyrosequencing tech-
nique. For phage B1, 39,144 reads were generated and assembled into
a single contig with a coverage of 430-fold. For phage B2, 4,670 reads
were generated and assembled into a single contig with a coverage of
18-fold. The extremities of the genomes were determined by sequenc-
ing ligated phage DNA preparations using converging PCR primers at
the genomic platform of the Centre Hospitalier de I'Université Laval
with an ABI Prism 3100 apparatus.

Bioinformatics analysis. Sequence analyses were performed using
BioEdit (30). Open reading frames (ORFs) were first identified using the
GenMark program (46) and were further confirmed with ORFinder (http:
//www.ncbi.nlm.nih.gov/gorf/gorf.html). An ORF was considered valid if
it had AUG, UUG, or GUG as the starting codon, encoded at least 29
amino acids (aa), and was preceded by an L. plantarum Shine-Dalgarno
sequence (AGAAAGGAGGTGATC) (5). Function was attributed to an
ORF using Blast2go (http://blast2go.bioinfo.cipf.es/start_blast2go) and
BLASTp (NCBI [http://blast.ncbi.nlm.nih.gov/Blast.cgi]). The annota-
tions were supported by searching for protein functional domains using
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FIG 1 Electron micrographs of the phages B1 (A) and B2 (B). Bars, 50 nm (A)
and 100 nm (B).

the NCBI Conserved Domain Database (http://www.ncbi.nlm.nih.gov
/Structure/cdd/wrpsb.cgi) and EMBL InterProScan (http://www.ebi.ac
.uk/Tools/InterProScan/). The tRNAs were identified using the
tRNAscan-SE server (http://lowelab.ucsc.edu/tRNAscan-SE) and the
ARAGORN program (41). Codon usage was determined through
the DNA 2.0 Web server (Menlo Park, CA) and the Count-codon pro-
gram available on the Kazusa DNA Research Institute Web page (http:
/Iwww kazusa.or.jp/codon/). The bacterial codon usage for the L. planta-
rum host strains was obtained from the Kazusa DNA Research Institute
database.

Analyses of phage B1 and B2 structural proteins. Phage lysates were
concentrated with polyethylene glycol (PEG) and purified using two CsCl
gradients (61). Purified phages were recovered by ultracentrifugation us-
ing a Beckman SW41 Ti rotor at 35,000 rpm (210,053 X g) for 3 h, fol-
lowed by a second ultracentrifugation using a Beckman NVT65 rotor at
60,000 rpm (342,317 X g) for 18 h. The phage preparations were then
dialyzed against phage buffer (0.05 M Tris-HCI [pH 7.5], 0.1 M NaCl, 8
mM MgSO,). Purified phages (4 X 10'" PFU ml ') were treated as de-
scribed elsewhere (62). Briefly, phages were mixed with 4 X loading buffer
and boiled for 5 min. The samples were sonicated for 5 s with an ultrasonic
Sonifier W-350 cell disrupter. Proteins were then separated by migration
on a 12% SDS-polyacrylamide gel (1.5 mm thick). The Coomassie-
stained protein bands of interest were excised from the gel and identified
by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at
the Centre Protéomique de 'Est du Québec (Université Laval, Quebec,
Canada). These results were analyzed using the Scaffold Proteome soft-
ware (13, 33, 55). Purified phage lysates were also directly analyzed by
LC-MS/MS.

Nucleotide sequence accession numbers. The complete genome se-
quences of phages Bl and B2 have been deposited in GenBank under
accession numbers JX486087 and JX486088, respectively.

RESULTS AND DISCUSSION

Electron microscopy. Both B1 and B2 phages have long noncon-
tractile tails (Fig. 1) and belong to the Siphoviridae family, as do
most characterized L. plantarum phages (70). Phage B1 has an
icosahedral capsid with an estimated diameter of 54 + 3nmand a

Applied and Environmental Microbiology


http://www.phage.ulaval.ca
http://www.phage.ulaval.ca
http://www.atcc.org
http://www.atcc.org
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://blast2go.bioinfo.cipf.es/start_blast2go
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ebi.ac.uk/Tools/InterProScan/
http://www.ebi.ac.uk/Tools/InterProScan/
http://lowelab.ucsc.edu/tRNAscan-SE
http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/
http://www.ncbi.nlm.nih.gov/nuccore?term=JX486087
http://www.ncbi.nlm.nih.gov/nuccore?term=JX486088
http://aem.asm.org

