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Abstract
PP1 (protein phosphatase 1) is an essential serine/threonine phosphatase that plays a critical role in
a broad range of biological processes, from muscle contraction to memory formation. PP1
achieves its biological specificity by forming holoenzymes with more than 200 known regulatory
proteins. Interestingly, most of these regulatory proteins (≥70%) belong to the class of IDPs
(intrinsically disordered proteins). Thus structural studies highlighting the interaction of these IDP
regulatory proteins with PP1 are an attractive model system because it allows general parameters
for a group of diverse IDPs that interact with the same binding partner to be identified, while also
providing fundamental insights into PP1 biology. The present review provides a brief overview of
our current understanding of IDP–PP1 interactions, including the importance of pre-formed
secondary and tertiary structures for PP1 binding, as well as changes of IDP dynamics upon
interacting with PP1.
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Introduction
Phosphorylation is a key mechanism for signal transduction and the regulation of a broad
range of physiological processes, including cell proliferation, differentiation, survival,
migration and death. Thus dysregulation of phosphorylation signalling pathways is directly
correlated with a plethora of diseases such as cancer and diabetes. The phosphorylation state
of a protein is controlled by the action of kinases and phosphatases on both serine/threonine
residues, which account for 98.2% of all phosphorylation reactions, and tyrosine residues,
which account for only 1.8%. Yet, although the human genome has more than 420 genes
that encode serine/threonine kinases, only ~40 genes encode serine/threonine phosphatases
[1–4].

The metalloenzyme PP1 (protein phosphatase 1) (~38.5 kDa, 2 Mn2 + are bound in the
active site when expressed in bacteria) is a particularly well-characterized serine/threonine
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phosphatase [4,5]. PP1 is exceptionally conserved in eukaryotes from fungi to humans, and
mammalian genomes contain three different genes that encode four distinct catalytic PP1
subunits: PP1α, PP1β/δ and the splice variants PP1γ1 and PP1γ2. The differences in the
amino acid composition between the PP1 isoforms are primarily localized to the N- and C-
termini. Free PP1 has essentially no specificity for substrates. Rather, its specificity is tightly
controlled by its interaction with >200 known targeting proteins [5,6]. These targeting
proteins fulfil two major functions. First, they localize PP1 to distinct regions of the cell and,
secondly, they modulate substrate specificity of PP1. This modulation can be accomplished
by PP1-specific inhibitor proteins, e.g. I-2 (inhibitor-2) [7,8] and DARPP-32 (dopamine-
and cAMP-regulated phosphoprotein of 32 kDa) [9–11], which bind and block the PP1
active site, rendering PP1 inactive to all substrates. Alternatively, regulatory proteins such as
spinophilin and MYPT1 (myosin phosphatase target subunit 1) bind PP1 to form a highly
stable holoenzyme, which can regulate PP1 specificity via a variety of ways.

The catalytic site of PP1 is at the intersection of three substrate-binding regions: the
hydrophobic, acidic and C-terminal grooves. Most PP1 regulators interact with PP1 via a
primary PP1-binding motif, the RVXF motif, which conforms to the consensus sequence (K/
R)(K/R)(V/I)X(F/W), where X is any residue other than phenylalanine, isoleucine,
methionine, tyrosine, aspartate or proline [12–14]. For regulatory proteins to interact
strongly with PP1, they must bind at the RVXF interaction site. Nevertheless, this
interaction, which is ~20 Å(1 Å= 0.1 nm) from the catalytic site, does not alter the PP1
catalytic site structure or function [4]. Finally, more than 70% of PP1-regulatory proteins are
predicted to be IDPs (intrinsically disordered proteins) [5]. Thus PP1 interacts with a large
number of distinct IDPs and is thus an excellent model for addressing outstanding questions
about IDP proteins and their functions in the cell.