Lactobacillus plantarum Phage Genomes

TABLE 1 Host range and adsorption rates of phages Bl and B2 on L. plantarum strains

Phage Bl Phage B2
Strain Source” EOP Adsorption (%) EOP Adsorption (%)
ATCC 8014 ATCC 1.0 99.6 £ 4.8 1.0 90.8 = 3.0
WCSF1 Human saliva (NCBIM collection) 15X 1072 19.0 = 1.4 b 0
LMG9211 Human saliva (BCCM collection) 40x10° 2.3+ 04 — 92.4 + 1.8
PLN NSLAB (INLAIN collection) — 0 1.0 98.5* 1.5
SMQ-1113 Industrial strain — 1.1 £0.7 — 14.4 + 3.9
SMQ-1114 Industrial strain — 82+123 — 32+ 1.0
SMQ-1115 Industrial strain — 9.5+ 25 — 123+ 1.6
SMQ-1116 Industrial strain — 13.7 £ 3.6 — 10.4 + 6.4

% ATCC, American Type Culture Collection; BCCM, Belgian Coordinated Collections of Microorganisms; NCBIM, National Collection of Industrial and Marine Bacteria; NSLAB,

nonstarter lactic acid bacteria; INLAIN, Instituto de Lactologia Industrial.
¥ —, not determined, as the phage does not infect the strain.

tail of 157 = 10 nm in length and 8 = 1 nm in width. The baseplate
appears somewhat complex, with spikes or fibers (Fig. 1A). Phage
B2 has an icosahedral capsid with a diameter of 74 * 2 nm and a
tail of 240 * 3 nm in length and 10 = 1 nm in width (Fig. 1B).
Other investigators previously reported a larger capsid diameter
(110 nm) and a much longer tail (500 nm) for L. plantarum phage
B2 (54). Although dimensions may vary due to the use of different
electron microscopes and methodologies (59), this cannot explain
such large differences. At this time, it is unclear why such a dis-
crepancy exists.

Microbiological assays. The results of the host range and ad-
sorption tests are presented in Table 1. Each phage exhibited a
distinctive host range but shared a common host (L. plantarum
ATCC 8014). Phage Bl also replicated on L. plantarum strains
WCSF1 and LMG9211, but the EOP was reduced. Surprisingly,
under the conditions tested, the adsorption of phage B1 on strains
LMG9211 and WCSF1 was very low, although clear plaques were
formed. This low adsorption could be due to a limited number of
phage receptors (in comparison with L. plantarum ATCC 8014) or
their availability on the cell surface. Similar results were reported
for Lactobacillus paracasei phages (8). Conversely, phage B2 was
amplified on L. plantarum strain PLN and on its host ATCC 8014
(Table 1). Interestingly, phage B2 adsorbed well to strain
LMG9211 without forming plaques (Table 1), suggesting the pres-
ence of phage resistance mechanisms in this strain (39). In general,
phages were not able to adsorb on the other L. plantarum strains
tested, suggesting the absence of receptors or perhaps adsorption
blocking mechanisms (39).

Restriction/modification systems. As indicated above, L.
plantarum LMG9211 and WCSF1 seemed to carry a natural de-
fense system, as the EOP of phage B1 was reduced (Table 1). Phage
plaques were recovered from these two hosts (LMG9211 and
WCSF1), purified, and amplified on each strain. These amplified
phages had an EOP of 1.0 on L. plantarum ATCC 8014. When
these phages were propagated again in their original host, L. plan-
tarum ATCC 8014, the EOP values were reduced and similar to
those shown in Table 1. This temporary host-specific immunity
suggests the presence of a classical restriction/modification (R/M)
system in both strains (52). Besides, the same specificity might be
involved in both systems, since an EOP value of 1 was obtained
when LMG9211-amplified phage was tested on L. plantarum
WCSF1 and when WCSF1-amplified phage was tested on L. plan-
tarum LMG9211. A type I restriction/modification system was
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previously identified in the genome of L. plantarum WCSFI,
though its functionality was not demonstrated (36, 63).

Genome analysis. Phages Bl and B2 have linear double-
stranded DNA genomes comprising 38,002 bp and 80,618 bp,
respectively. Nes et al. (54) reported a relatively similar genome
size for phage B2 (73 kbp), which was calculated from the addition
of the molecular sizes of DNA restriction fragments. Phage B1 has
the highest GC content (47.6%) reported to date for an L. planta-
rum phage. The GC content of phage B2 was much lower, at
37.0%, but is similar to the GC content of the L. plantarum
myophage LP65 (10). The GC content of the host strain L. plan-
tarum ATCC 8014 was previously estimated at 45.1% (50),
whereas genome sequencing of strain WCSF1 revealed a GC con-
tent of 44.5% (36, 63). The genomes of two other L. plantarum
strains also have GC contents of 44.5 to 44.7% (71, 75). The GC
contents were similar throughout the genomic sequences of both
phages, although some noncoding regions in phage B2 were AT
rich. The lower GC content of phage B2 may suggest that some
genetic elements were derived from phages infecting other hosts
(23, 31).

The phage genomic DNA was also digested with various re-
striction enzymes (EcoRV, HindIII, Mlul, and Sall), and the pro-
files obtained were similar to the theoretical profiles obtained
from the genomic data (NEBcutter), suggesting the absence of
modified nucleotides (data not shown). The profile obtained for
phage B2 was similar to that reported elsewhere (54). Analysis of
the genome extremities indicated that phage Bl is a pac-type
phage, like L. plantarum phages fri, JL-1, and LP65 (10, 43, 65),
whereas phage B2 was classified as a cos-type phage, similar to
SC921 phage (74). The cos site is 11 nucleotides long (5'-TGAGC
GCCCTA-3") (data not shown).

Sixty ORFs were identified for phage Bl and 127 ORFs for
phage B2 (Tables 2 and 3; Fig. 2 and 3). They covered 93% (B1)
and 87% (B2) of the genome length. A total of 56 ORFs (93%) for
phage Bl and 65 ORFs (51%) for phage B2 had homology to
previously characterized genes in public databases. However, a
protein function could be attributed to products of only 25 ORFs
(42%) for phage B1 and 37 ORFs (29%) for phage B2. The pre-
dominant starting codon was ATG for both phages (90% for B1,
86% for B2). Interestingly, four B1 ORFs share some identity with
B2 ORFs, namely, Bl ORF15 and B2 ORF33, B1 ORF18 and B2
ORF36, B1 ORF22 and B2 ORF40, and B1 ORF35 and B2 ORF99.
Of interest, ORF18 of phage Bl is likely involved in host recogni-
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FIG 2 Genomic organizations of L. plantarum phages Bl and phiJL-1 as well as P. damnosus phage cIP1. The scales above the genomes are in base pairs. Each
arrow represents an ORF, and the numbering refers to Table 2 (for B1) and to the locus tags from phiJL-1 (accession number AY236756) and cIP1 (accession
number JN051154). The modules were based on the Bl organization. Genes coding for structural proteins experimentally determined by SDS-PAGE are
indicated by thick outlines. Products of ORFs from phiJL-1 and cIP1 sharing amino acid identity with those from B1 were drawn in a shade of gray according to
the color code, and were linked by a shadow. White arrows represent products of ORFs sharing no identity. Phage phiJL-1 and cIP1 genomes were split and
reorganized in order to facilitate the alignment. ORFs sharing identity (>20%) with those of phage B2 are indicated by asterisks.

tion, and its identity with B2 ORF36 agrees with the observation
that both phages infect the same host strain.

Presence of tRNA in the B2 genome. Six tRNAs were found in
genome of phage B2 (Table 3) but none in B1. These six tRNAs
deliver the amino acids asparagine (Asn, AAC), leucine (Leu,
CTA), methionine (Met, ATG), glycine (Gly, GGA), and arginine
(Arg, AGG and AGA). They were located in two genomic regions
(6246 to 7814 and 42308 to 42522) of phage B2. Among L. plan-
tarum phages for which the genomes are available, only the
myophage LP65 contained tRNAs (14 tRNAs). The presence of
tRNAs is often linked to large phage genomes (62).

The frequency of codon usage was then investigated for phages
B1 and B2 (Table 4). The anticodons of some tRNAs found in the
genome of phage B2 did not correspond to the codons most fre-
quently used by the phage. For example, one tRNA matched the
CTA codon, encoded a leucine, and had a frequency of 21.1% in
the whole genome, whereas the most frequently used leucine

December 2012 Volume 78 Number 24

codon was TTA, which had a frequency of 42.5%. However, the
CCT and TCT codons, which encoded arginine, were used more
by phage B2 than other possible codons.