Characterization of IDPs
The best tool for understanding the structures and dynamics of IDPs in their free states at
atomic resolution is NMR spectroscopy (Figure 1A). NMR spectra of IDPs lack the typical
hallmarks of NMR spectra of folded proteins, as both hydrogen bonds as well as
hydrophobic interactions are largely absent from IDPs. Nevertheless, 15N and 13C carbonyl
chemical shifts are still significantly different for each amino acid in an IDP. This provides
an opportunity to interpret NMR spectra for IDPs and, in turn, obtain atomic-resolution
information about IDP function.

The analysis of NMR parameters of IDPs is challenging, as they reflect an average taken
over the ensemble of conformers populated in the unstructured state of a protein.
Nevertheless, numerous NMR parameters, especially chemical shifts, PREs (paramagnetic
relaxation enhancements), RDCs (residual dipolar couplings) and 15N relaxation rates,
among others, can be used to characterize the conformational space of IDPs [15] (Figure
1C). Recently, additional tools, such as single-molecule fluorescence spectroscopy [16] and
SAXS (small-angle X-ray scattering) [17–19] have also been successfully used to gain
structural insights into IDPs.

Critically, interpretation of these measured parameters is often very different for IDPs than it
is for folded proteins. Specifically, IDPs interconvert rapidly between many conformations.
This increased flexibility requires careful consideration when NMR data of IDPs are
analysed and makes structure (or ensemble) determination of IDPs challenging. NMR
structure determination of folded proteins is carried out as follows. First, all atoms in a
biomacromolecule are assigned. Secondly, these assignments are used to directly measure
distance constraints, i.e. the collection of a large number of 1H-1H NOEs (nuclear
Overhauser effects). Thirdly, these unambiguous distance constraints are used to determine
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the three-dimensional structure of the protein in solution [20]. Unfortunately, only a small
number of 1H-1H NOEs can be detected in IDPs, and these NOEs are mainly sequential.
Thus the methods developed for the structure determination of folded proteins cannot be
applied to IDPs.

To overcome this problem, multiple approaches that enable three-dimensional IDP structure
ensemble determination have been developed in the last few years, including those by the
groups of Martin Blackledge [21–23], Julie Forman-Kay [24] and Michele Vendruscolo
[25]. In our studies, the program ENSEMBLE [24,26] was used to investigate the unbound
ensemble structure(s) of a number of IDPs, all of which bind and influence the specificity of
PP1. ENSEMBLE assigns populations to a large pool of pre-generated conformers that
satisfy experimentally determined restraints. As a complete sampling of the conformational
space is impossible, ENSEMBLE uses an iterative approach, in which an experimental data-
based conformer selection method is used to increase the pool of available ensemble
structures for subsequent ENSEMBLE runs (Figures 1D and 1F).

The biophysical behaviour of IDPs
Clearly, folded proteins have fundamentally different structures and stabilities compared
with IDPs. Importantly, the three-dimensional structures of folded proteins are directly
correlated with their functions. In the last 15 years, it has been established that this principle
is also true for IDPs (Figure 1). Despite lacking a three-dimensional structure, IDPs are
functional proteins that can readily bind to their binding partner, e.g. folded proteins, and
carry out biological functions. Nevertheless, the modes of interaction that IDPs use to bind
proteins are significantly different from those used by folded proteins. The increased
flexibility in IDPs allows for a number of different binding processes, including
conformational selection, folding-upon-binding and ‘fly casting’ [27–29]. The interaction
mechanism that is used for complex formation often depends on the structure of the IDP in
its unbound form. Whereas some IDPs are true random coil polymers, most contain
elements of secondary or tertiary structure that are only transiently populated. These
secondary- and tertiary-structural elements can lead to a structural organization of IDPs.
Furthermore, this organization, or ‘preferred conformation’, results in a spatial restriction in
IDPs that can expose primary protein interaction sites to enable faster and more effective
binding, as well as folding-upon-binding, to target molecules [30–32].