The codon usage of phage B2 was also compared to that of L.
plantarum WCES1 because no bacterial host strain for phage B2
has been sequenced yet (Table 4). Our results agreed with others
(3) who suggested that phages encode tRNAs corresponding to
codons that are less used by the host bacteria to increase specific
phage protein expression (Table 4). The presence of tRNAs was
reported for some Lactococcus phages: P087 (5 tRNAs) (69), KSY1
(3tRNAs) (11), and 949 (6 tRNAs) (62). In contrast to the results
observed here, the frequencies of codon usage by phage 949 tRNAs
were similar for the phage and its host Lactococcus lactis IL1403.

Function assignment and genomic organization of phages
B1 and B2. The ORF functions were assigned based on compari-
son with sequences in public databases (NCBI, InterProScan).
Only the ORFs with the highest identity with those encoding other
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FIG 3 Genomic organization of L. plantarum phage B2. The scale under the genome is in base pairs. Each arrow represents an ORF, with its putative function,
and the numbering refers to Table 3. Genes coding for structural proteins experimentally determined by SDS-PAGE are indicated by thick outlines. tRNAs are
indicated by vertical arrows. ORFs sharing identity (>20%) with those of phage B2 are indicated by asterisks.

proteins in the database are shown in Tables 2 and 3. Although
phages B1 and B2, isolated from corn silage and anaerobic sewage
sludge, respectively, were similar according to morphological ob-
servations, genome sequencing confirmed wide differences be-

TABLE 4 Codon usage of L. plantarum strains and phage B2 for amino
acids encoded by the B2 tRNAs”

Frequency of codon usage (%) for:

Phage  Phage L. plantarum
Amino acid Anticodon Codon B1 B2 WCSF1
Asn GTT AAC 16.9 19.3 17.5
AAT 36.8 25.9 26.6
Leu TAG CTA 14.3 21.1 11.5
TTA 17.6 42.5 33.4
TTG 14.1 41.0 25.3
CTT 9.4 13.6 8.9
CTC 5.1 5.3 8.7
CTG 11.2 219 12.3
Met CAT ATG 32.0 38.4 26.1
Gly TCC GGA 12.9 8.5 10.0
GGT 22.7 12.4 26.4
GGC 25.2 5.3 17.3
GGG 11.9 6.8 12.3
Arg TCT AGA 3.7 20.7 1.7
CCT AGG 2.9 11.3 0.8
CGT 12.6 8.7 11.7
CGC 12.3 4.1 8.8
CGA 6.6 6.6 7.1
CGG 11.2 7.1 12.9

“ Codons indicated in boldface are those encoded by the tRNAs in the phage B2 genome.
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tween the phages. Diversity among Lactobacillus phages, due pos-
sibly to the high number of species in the Lactobacillus genus, was
reported previously (74). However, a relatively conserved genome
organization among them was evidenced (74). Yet, L. plantarum
phages appear to be among the most diverse Lactobacillus phages.
Distinct ecological niches and unrelated host strains may explain
such diversity.

As for many siphophages, the genome of phage B1 is organized
into the following functional clusters: DNA packaging, morpho-
genesis, lysis, and DNA replication (Fig. 2). No genes/proteins
related to lysogeny were found, confirming its virulent nature.
Interestingly, a high level of identity (97%) with the genome of
phage cIP1, infecting Pediococcus damnosus, followed by 77%
identity with the genome of L. plantarum phage JL-1, was found.
Of note, the genome of phage cIP1 showed a GC content of 47.6%,
which is much higher than those reported for pediococci (37.8 to
41.2%) (35). When each ORF was analyzed, high levels of identity
with phage cIP1 deduced proteins (65 to 100%) were also ob-
served, while the levels of identity with proteins of phage JL-1 were
always lower (29 to 80%) (Table 2). Pediococcus and L. plantarum
strains are often found in the same ecological niches (cucumber
fermentation, silage inoculants) (34, 73); thus, these comparative
analyses support the notion that coexistence in the same environ-
ment can lead to the exchange of genetic elements (45). Others
have shown that phages of L. plantarum were able to infect strains
of other bacterial species isolated from the same habitat (10, 20,
45), although this was not tested here. L. plantarum myophage
LP65 unexpectedly infected Carnobacterium strains associated
with fermented meat (10), and some L. plantarum phages isolated
from silage and sauerkraut were able to infect Lactobacillus pento-
sus and Lactobacillus brevis strains (20, 45). On the other hand,
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phages B1 and B2 have a narrow host range, as reported for other
L. plantarum phages (11, 44, 69).