Whereas numerous IDP protein–protein interactions have been reported and analysed in the
last 15 years, in the present review, we focus on three distinct IDPs that bind the same well-
folded enzyme, PP1: the PP1-targeting proteins spinophilin [19,33,34] and MYPT1 [35,36],
and the PP1 inhibitor I-2 [17,19,37,38]. When these proteins bind PP1 to form a PP1
holoenzyme, PP1 becomes highly specific for a subset of substrates (Figures 1 and 2).

Regulation of PP1 by IDPs
Spinophilin, MYPT1 and I-2 all modulate the activity of PP1. They do so by either
inhibiting the catalytic site (I-2) or by modifying the PP1 surface so specific substrates can
be efficiently dephosphorylated (spinophilin and MYPT1). Despite their related functions
and common binding partner, a comparison of the unbound structures of these three IDPs
shows that they have different structural and dynamic characteristics in both the free and
PP1-bound states.

First, spinophilin is highly dynamic in its unbound form; e.g. nearly no positive 15N{1H}-
NOEs are observed [19,34]. In contrast, I-2 possess a nearly 100% populated α-helix, in
which many strong (i, i + 1) HN-HN NOEs from residues in this helix are readily measured
in a three-dimensional 15N-resolved 1H,1H NOESY spectrum [38]. In addition, residues
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near this α-helix also have reduced backbone flexibility. Finally, at the other end of the IDP
spectrum, only the 40 N-terminal residues are unstructured in MYPT1 and even these
residues have restricted short-timescale backbone dynamics [35].

Secondly, all three IDPs have pre-formed secondary-structural elements that are used to bind
PP1. However, the number of pre-formed structures varies significantly between the three
IDPs. The most dynamic protein, spinophilin, has the least amount of pre-formed secondary
structure. Conversely, I-2 has three pre-formed α-helices. However, whereas some of these
pre-formed secondary-structure elements in I-2 have a significant role in PP1 binding and
biological function (e.g. the 100% populated α-helix in the free state binds PP1 and blocks
its catalytic site, explaining the inhibitory mechanism of I-2), some pre-formed secondary-
structural elements in I-2 are not used for interacting with PP1. Lastly, MYPT1 also has a
pre-formed α-helix that is important for PP1 binding.

Thirdly, and as might be expected, spinophilin, I-2 and MYPT1 have different structural
ensembles in their unbound forms [19,35]. However, they also adopt significantly different
conformations in their bound forms, i.e. when they are bound to PP1 to form PP1
holoenzymes (spinophilin–PP1, I-2–PP1 and MYPT1–PP1) (Figure 2). Indeed, these
structures reveal that, beyond the RVXF binding motif, there are no common PP1-binding
motifs among the IDPs. Instead, these structures have revealed that PP1 is a protein
interaction hub and that many PP1 surfaces are potential protein–protein interaction sites. In
fact, using the average SASA (solvent-accessible surface area) of the RVXF motif and more
recently identified PP1-binding pockets as a measure of the SASA needed for a single PP1-
binding site, and comparing it with the SASA of the entire PP1 protein, we predict that PP1
may have up to 30 non-overlapping regulatory protein-binding sites [5]. IDPs, because of
their increased flexibility and extended structures, have a significant advantage compared
with folded proteins when binding PP1 because they can easily interact with a single or
multiple PP1-binding pockets using a minimal number of residues. In contrast, if PP1
holoenzymes were formed by folded regulatory proteins, these proteins would need to be
much larger (~4-fold) to engage the equivalent PP1-binding surfaces. The diversity of
binding sites available on PP1, and the inherent flexibility of IDPs, explains why, for this
system, the conformations of IDPs bound to PP1 are distinct.

Fourthly, spinophilin, I-2 and MYPT1 use different mechanisms to bind PP1. Two major
processes can lead to the selection of a single folded conformation when IDPs bind to a
folded protein: conformational selection and/or induced fit. In the first case, the IDP has an
intrinsic preference for its binding conformer and therefore the interacting protein is only a
scaffold, i.e. it does not direct the formation of the bound conformation. This conformational
selection model of binding requires that a limited population of the IDP adopts the bound-
state conformation in its free state [39]. This behaviour is observed in spinophilin and
MYPT1. Both unbound states have pre-formed structures that are similar to the structures
they adopt in their bound forms. This is not the case for I-2, which probably follows an
‘induced-fit’ process. Here, I-2 conformations in the unbound form are different from the
PP1-bound conformer. In this case, the bound conformation is energetically accessible only
in the presence of its binding partner [40], PP1, and is either not detected in the unbound
state or is so minimally populated that its presence is undetectable using the techniques that
we have used in our studies. Clearly, the highly populated α-helix in I-2 might play a
significant role in initiating the induced-fit events that define the interaction of I-2 with PP1.

Fifthly, there are significant differences in the residual flexibility of these three IDPs in their
PP1-bound states. Spinophilin, the most dynamic IDP in its unbound form, becomes
completely rigid when bound to PP1. It does so by forming both a β-sheet, which extends a
β-sheet in PP1, and an α-helix, which was minimally populated in the unbound state. All
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residues have excellent electron density in the spinophilin–PP1 holoenzyme crystal
structure. This behaviour is similar to that observed for the MYPT1–PP1 complex [36],
where MYPT1 becomes entirely structured when bound to PP1. This is interesting, as the
most flexible (spinophilin) and most rigid (MYPT1) IDPs in their unbound states adopt fully
rigid structures when bound to PP1. In contrast, I-2 is well-structured and more rigid than
spinophilin in its unbound form. However, only ~25% of the I-2 residues adopt a rigid
structure in the I-2–PP1 crystal structure [37]; 75% of all I-2 residues stay flexible. Using
NMR spectroscopy and SAXS, we were able to determine the ensemble structure of the I-2–
PP1 holoenzyme in solution, which showed that the I-2 residues that stay flexible in the I-2–
PP1 complex form two extended loop structures [19]. Interestingly, using chemical shift
data, we identified a ~60% populated α-helix in unbound I-2, which is located in one of
these extended loops. It is possible that this α-helix forms an additional protein–protein
interaction site, enabling this IDP to interact with other proteins while bound to PP1 [41].

Two IDPs fight for one folded protein
For many years, it was thought that only one PP1-regulatory protein was able to interact
with PP1 at a time, as nearly every regulatory protein binds PP1 in its RVXF-binding
pocket. However, it has been shown that pairs of targeting and inhibitor proteins can bind to
PP1 simultaneously [42–44]. This leads to an additional layer of complexity in PP1
regulation. To understand how, at a molecular level, multiple regulatory proteins interact
with PP1 simultaneously, and to establish which of the two proteins bind the PP1 RVXF-
binding pocket, we investigated such a heterotrimeric PP1 complex. Specifically, we studied
the triple complex formed by the interaction of two IDPs with PP1, spinophilin and I-2,
which together form the PP1–spinophilin–I-2, or PSI, complex.

Using biochemical, NMR spectroscopy and SAXS analyses, we showed that, in the PSI
complex, I-2 releases from the RVXF-binding site while spinophilin engages this site [17].
This release of one of the key PP1-binding pockets by I-2 significantly increases the length
of the flexible loop in I-2 in the PSI complex. This leads to two interesting observations.
First, IDPs can be exceedingly flexible when bound to their targeting proteins, such as I-2 in
the PSI triple complex, where ~80% of all residues stay flexible. Thus contributions of
enthalpy and entropy in IDP–protein interactions are likely to be weighted differently from
how they are for interactions between two folded proteins, as entropy can play a larger role
in an IDP-binding event due to increased flexibility in the unbound, as well as the bound,
state. Clearly, spinophilin reduces its entropy upon binding, as it loses nearly all of its free-
state flexibility. In contrast, I-2 stays nearly entirely flexible in the holoenzyme as it only
binds PP1 via very short motifs and a long α-helix that is pre-formed in the unbound state.
Secondly, it is interesting to note that the secondary-structure elements that were most
highly populated in the unbound forms of spinophilin and I-2 are present and bound in the
PSI complex, indicating that these pre-formed secondary-structural elements might reflect
the protein–protein-binding strength.