The genomic organization of phage B2 was also similar to those
of other siphophages (Fig. 3). Some ORFs exhibited homology
with L. plantarum myophage LP65. However, most were similar to
ORFs of Bacillus and Lactobacillus strains and their phages (Table
3). Few proteins (Orf39, Orf43, and Orf105) were linked to pro-
phage proteins, but phage B2 had the growth characteristics of a
virulent phage. This observation was also reported for L. planta-
rum phages LP65 (10), gle (70), and Shal (72). Overall, the ge-
nome assemblage of phage B2 was rather unique and appears to be
made from parts of other characterized phages.

Phage DNA packaging. The deduced B1 proteins Orfl and
Orf2 share high similarity with the putative small and large termi-
nase subunits from various phages, including P. damnosus clP1
and L. plantarum gle and phiJL-1. Phage B2 Orfl7 and Orf21
exhibited sequence similarities to the small and large subunits of
the terminases from Bacillus subtilis subsp. natto and Lactobacillus
delbrueckii phage c5, respectively. Of note, this B2 genomic region
was interrupted by 4 tRNAs. In tailed phages, the small terminase
subunit is responsible for specific DNA binding whereas the large
terminase subunit mediates the cleavage of concatameric phage
DNA into genome units as well as prohead binding (26). In par-
ticular, the large subunit usually provides the endonuclease and
ATPase activities for packaging (38).

The Orf59 gene product of phage B1 was associated with en-
donuclease function due to its homology with Orf12 of Pediococ-
cus phage cIP1 and Orf51 of Lactobacillus casei phage phiAT3.
Taking into account the position of the gene in the phage Bl
genome, this protein mightalso be involved in the DNA packaging
or replication (43). In phage B2, Orf16 was identified as an HNH
endonuclease, which could be involved in DNA packaging since it
precedes the small terminase subunit. The HNH family of pro-
teins is associated with DNA binding and cutting functions and
includes some phage packaging proteins (47).

Phage DNA replication. Orf24 and Orf26 of phage Bl have
several characteristics in common with endonucleases and heli-
cases (NTP binding). Orf27 exhibited homology to DNA pri-
mases, Orf31 to replication proteins, Orf34 to replicases, and
Orf35 to DNA binding proteins. A helicase function was also at-
tributed to Orf37 since it shared 99% identity with the putative
helicase from phage cIP1 (P. damnosus). These seven proteins may
be involved in DNA replication. The phage B2 proteins Orf45 and
Orf47 exhibited similarities to the DNA polymerase III protein (o
subunit) from Bacillus phage SPBc2 (42). A DNA polymerase
function was also attributed to Orf70. It is tempting to speculate
that phage B2 encodes its own DNA polymerase instead of relying
on its host. Helicase and DNA primase functions were attributed
to Orf86 and Orf87, respectively. The protein product of ORF88
may be an exonuclease, and Orf71 may be linked to ATP/GTP
binding proteins. Other B2 proteins may have roles in nucleotide
modification (Orf65, Orf69, Orf83, and Orf114).

Host lysis. A key step of the phage infection process is the
release of new virions at the end of the lytic cycle. Orf21 of phage
B1 has similarities with the holins of P. damnosus phage cIP1 and
of L. casei phage AT3. It has a transmembrane domain in the
N-terminal part similar to holins of Lactobacillus rhamnosus
phages Lc-Nu and Lmrl (24, 66). Orf22 exhibited sequence sim-
ilarity to the endolysins from various phages and was classified an
endo-N-acetylmuramidase (muramidase). For phage B2, the
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endolysin function was attributed to ORF40 (muramidase-like
endolysin) as well as Orf57 (transglycosylase). Similarly, two en-
dolysins were encoded by the L. plantarum myophage LP65 ge-
nome (Orf88 and Orf121) (10). No recognizable gene encoding a
holin was found for phage B2. Of the four classes of bacterial
endolysins recognized (muramidase, tranglycosylase, amidase,
and peptidase), two are commonly found in Lactobacillus phages
(muramidase and amidase) (70). Moreover, similarities found
among lysins of phages infecting several bacterial species could
suggest a common evolutionary origin. Endolysins from phages
LL-H (Lactobacillus delbrueckii subsp. lactis) and 0303 (Lactoba-
cillus helveticus) were able to hydrolyze the cell walls of some spe-
cies from Lactobacillus and Pediococcus (17, 67).

Structural proteins of phages B1 and B2. Analysis of phage B1
using SDS-PAGE revealed at least five protein bands (Fig. 4A).
Band B was associated with one phage protein (Orf3, portal),
whereas two phage proteins were identified in the other four
bands. Band A contained a minor tail protein (Orf18) and, sur-
prisingly, a putative DNA primase (Orf27). Band C was made of
Orf43 and Orf22 (endolysin). Band D contained two capsid pro-
teins (Orf4 and Orf6). Finally, bands B and E contained two tail
proteins, Orfl12 and Orf16. Orf27 (primase) and Orf22 (endoly-
sin) are likely nonstructural proteins that were carried over de-
spite the phage purification procedure. Overall, the observed mo-
lecular masses of the phage proteins matched the theoretical
values (Fig. 4A). Proteomic analysis of the complete phage particle
revealed four other proteins (Orf5, Orfl5, Orfl7, and Orf21).
Orf5 and Orfl15 likely correspond to the scaffold and the tape
measure proteins, respectively.

For phage B2, significantly more protein bands were observed
by SDS-PAGE (Fig. 4B). Except for protein band G, which con-
tained two phage capsid proteins (Orf23 and Orf24), all Coomass-
ie-stained bands contained only one phage protein. Orf24 (major
capsid protein), with a calculated molecular mass of 45.8 kDa, was
associated with three protein bands (F, G, and H), with estimated
molecular masses of 45, 35, and 30 kDa, respectively. In fact, when
the peptides from Orf24 in bands G and H were analyzed, it was
found that the N-terminal peptides of the protein were missing.
This suggested that the B2 major capsid protein was processed, a
phenomenon observed for other phages (28, 40). Orf23, found in
band G, shared homology with a major capsid protein from Ba-
cillus and peptidase U35, which can be fused with capsid proteins
(28). This putative peptidase activity may be involved in cleavage
of Orf24. Orf36, associated with band B, showed homology with
the tail fiber protein of phage Shal (L. plantarum). However, tail
fibers were not observed in the morphology of phage B2 by elec-
tron microscopy (72). In total, nine structural proteins were iden-
tified for phage B2 (Fig. 4B). Analysis of the complete phage B2
particles did not reveal any additional structural proteins.

Conclusions. Lactobacillus phages are understudied compared
to other industrially relevant lactic acid bacteria (18, 29). One
possible reason is that there are fewer reports of Lactobacillus
phage infections than of Lactococcus lactis and Streptococcus ther-
mophilus infections in the food industry. It is unclear if this lack of
reported Lactobacillus phage infections is due their specific uses or
due to their intrinsic properties. Understanding this paucity of
Lactobacillus phage infections in industrial settings may provide
novel tools to control phage populations in other susceptible en-
vironments. Still, phages infecting several Lactobacillus species
represent a risk for industrial users (6, 7, 10, 58, 70). Knowledge of
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FIG 4 Migration of the phage B1 (A) and B2 (B) proteins on a 12% SDS-PAGE gel followed by Coomassie blue staining. The numbers on the left indicate the
molecular masses of the ladder (protein ladder, 10 to 250 kDa; New England BioLabs). Letters on the right indicate bands cut out of the gel and identified by
LC-MS/MS. Tables show the analysis of phage B1 and B2 structural proteins by LC-MS/MS.

their diversity is necessary to devise adapted control strategies. L.
plantarum phages seem to have a relatively narrow host range,
suggesting that strain rotation could be, whenever possible, an
approach to limit phage multiplication. Moreover, some L. plan-
tarum strains carry phage resistance mechanisms, which may be
taken into account during the strain selection process. Compara-
tive analysis of the phage Bl genome indicated that it is related to
that of L. plantarum phage JL-1, suggesting that they form a phage
group. On the other hand, analysis of the phage B2 genome sug-
gested that this phage is currently unique among L. plantarum
phages. The ever-increasing number of complete phage genome
sequences has greatly improved our knowledge about phage di-
versity. The characterization of additional L. plantarum phages
will help to determine the extent of their diversity.
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