Conclusions
During the last decade, it has become apparent that IDPs have critical roles in a significant
number of regulatory processes [5,18,19,45–47]. One of these roles is the regulation of the
serine/threonine phosphatase PP1, an enzyme responsible for ~30% of all dephosphorylation
reactions in eukaryotic cells. Approximately 200 biochemically confirmed interaction
partners bind to PP1 to regulate its activity and most of these regulatory proteins are IDPs.
Thus PP1, together with its regulatory proteins, is a unique system for investigating the
similarities and differences in a family of IDPs, the PP1-regulatory proteins, that bind a
single protein: PP1.
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Using this system, it has become apparent that PP1-regulatory IDPs use a variety of
processes to interact with PP1. In all cases, pre-formed secondary structure has been shown
to play a central role in the interaction of these IDPs with PP1. However, the importance of
these pre-formed structures for PP1 binding varies between the IDPs. In addition, not only
are their unbound structures highly variable, but also all three IDPs described in the present
paper also adopt distinct conformations when bound to PP1. The similarities between the
unbound and bound conformations and dynamics of a single IDP are also different for these
three PP1 IDPs. For example, spinophilin and MYPT1 have unbound tertiary structures that
are similar to their PP1 bound conformations, whereas I-2 does not. Furthermore, both
spinophilin and MYPT1 become entirely rigid upon PP1 binding, whereas only ~25% of the
I-2 residues become rigid. This shows an interesting variability of the flexibility that IDPs
retain when binding PP1. Thus, although it is possible to identify common features for the
interaction of IDPs with PP1, it is too early to make any predictions about how other
regulatory IDPs will bind PP1. As we are currently pursuing a comprehensive structural
understanding of multiple PP1 regulators, both in their bound and unbound conformations, it
will be interesting to see whether these additional data enable us to make detailed and
precise predictions for IDP–PP1 interactions.
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Figure 1. Typical IDP analysis workflow
(A) NMR spectroscopy can be readily used to identify IDPs. Two-dimensional 1H,15N
HSQC (heteronuclear single-quantum coherence) spectrum of IDPs have a limited peak
dispersion in the 1HN dimension due to a lack of hydrogen-bonding network typical in
secondary-structural elements of well-folded proteins. (B) Necessary experiments to verify
protein function. For this system, IDP function is tested by IDP–PP1 complex formation,
either by co-elution from a size-exclusion chromatography column or by isothermal titration
calorimetry. (C) Measurement and evaluation of chemical shift (CS), PRE, auto-correlated
short-timescale relaxation NMR data as well as global parameters, based on dynamic light
scattering or SAXS. MTSL, S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl
methanesulfonothioate spin label; Rh, hydrodynamic radius; SSP, secondary-structure
propensity. (D) Calculation of the IDP ensemble structure. (E) Determination of the
complex structure between the IDP and the targeting protein (spinophilin–PP1 structure is
shown; PDB code 3EGG) using X-ray crystallography or NMR spectroscopy. (F)
Comparison of unbound and bound IDP conformations via a distance correlation map, to
evaluate the mode of interaction, as well as differential and common structural features.
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Figure 2. PP1 regulators are IDPs that adopt distinct conformations in their PP1-bound forms
(A) PP1 is a metalloenzyme with two Mn2 + ions bound at the catalytic site. The catalytic
site is also the target of molecular toxins such as Nodularin-R. (B) Gm peptide–PP1
complex; electron density for the peptide was only detected in the RVXF-binding site. (C)
Spinophilin–PP1 complex (PDB code 3EGG). (D) I-2–PP1 complex (PDB code 2O8G). (E)
MYPT1–PP1 complex (PDB code 1S70).
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